| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 
 |       subroutine zgbfa(abd,lda,n,ml,mu,ipvt,info)
      integer lda,n,ml,mu,ipvt(1),info
      complex*16 abd(lda,1)
c
c     zgbfa factors a complex*16 band matrix by elimination.
c
c     zgbfa is usually called by zgbco, but it can be called
c     directly with a saving in time if  rcond  is not needed.
c
c     on entry
c
c        abd     complex*16(lda, n)
c                contains the matrix in band storage.  the columns
c                of the matrix are stored in the columns of  abd  and
c                the diagonals of the matrix are stored in rows
c                ml+1 through 2*ml+mu+1 of  abd .
c                see the comments below for details.
c
c        lda     integer
c                the leading dimension of the array  abd .
c                lda must be .ge. 2*ml + mu + 1 .
c
c        n       integer
c                the order of the original matrix.
c
c        ml      integer
c                number of diagonals below the main diagonal.
c                0 .le. ml .lt. n .
c
c        mu      integer
c                number of diagonals above the main diagonal.
c                0 .le. mu .lt. n .
c                more efficient if  ml .le. mu .
c     on return
c
c        abd     an upper triangular matrix in band storage and
c                the multipliers which were used to obtain it.
c                the factorization can be written  a = l*u  where
c                l  is a product of permutation and unit lower
c                triangular matrices and  u  is upper triangular.
c
c        ipvt    integer(n)
c                an integer vector of pivot indices.
c
c        info    integer
c                = 0  normal value.
c                = k  if  u(k,k) .eq. 0.0 .  this is not an error
c                     condition for this subroutine, but it does
c                     indicate that zgbsl will divide by zero if
c                     called.  use  rcond  in zgbco for a reliable
c                     indication of singularity.
c
c     band storage
c
c           if  a  is a band matrix, the following program segment
c           will set up the input.
c
c                   ml = (band width below the diagonal)
c                   mu = (band width above the diagonal)
c                   m = ml + mu + 1
c                   do 20 j = 1, n
c                      i1 = max0(1, j-mu)
c                      i2 = min0(n, j+ml)
c                      do 10 i = i1, i2
c                         k = i - j + m
c                         abd(k,j) = a(i,j)
c                10    continue
c                20 continue
c
c           this uses rows  ml+1  through  2*ml+mu+1  of  abd .
c           in addition, the first  ml  rows in  abd  are used for
c           elements generated during the triangularization.
c           the total number of rows needed in  abd  is  2*ml+mu+1 .
c           the  ml+mu by ml+mu  upper left triangle and the
c           ml by ml  lower right triangle are not referenced.
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas zaxpy,zscal,izamax
c     fortran dabs,max0,min0
c
c     internal variables
c
      complex*16 t
      integer i,izamax,i0,j,ju,jz,j0,j1,k,kp1,l,lm,m,mm,nm1
c
      complex*16 zdum
      double precision cabs1
      double precision dreal,dimag
      complex*16 zdumr,zdumi
      dreal(zdumr) = zdumr
      dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
      cabs1(zdum) = dabs(dreal(zdum)) + dabs(dimag(zdum))
c
      m = ml + mu + 1
      info = 0
c
c     zero initial fill-in columns
c
      j0 = mu + 2
      j1 = min0(n,m) - 1
      if (j1 .lt. j0) go to 30
      do 20 jz = j0, j1
         i0 = m + 1 - jz
         do 10 i = i0, ml
            abd(i,jz) = (0.0d0,0.0d0)
   10    continue
   20 continue
   30 continue
      jz = j1
      ju = 0
c
c     gaussian elimination with partial pivoting
c
      nm1 = n - 1
      if (nm1 .lt. 1) go to 130
      do 120 k = 1, nm1
         kp1 = k + 1
c
c        zero next fill-in column
c
         jz = jz + 1
         if (jz .gt. n) go to 50
         if (ml .lt. 1) go to 50
            do 40 i = 1, ml
               abd(i,jz) = (0.0d0,0.0d0)
   40       continue
   50    continue
c
c        find l = pivot index
c
         lm = min0(ml,n-k)
         l = izamax(lm+1,abd(m,k),1) + m - 1
         ipvt(k) = l + k - m
c
c        zero pivot implies this column already triangularized
c
         if (cabs1(abd(l,k)) .eq. 0.0d0) go to 100
c
c           interchange if necessary
c
            if (l .eq. m) go to 60
               t = abd(l,k)
               abd(l,k) = abd(m,k)
               abd(m,k) = t
   60       continue
c
c           compute multipliers
c
            t = -(1.0d0,0.0d0)/abd(m,k)
            call zscal(lm,t,abd(m+1,k),1)
c
c           row elimination with column indexing
c
            ju = min0(max0(ju,mu+ipvt(k)),n)
            mm = m
            if (ju .lt. kp1) go to 90
            do 80 j = kp1, ju
               l = l - 1
               mm = mm - 1
               t = abd(l,j)
               if (l .eq. mm) go to 70
                  abd(l,j) = abd(mm,j)
                  abd(mm,j) = t
   70          continue
               call zaxpy(lm,t,abd(m+1,k),1,abd(mm+1,j),1)
   80       continue
   90       continue
         go to 110
  100    continue
            info = k
  110    continue
  120 continue
  130 continue
      ipvt(n) = n
      if (cabs1(abd(m,n)) .eq. 0.0d0) info = n
      return
      end
 |