1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
import os
from numpy import *
from numpy.testing import *
set_package_path()
from weave import size_check
from weave.ast_tools import *
restore_path()
import numpy as nx
empty = array(())
class test_make_same_length(NumpyTestCase):
def generic_test(self,x,y,desired):
actual = size_check.make_same_length(x,y)
desired = desired
assert_array_equal(actual,desired)
def check_scalar(self):
x,y = (),()
desired = empty,empty
self.generic_test(x,y,desired)
def check_x_scalar(self):
x,y = (),(1,2)
desired = array((1,1)),array((1,2))
self.generic_test(x,y,desired)
def check_y_scalar(self):
x,y = (1,2),()
desired = array((1,2)),array((1,1))
self.generic_test(x,y,desired)
def check_x_short(self):
x,y = (1,2),(1,2,3)
desired = array((1,1,2)),array((1,2,3))
self.generic_test(x,y,desired)
def check_y_short(self):
x,y = (1,2,3),(1,2)
desired = array((1,2,3)),array((1,1,2))
self.generic_test(x,y,desired)
class test_binary_op_size(NumpyTestCase):
def generic_test(self,x,y,desired):
actual = size_check.binary_op_size(x,y)
desired = desired
assert_array_equal(actual,desired)
def generic_error_test(self,x,y):
self.failUnlessRaises(ValueError, size_check.binary_op_size, x, y)
def desired_type(self,val):
return array(val)
def check_scalar(self):
x,y = (),()
desired = self.desired_type(())
self.generic_test(x,y,desired)
def check_x1(self):
x,y = (1,),()
desired = self.desired_type((1,))
self.generic_test(x,y,desired)
def check_y1(self):
x,y = (),(1,)
desired = self.desired_type((1,))
self.generic_test(x,y,desired)
def check_x_y(self):
x,y = (5,),(5,)
desired = self.desired_type((5,))
self.generic_test(x,y,desired)
def check_x_y2(self):
x,y = (5,10),(5,10)
desired = self.desired_type((5,10))
self.generic_test(x,y,desired)
def check_x_y3(self):
x,y = (5,10),(1,10)
desired = self.desired_type((5,10))
self.generic_test(x,y,desired)
def check_x_y4(self):
x,y = (1,10),(5,10)
desired = self.desired_type((5,10))
self.generic_test(x,y,desired)
def check_x_y5(self):
x,y = (5,1),(1,10)
desired = self.desired_type((5,10))
self.generic_test(x,y,desired)
def check_x_y6(self):
x,y = (1,10),(5,1)
desired = self.desired_type((5,10))
self.generic_test(x,y,desired)
def check_x_y7(self):
x,y = (5,4,3,2,1),(3,2,1)
desired = self.desired_type((5,4,3,2,1))
self.generic_test(x,y,desired)
def check_error1(self):
x,y = (5,),(4,)
self.generic_error_test(x,y)
def check_error2(self):
x,y = (5,5),(4,5)
self.generic_error_test(x,y)
class test_dummy_array(test_binary_op_size):
def generic_test(self,x,y,desired):
if type(x) is type(()):
x = ones(x)
if type(y) is type(()):
y = ones(y)
xx = size_check.dummy_array(x)
yy = size_check.dummy_array(y)
ops = ['+', '-', '/', '*', '<<', '>>']
for op in ops:
actual = eval('xx' + op + 'yy')
desired = desired
assert_array_equal(actual,desired)
def desired_type(self,val):
return size_check.dummy_array(array(val),1)
class test_dummy_array_indexing(NumpyTestCase):
def generic_test(self,ary,expr,desired):
a = size_check.dummy_array(ary)
actual = eval(expr).shape
