1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
# Authors: Pearu Peterson, Pauli Virtanen
"""
First-order ODE integrators
User-friendly interface to various numerical integrators for solving a
system of first order ODEs with prescribed initial conditions::
d y(t)[i]
--------- = f(t,y(t))[i],
d t
y(t=0)[i] = y0[i],
where::
i = 0, ..., len(y0) - 1
class ode
---------
A generic interface class to numeric integrators. It has the following
methods::
integrator = ode(f,jac=None)
integrator = integrator.set_integrator(name,**params)
integrator = integrator.set_initial_value(y0,t0=0.0)
integrator = integrator.set_f_params(*args)
integrator = integrator.set_jac_params(*args)
y1 = integrator.integrate(t1,step=0,relax=0)
flag = integrator.successful()
"""
integrator_info = \
"""
Available integrators
---------------------
vode
~~~~
Real-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides
implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/vode.f
This integrator accepts the following parameters in set_integrator()
method of the ode class:
- atol : float or sequence
absolute tolerance for solution
- rtol : float or sequence
relative tolerance for solution
- lband : None or int
- rband : None or int
Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+rband.
Setting these requires your jac routine to return the jacobian
in packed format, jac_packed[i-j+lband, j] = jac[i,j].
- method: 'adams' or 'bdf'
Which solver to use, Adams (non-stiff) or BDF (stiff)
- with_jacobian : bool
Whether to use the jacobian
- nsteps : int
Maximum number of (internally defined) steps allowed during one
call to the solver.
- first_step : float
- min_step : float
- max_step : float
Limits for the step sizes used by the integrator.
- order : int
Maximum order used by the integrator,
order <= 12 for Adams, <= 5 for BDF.
zvode
~~~~~
Complex-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides
implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).
Source: http://www.netlib.org/ode/zvode.f
This integrator accepts the same parameters in set_integrator()
as the "vode" solver.
:Note:
When using ZVODE for a stiff system, it should only be used for
the case in which the function f is analytic, that is, when each f(i)
is an analytic function of each y(j). Analyticity means that the
partial derivative df(i)/dy(j) is a unique complex number, and this
fact is critical in the way ZVODE solves the dense or banded linear
systems that arise in the stiff case. For a complex stiff ODE system
in which f is not analytic, ZVODE is likely to have convergence
failures, and for this problem one should instead use DVODE on the
equivalent real system (in the real and imaginary parts of y).
"""
if __doc__:
__doc__ += integrator_info
# XXX: Integrators must have:
# ===========================
# cvode - C version of vode and vodpk with many improvements.
# Get it from http://www.netlib.org/ode/cvode.tar.gz
# To wrap cvode to Python, one must write extension module by
# hand. Its interface is too much 'advanced C' that using f2py
# would be too complicated (or impossible).
#
# How to define a new integrator:
# ===============================
#
# class myodeint(IntegratorBase):
#
# runner = <odeint function> or None
#
# def __init__(self,...): # required
# <initialize>
#
# def reset(self,n,has_jac): # optional
# # n - the size of the problem (number of equations)
# # has_jac - whether user has supplied its own routine for Jacobian
# <allocate memory,initialize further>
#
# def run(self,f,jac,y0,t0,t1,f_params,jac_params): # required
# # this method is called to integrate from t=t0 to t=t1
# # with initial condition y0. f and jac are user-supplied functions
# # that define the problem. f_params,jac_params are additional
# # arguments
# # to these functions.
# <calculate y1>
# if <calculation was unsuccesful>:
# self.success = 0
# return t1,y1
#
# # In addition, one can define step() and run_relax() methods (they
# # take the same arguments as run()) if the integrator can support
# # these features (see IntegratorBase doc strings).
#
# if myodeint.runner:
# IntegratorBase.integrator_classes.append(myodeint)
__all__ = ['ode']
__version__ = "$Id$"
__docformat__ = "restructuredtext en"
from numpy import asarray, array, zeros, int32, isscalar
import re, sys
#------------------------------------------------------------------------------
# User interface
#------------------------------------------------------------------------------
class ode(object):
"""\
A generic interface class to numeric integrators.
See also
--------
odeint : an integrator with a simpler interface based on lsoda from ODEPACK
quad : for finding the area under a curve
Examples
--------
A problem to integrate and the corresponding jacobian:
>>> from scipy import eye
>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
>>> return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
>>> return [[1j*arg1, 1], [0, -arg1*2*y[1]]]
The integration:
>>> r = ode(f, jac).set_integrator('zvode', method='bdf', with_jacobian=True)
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
>>> r.integrate(r.t+dt)
>>> print r.t, r.y
"""
if __doc__:
__doc__ += integrator_info
def __init__(self, f, jac=None):
"""
Define equation y' = f(y,t) where (optional) jac = df/dy.
