File: combine.py

package info (click to toggle)
python-scipy 0.6.0-12
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 32,016 kB
  • ctags: 46,675
  • sloc: cpp: 124,854; ansic: 110,614; python: 108,664; fortran: 76,260; objc: 424; makefile: 384; sh: 10
file content (269 lines) | stat: -rw-r--r-- 9,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as num
from _combine import combine as _comb
import operator as _operator


def _combine_f(funcstr, arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None):
    arrays = [ num.asarray(a) for a in arrays ]
    shape = arrays[0].shape
    if output is None:
        if outtype is not None:
            out = arrays[0].astype(outtype)
        else:
            out = arrays[0].copy()
    else:
        out = output
    for a in tuple(arrays[1:])+(out,):
        if a.shape != shape:
            raise ValueError("all arrays must have identical shapes")
    _comb(arrays, out, nlow, nhigh, badmasks, funcstr)
    if output is None:
        return out
    
def median( arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None):
    """median() nominally computes the median pixels for a stack of
    identically shaped images.

    arrays     specifies a sequence of inputs arrays, which are nominally a
               stack of identically shaped images.

    output     may be used to specify the output array.  If none is specified,
               either arrays[0] is copied or a new array of type 'outtype'
               is created.

    outtype    specifies the type of the output array when no 'output' is
               specified.

    nlow       specifies the number of pixels to be excluded from median
               on the low end of the pixel stack.

    nhigh      specifies the number of pixels to be excluded from median
               on the high end of the pixel stack.

    badmasks   specifies boolean arrays corresponding to 'arrays', where true
               indicates that a particular pixel is not to be included in the
               median calculation.
    
    >>> a = num.arange(4)
    >>> a = a.reshape((2,2))
    >>> arrays = [a*16, a*4, a*2, a*8]
    >>> median(arrays)
    array([[ 0,  6],
           [12, 18]])
    >>> median(arrays, nhigh=1)
    array([[ 0,  4],
           [ 8, 12]])
    >>> median(arrays, nlow=1)
    array([[ 0,  8],
           [16, 24]])
    >>> median(arrays, outtype=num.float32)
    array([[  0.,   6.],
           [ 12.,  18.]], dtype=float32)
    >>> bm = num.zeros((4,2,2), dtype=num.bool8)
    >>> bm[2,...] = 1
    >>> median(arrays, badmasks=bm)
    array([[ 0,  8],
           [16, 24]])
    >>> median(arrays, badmasks=threshhold(arrays, high=25))
    array([[ 0,  6],
           [ 8, 12]])
    """
    return _combine_f("median", arrays, output, outtype, nlow, nhigh, badmasks)

def average( arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None):
    """average() nominally computes the average pixel value for a stack of
    identically shaped images.

    arrays     specifies a sequence of inputs arrays, which are nominally a
               stack of identically shaped images.

    output     may be used to specify the output array.  If none is specified,
               either arrays[0] is copied or a new array of type 'outtype'
               is created.

    outtype    specifies the type of the output array when no 'output' is
               specified.

    nlow       specifies the number of pixels to be excluded from average
               on the low end of the pixel stack.

    nhigh      specifies the number of pixels to be excluded from average
               on the high end of the pixel stack.

    badmasks   specifies boolean arrays corresponding to 'arrays', where true
               indicates that a particular pixel is not to be included in the
               average calculation.
               
    >>> a = num.arange(4)
    >>> a = a.reshape((2,2))
    >>> arrays = [a*16, a*4, a*2, a*8]
    >>> average(arrays)
    array([[ 0,  7],
           [15, 22]])
    >>> average(arrays, nhigh=1)
    array([[ 0,  4],
           [ 9, 14]])
    >>> average(arrays, nlow=1)
    array([[ 0,  9],
           [18, 28]])
    >>> average(arrays, outtype=num.float32)
    array([[  0. ,   7.5],
           [ 15. ,  22.5]], dtype=float32)
    >>> bm = num.zeros((4,2,2), dtype=num.bool8)
    >>> bm[2,...] = 1
    >>> average(arrays, badmasks=bm)
    array([[ 0,  9],
           [18, 28]])
    >>> average(arrays, badmasks=threshhold(arrays, high=25))
    array([[ 0,  7],
           [ 9, 14]])
    