#print desired, actual
assert_array_equal(actual,desired, expr)
def generic_wrap(self,a,expr):
desired = array(eval(expr).shape)
try:
self.generic_test(a,expr,desired)
except IndexError:
if 0 not in desired:
msg = '%s raised IndexError in dummy_array, but forms\n' \
'valid array shape -> %s' % (expr, str(desired))
raise AttributeError, msg
def generic_1d(self,expr):
a = arange(10)
self.generic_wrap(a,expr)
def generic_2d(self,expr):
a = ones((10,20))
self.generic_wrap(a,expr)
def generic_3d(self,expr):
a = ones((10,20,1))
self.generic_wrap(a,expr)
def generic_1d_index(self,expr):
a = arange(10)
#print expr ,eval(expr)
desired = array(())
self.generic_test(a,expr,desired)
def check_1d_index_0(self):
self.generic_1d_index('a[0]')
def check_1d_index_1(self):
self.generic_1d_index('a[4]')
def check_1d_index_2(self):
self.generic_1d_index('a[-4]')
def check_1d_index_3(self):
try: self.generic_1d('a[12]')
except IndexError: pass
def check_1d_index_calculated(self):
self.generic_1d_index('a[0+1]')
def check_1d_0(self):
self.generic_1d('a[:]')
def check_1d_1(self):
self.generic_1d('a[1:]')
def check_1d_2(self):
self.generic_1d('a[-1:]')
def check_1d_3(self):
self.generic_1d('a[-11:]')
def check_1d_4(self):
self.generic_1d('a[:1]')
def check_1d_5(self):
self.generic_1d('a[:-1]')
def check_1d_6(self):
self.generic_1d('a[:-11]')
def check_1d_7(self):
self.generic_1d('a[1:5]')
def check_1d_8(self):
self.generic_1d('a[1:-5]')
def check_1d_9(self):
# don't support zero length slicing at the moment.
try: self.generic_1d('a[-1:-5]')
except IndexError: pass
def check_1d_10(self):
self.generic_1d('a[-5:-1]')
def check_1d_stride_0(self):
self.generic_1d('a[::1]')
def check_1d_stride_1(self):
self.generic_1d('a[::-1]')
def check_1d_stride_2(self):
self.generic_1d('a[1::1]')
def check_1d_stride_3(self):
self.generic_1d('a[1::-1]')
def check_1d_stride_4(self):
# don't support zero length slicing at the moment.
try: self.generic_1d('a[1:5:-1]')
except IndexError: pass
def check_1d_stride_5(self):
self.generic_1d('a[5:1:-1]')
def check_1d_stride_6(self):
self.generic_1d('a[:4:1]')
def check_1d_stride_7(self):
self.generic_1d('a[:4:-1]')
def check_1d_stride_8(self):
self.generic_1d('a[:-4:1]')
def check_1d_stride_9(self):
self.generic_1d('a[:-4:-1]')
def check_1d_stride_10(self):
self.generic_1d('a[:-3:2]')
def check_1d_stride_11(self):
self.generic_1d('a[:-3:-2]')
def check_1d_stride_12(self):
self.generic_1d('a[:-3:-7]')
def check_1d_random(self):
""" through a bunch of different indexes at it for good measure.
"""
import random
choices = map(lambda x: `x`,range(50)) + range(50) + ['']*50
for i in range(100):
try:
beg = random.choice(choices)
end = random.choice(choices)
step = random.choice(choices)
if step in ['0',0]: step = 'None'
self.generic_1d('a[%s:%s:%s]' %(beg,end,step))
except IndexError:
pass
def check_2d_0(self):
self.generic_2d('a[:]')
def check_2d_1(self):
self.generic_2d('a[:2]')
def check_2d_2(self):
self.generic_2d('a[:,:]')
def check_2d_random(self):
""" through a bunch of different indexes at it for good measure.