Parameters
----------
f : f(t, y, *f_args)
Rhs of the equation. t is a scalar, y.shape == (n,).
f_args is set by calling set_f_params(*args)
jac : jac(t, y, *jac_args)
Jacobian of the rhs, jac[i,j] = d f[i] / d y[j]
jac_args is set by calling set_f_params(*args)
"""
self.stiff = 0
self.f = f
self.jac = jac
self.f_params = ()
self.jac_params = ()
self.y = []
def set_initial_value(self, y, t=0.0):
"""Set initial conditions y(t) = y."""
if isscalar(y):
y = [y]
n_prev = len(self.y)
if not n_prev:
self.set_integrator('') # find first available integrator
self.y = asarray(y, self._integrator.scalar)
self.t = t
self._integrator.reset(len(self.y),self.jac is not None)
return self
def set_integrator(self, name, **integrator_params):
"""
Set integrator by name.
Parameters
----------
name : str
Name of the integrator
integrator_params
Additional parameters for the integrator.
"""
integrator = find_integrator(name)
if integrator is None:
print 'No integrator name match with %s or is not available.'\
%(`name`)
else:
self._integrator = integrator(**integrator_params)
if not len(self.y):
self.t = 0.0
self.y = array([0.0], self._integrator.scalar)
self._integrator.reset(len(self.y),self.jac is not None)
return self
def integrate(self, t, step=0, relax=0):
"""Find y=y(t), set y as an initial condition, and return y."""
if step and self._integrator.supports_step:
mth = self._integrator.step
elif relax and self._integrator.supports_run_relax:
mth = self._integrator.run_relax
else:
mth = self._integrator.run
self.y,self.t = mth(self.f,self.jac or (lambda :None),
self.y,self.t,t,
self.f_params,self.jac_params)
return self.y
def successful(self):
"""Check if integration was successful."""
try: self._integrator
except AttributeError: self.set_integrator('')
return self._integrator.success==1
def set_f_params(self,*args):
"""Set extra parameters for user-supplied function f."""
self.f_params = args
return self
def set_jac_params(self,*args):
"""Set extra parameters for user-supplied function jac."""
self.jac_params = args
return self
#------------------------------------------------------------------------------
# ODE integrators
#------------------------------------------------------------------------------
def find_integrator(name):
for cl in IntegratorBase.integrator_classes:
if re.match(name,cl.__name__,re.I):
return cl
return
class IntegratorBase(object):
runner = None # runner is None => integrator is not available
success = None # success==1 if integrator was called successfully
supports_run_relax = None
supports_step = None
integrator_classes = []
scalar = float
def reset(self,n,has_jac):
"""Prepare integrator for call: allocate memory, set flags, etc.
n - number of equations.
has_jac - if user has supplied function for evaluating Jacobian.
"""
def run(self,f,jac,y0,t0,t1,f_params,jac_params):
"""Integrate from t=t0 to t=t1 using y0 as an initial condition.
Return 2-tuple (y1,t1) where y1 is the result and t=t1
defines the stoppage coordinate of the result.
"""
raise NotImplementedError,\
'all integrators must define run(f,jac,t0,t1,y0,f_params,jac_params)'
def step(self,f,jac,y0,t0,t1,f_params,jac_params):
"""Make one integration step and return (y1,t1)."""
raise NotImplementedError,'%s does not support step() method' %\
(self.__class__.__name__)
def run_relax(self,f,jac,y0,t0,t1,f_params,jac_params):
"""Integrate from t=t0 to t>=t1 and return (y1,t)."""
raise NotImplementedError,'%s does not support run_relax() method' %\
(self.__class__.__name__)
#XXX: __str__ method for getting visual state of the integrator
class vode(IntegratorBase):
try:
import vode as _vode
except ImportError:
print sys.exc_value
_vode = None
runner = getattr(_vode,'dvode',None)
messages = {-1:'Excess work done on this call. (Perhaps wrong MF.)',
-2:'Excess accuracy requested. (Tolerances too small.)',
-3:'Illegal input detected. (See printed message.)',
-4:'Repeated error test failures. (Check all input.)',
-5:'Repeated convergence failures. (Perhaps bad'
' Jacobian supplied or wrong choice of MF or tolerances.)',
-6:'Error weight became zero during problem. (Solution'
' component i vanished, and ATOL or ATOL(i) = 0.)'
}
supports_run_relax = 1
supports_step = 1
def __init__(self,
method = 'adams',
with_jacobian = 0,
rtol=1e-6,atol=1e-12,
lband=None,uband=None,
order = 12,
nsteps = 500,
max_step = 0.0, # corresponds to infinite
min_step = 0.0,
first_step = 0.0, # determined by solver
):
if re.match(method,r'adams',re.I): self.meth = 1
elif re.match(method,r'bdf',re.I): self.meth = 2
else: raise ValueError,'Unknown integration method %s'%(method)
self.with_jacobian = with_jacobian
self.rtol = rtol
self.atol = atol
self.mu = uband
self.ml = lband
self.order = order
self.nsteps = nsteps
self.max_step = max_step
self.min_step = min_step
self.first_step = first_step
self.success = 1
def reset(self,n,has_jac):