    """
    return _combine_f("average", arrays, output, outtype, nlow, nhigh, badmasks)

def minimum( arrays, output=None, outtype=None, nlow=0, nhigh=0, badmasks=None):
    """minimum() nominally computes the minimum pixel value for a stack of
    identically shaped images.

    arrays     specifies a sequence of inputs arrays, which are nominally a
               stack of identically shaped images.

    output     may be used to specify the output array.  If none is specified,
               either arrays[0] is copied or a new array of type 'outtype'
               is created.

    outtype    specifies the type of the output array when no 'output' is
               specified.

    nlow       specifies the number of pixels to be excluded from minimum
               on the low end of the pixel stack.

    nhigh      specifies the number of pixels to be excluded from minimum
               on the high end of the pixel stack.

    badmasks   specifies boolean arrays corresponding to 'arrays', where true
               indicates that a particular pixel is not to be included in the
               minimum calculation.
               
    >>> a = num.arange(4)
    >>> a = a.reshape((2,2))
    >>> arrays = [a*16, a*4, a*2, a*8]
    >>> minimum(arrays)
    array([[0, 2],
           [4, 6]])
    >>> minimum(arrays, nhigh=1)
    array([[0, 2],
           [4, 6]])
    >>> minimum(arrays, nlow=1)
    array([[ 0,  4],
           [ 8, 12]])
    >>> minimum(arrays, outtype=num.float32)
    array([[ 0.,  2.],
           [ 4.,  6.]], dtype=float32)
    >>> bm = num.zeros((4,2,2), dtype=num.bool8)
    >>> bm[2,...] = 1
    >>> minimum(arrays, badmasks=bm)
    array([[ 0,  4],
           [ 8, 12]])
    >>> minimum(arrays, badmasks=threshhold(arrays, low=10))
    array([[ 0, 16],
           [16, 12]])
    
    """
    return _combine_f("minimum", arrays, output, outtype, nlow, nhigh, badmasks)

def threshhold(arrays, low=None, high=None, outputs=None):
    """threshhold() computes a boolean array 'outputs' with
    corresponding elements for each element of arrays.  The
    boolean value is true where each of the arrays values
    is < the low or >= the high threshholds.

    >>> a=num.arange(100)
    >>> a=a.reshape((10,10))
    >>> (threshhold(a, 1, 50)).astype(num.int8)
    array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int8)
    >>> (threshhold([ range(10)]*10, 3, 7)).astype(num.int8)
    array([[1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
           [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]], dtype=int8)
    >>> (threshhold(a, high=50)).astype(num.int8)
    array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int8)
    >>> (threshhold(a, low=50)).astype(num.int8)
    array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int8)
    
    """

    if not isinstance(arrays[0],  num.ndarray):
        return threshhold( num.asarray(arrays), low, high, outputs)
    
    if outputs is None:
        outs = num.zeros(shape=(len(arrays),)+arrays[0].shape,
                         dtype=num.bool8)
    else:
        outs = outputs

    for i in range(len(arrays)):
        a, out = arrays[i], outs[i]
        out[:] = 0

        if high is not None:
            num.greater_equal(a, high, out)
            if low is not None:
                num.logical_or(out, a < low, out)
        else:
            if low is not None:
                num.less(a, low, out)

    if outputs is None:
        return outs

def _bench():
    """time a 10**6 element median"""
    import time
    a = num.arange(10**6)
    a = a.reshape((1000, 1000))
    arrays = [a*2, a*64, a*16, a*8]
    t0 = time.clock()
    median(arrays)
    print "maskless:", time.clock()-t0
    
    a = num.arange(10**6)
    a = a.reshape((1000, 1000))
    arrays = [a*2, a*64, a*16, a*8]
    t0 = time.clock()
    median(arrays, badmasks=num.zeros((1000,1000), dtype=num.bool8))
    print "masked:", time.clock()-t0