"""
import random
choices = map(lambda x: `x`,range(50)) + range(50) + ['']*50
for i in range(100):
try:
beg = random.choice(choices)
end = random.choice(choices)
step = random.choice(choices)
beg2 = random.choice(choices)
end2 = random.choice(choices)
step2 = random.choice(choices)
if step in ['0',0]: step = 'None'
if step2 in ['0',0]: step2 = 'None'
expr = 'a[%s:%s:%s,%s:%s:%s]' %(beg,end,step,beg2,end2,step2)
self.generic_2d(expr)
except IndexError:
pass
def check_3d_random(self):
""" through a bunch of different indexes at it for good measure.
"""
import random
choices = map(lambda x: `x`,range(50)) + range(50) + ['']*50
for i in range(100):
try:
idx = []
for i in range(9):
val = random.choice(choices)
if (i+1) % 3 == 0 and val in ['0',0]:
val = 'None'
idx.append(val)
expr = 'a[%s:%s:%s,%s:%s:%s,%s:%s:%s]' % tuple(idx)
self.generic_3d(expr)
except IndexError:
pass
class test_reduction(NumpyTestCase):
def check_1d_0(self):
a = ones((5,))
actual = size_check.reduction(a,0)
desired = size_check.dummy_array((),1)
assert_array_equal(actual.shape,desired.shape)
def check_2d_0(self):
a = ones((5,10))
actual = size_check.reduction(a,0)
desired = size_check.dummy_array((10,),1)
assert_array_equal(actual.shape,desired.shape)
def check_2d_1(self):
a = ones((5,10))
actual = size_check.reduction(a,1)
desired = size_check.dummy_array((5,),1)
assert_array_equal(actual.shape,desired.shape)
def check_3d_0(self):
a = ones((5,6,7))
actual = size_check.reduction(a,1)
desired = size_check.dummy_array((5,7),1)
assert_array_equal(actual.shape,desired.shape)
def check_error0(self):
a = ones((5,))
try:
actual = size_check.reduction(a,-2)
except ValueError:
pass
def check_error1(self):
a = ones((5,))
try:
actual = size_check.reduction(a,1)
except ValueError:
pass
class test_expressions(NumpyTestCase):
def generic_test(self,expr,desired,**kw):
import parser
ast_list = parser.expr(expr).tolist()
args = harvest_variables(ast_list)
loc = locals().update(kw)
for var in args:
s='%s = size_check.dummy_array(%s)'% (var,var)
exec(s,loc)
try:
actual = eval(expr,locals()).shape
except:
actual = 'failed'
if actual is 'failed' and desired is 'failed':
return
try:
assert_array_equal(actual,desired, expr)
except:
print 'EXPR:',expr
print 'ACTUAL:',actual
print 'DEISRED:',desired
def generic_wrap(self,expr,**kw):
try:
x = array(eval(expr,kw))
try:
desired = x.shape
except:
desired = zeros(())
except:
desired = 'failed'
self.generic_test(expr,desired,**kw)
def check_generic_1d(self):
a = arange(10)
expr = 'a[:]'
self.generic_wrap(expr,a=a)
expr = 'a[:] + a'
self.generic_wrap(expr,a=a)
bad_expr = 'a[4:] + a'
self.generic_wrap(bad_expr,a=a)
a = arange(10)
b = ones((1,10))
expr = 'a + b'
self.generic_wrap(expr,a=a,b=b)
bad_expr = 'a[:5] + b'
self.generic_wrap(bad_expr,a=a,b=b)
def check_single_index(self):
a = arange(10)
expr = 'a[5] + a[3]'
self.generic_wrap(expr,a=a)
def check_calculated_index(self):
a = arange(10)
nx = 0
expr = 'a[5] + a[nx+3]'
size_check.check_expr(expr,locals())
def check_calculated_index2(self):
a = arange(10)
nx = 0
expr = 'a[1:5] + a[nx+1:5+nx]'
size_check.check_expr(expr,locals())
def generic_2d(self,expr):
a = ones((10,20))
self.generic_wrap(a,expr)
def generic_3d(self,expr):
a = ones((10,20,1))
self.generic_wrap(a,expr)
if __name__ == "__main__":
NumpyTest('weave.size_check').run()
|