# Calculate parameters for Fortran subroutine dvode.
if has_jac:
if self.mu is None and self.ml is None:
miter = 1
else:
if self.mu is None: self.mu = 0
if self.ml is None: self.ml = 0
miter = 4
else:
if self.mu is None and self.ml is None:
if self.with_jacobian:
miter = 2
else:
miter = 0
else:
if self.mu is None: self.mu = 0
if self.ml is None: self.ml = 0
if self.ml==self.mu==0:
miter = 3
else:
miter = 5
mf = 10*self.meth + miter
if mf==10:
lrw = 20 + 16*n
elif mf in [11,12]:
lrw = 22 + 16*n + 2*n*n
elif mf == 13:
lrw = 22 + 17*n
elif mf in [14,15]:
lrw = 22 + 18*n + (3*self.ml+2*self.mu)*n
elif mf == 20:
lrw = 20 + 9*n
elif mf in [21,22]:
lrw = 22 + 9*n + 2*n*n
elif mf == 23:
lrw = 22 + 10*n
elif mf in [24,25]:
lrw = 22 + 11*n + (3*self.ml+2*self.mu)*n
else:
raise ValueError,'Unexpected mf=%s'%(mf)
if miter in [0,3]:
liw = 30
else:
liw = 30 + n
rwork = zeros((lrw,), float)
rwork[4] = self.first_step
rwork[5] = self.max_step
rwork[6] = self.min_step
self.rwork = rwork
iwork = zeros((liw,), int32)
if self.ml is not None:
iwork[0] = self.ml
if self.mu is not None:
iwork[1] = self.mu
iwork[4] = self.order
iwork[5] = self.nsteps
iwork[6] = 2 # mxhnil
self.iwork = iwork
self.call_args = [self.rtol,self.atol,1,1,self.rwork,self.iwork,mf]
self.success = 1
def run(self,*args):
y1,t,istate = self.runner(*(args[:5]+tuple(self.call_args)+args[5:]))
if istate <0:
print 'vode:',self.messages.get(istate,'Unexpected istate=%s'%istate)
self.success = 0
else:
self.call_args[3] = 2 # upgrade istate from 1 to 2
return y1,t
def step(self,*args):
itask = self.call_args[2]
self.call_args[2] = 2
r = self.run(*args)
self.call_args[2] = itask
return r
def run_relax(self,*args):
itask = self.call_args[2]
self.call_args[2] = 3
r = self.run(*args)
self.call_args[2] = itask
return r
if vode.runner:
IntegratorBase.integrator_classes.append(vode)
class zvode(vode):
try:
import vode as _vode
except ImportError:
print sys.exc_value
_vode = None
runner = getattr(_vode,'zvode',None)
supports_run_relax = 1
supports_step = 1
scalar = complex
def reset(self, n, has_jac):
# Calculate parameters for Fortran subroutine dvode.
if has_jac:
if self.mu is None and self.ml is None:
miter = 1
else:
if self.mu is None: self.mu = 0
if self.ml is None: self.ml = 0
miter = 4
else:
if self.mu is None and self.ml is None:
if self.with_jacobian:
miter = 2
else:
miter = 0
else:
if self.mu is None: self.mu = 0
if self.ml is None: self.ml = 0
if self.ml==self.mu==0:
miter = 3
else:
miter = 5
mf = 10*self.meth + miter
if mf in (10,):
lzw = 15*n
elif mf in (11, 12):
lzw = 15*n + 2*n**2
elif mf in (-11, -12):
lzw = 15*n + n**2
elif mf in (13,):
lzw = 16*n
elif mf in (14,15):
lzw = 17*n + (3*self.ml + 2*self.mu)*n
elif mf in (-14,-15):
lzw = 16*n + (2*self.ml + self.mu)*n
elif mf in (20,):
lzw = 8*n
elif mf in (21, 22):
lzw = 8*n + 2*n**2
elif mf in (-21,-22):
lzw = 8*n + n**2
elif mf in (23,):
lzw = 9*n
elif mf in (24, 25):
lzw = 10*n + (3*self.ml + 2*self.mu)*n
elif mf in (-24, -25):
lzw = 9*n + (2*self.ml + self.mu)*n
lrw = 20 + n
if miter in (0, 3):
liw = 30
else:
liw = 30 + n
zwork = zeros((lzw,), complex)
self.zwork = zwork
rwork = zeros((lrw,), float)
rwork[4] = self.first_step
rwork[5] = self.max_step
rwork[6] = self.min_step
self.rwork = rwork
iwork = zeros((liw,), int32)
if self.ml is not None:
iwork[0] = self.ml
if self.mu is not None:
iwork[1] = self.mu
iwork[4] = self.order
iwork[5] = self.nsteps
iwork[6] = 2 # mxhnil
self.iwork = iwork
self.call_args = [self.rtol,self.atol,1,1,
self.zwork,self.rwork,self.iwork,mf]
self.success = 1
def run(self,*args):
y1,t,istate = self.runner(*(args[:5]+tuple(self.call_args)+args[5:]))
if istate < 0:
print 'zvode:', self.messages.get(istate,
'Unexpected istate=%s'%istate)
self.success = 0
else:
self.call_args[3] = 2 # upgrade istate from 1 to 2
return y1, t
if zvode.runner:
IntegratorBase.integrator_classes.append(zvode)
|