1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
""" Test functions for stats module
"""
from numpy.testing import *
set_package_path()
import numpy
from numpy import typecodes, array
import stats
restore_path()
import types
def kolmogorov_test(diststr,args=(),N=20,significance=0.01):
qtest = stats.ksoneisf(significance,N)
cdf = eval('stats.'+diststr+'.cdf')
dist = eval('stats.'+diststr)
# Get random numbers
kwds = {'size':N}
vals = numpy.sort(dist.rvs(*args,**kwds))
cdfvals = cdf(vals,*args)
q = max(abs(cdfvals-arange(1.0,N+1)/N))
assert (q < qtest), "Failed q=%f, bound=%f, alpha=%f" % (q, qtest, significance)
return
# generate test cases to test cdf and distribution consistency
dists = ['uniform','norm','lognorm','expon','beta',
'powerlaw','bradford','burr','fisk','cauchy','halfcauchy',
'foldcauchy','gamma','gengamma','loggamma',
'alpha','anglit','arcsine','betaprime','erlang',
'dgamma','exponweib','exponpow','frechet_l','frechet_r',
'gilbrat','f','ncf','chi2','chi','nakagami','genpareto',
'genextreme','genhalflogistic','pareto','lomax','halfnorm',
'halflogistic','fatiguelife','foldnorm','ncx2','t','nct',
'weibull_min','weibull_max','dweibull','maxwell','rayleigh',
'genlogistic', 'logistic','gumbel_l','gumbel_r','gompertz',
'hypsecant', 'laplace', 'reciprocal','triang','tukeylambda']
for dist in dists:
distfunc = eval('stats.'+dist)
nargs = distfunc.numargs
alpha = 0.01
if dist == 'fatiguelife':
alpha = 0.001
if dist == 'erlang':
args = str((4,)+tuple(rand(2)))
elif dist == 'frechet':
args = str(tuple(2*rand(1))+(0,)+tuple(2*rand(2)))
elif dist == 'triang':
args = str(tuple(rand(nargs)))
elif dist == 'reciprocal':
vals = rand(nargs)
vals[1] = vals[0] + 1.0
args = str(tuple(vals))
else:
args = str(tuple(1.0+rand(nargs)))
exstr = r"""
class test_%s(NumpyTestCase):
def check_cdf(self):
D,pval = stats.kstest('%s','',args=%s,N=30)
if (pval < %f):
D,pval = stats.kstest('%s','',args=%s,N=30)
#if (pval < %f):
# D,pval = stats.kstest('%s','',args=%s,N=30)
assert (pval > %f), "D = " + str(D) + "; pval = " + str(pval) + "; alpha = " + str(alpha) + "\nargs = " + str(%s)
""" % (dist,dist,args,alpha,dist,args,alpha,dist,args,alpha,args)
exec exstr
class test_randint(NumpyTestCase):
def check_rvs(self):
vals = stats.randint.rvs(5,30,size=100)
assert(numpy.all(vals < 30) & numpy.all(vals >= 5))
assert(len(vals) == 100)
vals = stats.randint.rvs(5,30,size=(2,50))
assert(numpy.shape(vals) == (2,50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.randint.rvs(15,46)
assert((val >= 15) & (val < 46))
assert isinstance(val, numpy.ScalarType),`type(val)`
assert(val.dtype.char in typecodes['AllInteger'])
def check_pdf(self):
k = numpy.r_[0:36]
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
vals = stats.randint.pmf(k,5,30)
assert_array_almost_equal(vals,out)
def check_cdf(self):
x = numpy.r_[0:36:100j]
k = numpy.floor(x)
out = numpy.select([k>=30,k>=5],[1.0,(k-5.0+1)/(30-5.0)],0)
vals = stats.randint.cdf(x,5,30)
assert_array_almost_equal(vals, out, decimal=12)
class test_binom(NumpyTestCase):
def check_rvs(self):
vals = stats.binom.rvs(10, 0.75, size=(2, 50))
assert(numpy.all(vals >= 0) & numpy.all(vals <= 10))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.binom.rvs(10, 0.75)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_bernoulli(NumpyTestCase):
def check_rvs(self):
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
assert(numpy.all(vals >= 0) & numpy.all(vals <= 1))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.bernoulli.rvs(0.75)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_nbinom(NumpyTestCase):
def check_rvs(self):
vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
assert(numpy.all(vals >= 0))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.nbinom.rvs(10, 0.75)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_geom(NumpyTestCase):
def check_rvs(self):
vals = stats.geom.rvs(0.75, size=(2, 50))
assert(numpy.all(vals >= 0))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.geom.rvs(0.75)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
def check_pmf(self):
vals = stats.geom.pmf([1,2,3],0.5)
assert_array_almost_equal(vals,[0.5,0.25,0.125])
def check_cdf_sf(self):
vals = stats.geom.cdf([1,2,3],0.5)
vals_sf = stats.geom.sf([1,2,3],0.5)
expected = array([0.5,0.75,0.875])
assert_array_almost_equal(vals,expected)
assert_array_almost_equal(vals_sf,1-expected)
class test_hypergeom(NumpyTestCase):
def check_rvs(self):
vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
assert(numpy.all(vals >= 0) &
numpy.all(vals <= 3))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.hypergeom.rvs(20, 3, 10)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_logser(NumpyTestCase):
def check_rvs(self):
vals = stats.logser.rvs(0.75, size=(2, 50))
assert(numpy.all(vals >= 1))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.logser.rvs(0.75)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_poisson(NumpyTestCase):
def check_rvs(self):
vals = stats.poisson.rvs(0.5, size=(2, 50))
assert(numpy.all(vals >= 0))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.poisson.rvs(0.5)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_zipf(NumpyTestCase):
def check_rvs(self):
vals = stats.zipf.rvs(1.5, size=(2, 50))
assert(numpy.all(vals >= 1))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.zipf.rvs(1.5)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_dlaplace(NumpyTestCase):
def check_rvs(self):
vals = stats.dlaplace.rvs(1.5 , size=(2, 50))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.dlaplace.rvs(1.5)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class test_rv_discrete(NumpyTestCase):
def check_rvs(self):
states = [-1,0,1,2,3,4]
probability = [0.0,0.3,0.4,0.0,0.3,0.0]
samples = 1000
r = stats.rv_discrete(name='sample',values=(states,probability))
x = r.rvs(size=samples)
for s,p in zip(states,probability):
assert abs(sum(x == s)/float(samples) - p) < 0.05
class test_expon(NumpyTestCase):
def check_zero(self):
assert_equal(stats.expon.pdf(0),1)
if __name__ == "__main__":
NumpyTest('stats.distributions').run()
|