File: ode.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (564 lines) | stat: -rw-r--r-- 18,041 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Authors: Pearu Peterson, Pauli Virtanen
"""
First-order ODE integrators

User-friendly interface to various numerical integrators for solving a
system of first order ODEs with prescribed initial conditions::

    d y(t)[i]
    ---------  = f(t,y(t))[i],
       d t

    y(t=0)[i] = y0[i],

where::

    i = 0, ..., len(y0) - 1

class ode
---------

A generic interface class to numeric integrators. It has the following
methods::

    integrator = ode(f,jac=None)
    integrator = integrator.set_integrator(name,**params)
    integrator = integrator.set_initial_value(y0,t0=0.0)
    integrator = integrator.set_f_params(*args)
    integrator = integrator.set_jac_params(*args)
    y1 = integrator.integrate(t1,step=0,relax=0)
    flag = integrator.successful()

"""

integrator_info = \
"""
Available integrators
---------------------

vode
~~~~

Real-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides
implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/vode.f

This integrator accepts the following parameters in set_integrator()
method of the ode class:

- atol : float or sequence
  absolute tolerance for solution
- rtol : float or sequence
  relative tolerance for solution
- lband : None or int
- rband : None or int
  Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+rband.
  Setting these requires your jac routine to return the jacobian
  in packed format, jac_packed[i-j+lband, j] = jac[i,j].
- method: 'adams' or 'bdf'
  Which solver to use, Adams (non-stiff) or BDF (stiff)
- with_jacobian : bool
  Whether to use the jacobian
- nsteps : int
  Maximum number of (internally defined) steps allowed during one
  call to the solver.
- first_step : float
- min_step : float
- max_step : float
  Limits for the step sizes used by the integrator.
- order : int
  Maximum order used by the integrator,
  order <= 12 for Adams, <= 5 for BDF.

zvode
~~~~~

Complex-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation.  It provides
implicit Adams method (for non-stiff problems) and a method based on
backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/zvode.f

This integrator accepts the same parameters in set_integrator()
as the "vode" solver.

:Note:
    When using ZVODE for a stiff system, it should only be used for
    the case in which the function f is analytic, that is, when each f(i)
    is an analytic function of each y(j).  Analyticity means that the
    partial derivative df(i)/dy(j) is a unique complex number, and this
    fact is critical in the way ZVODE solves the dense or banded linear
    systems that arise in the stiff case.  For a complex stiff ODE system
    in which f is not analytic, ZVODE is likely to have convergence
    failures, and for this problem one should instead use DVODE on the
    equivalent real system (in the real and imaginary parts of y).

"""

if __doc__:
    __doc__ += integrator_info

# XXX: Integrators must have:
# ===========================
# cvode - C version of vode and vodpk with many improvements.
#   Get it from http://www.netlib.org/ode/cvode.tar.gz
#   To wrap cvode to Python, one must write extension module by
#   hand. Its interface is too much 'advanced C' that using f2py
#   would be too complicated (or impossible).
#
# How to define a new integrator:
# ===============================
#
# class myodeint(IntegratorBase):
#
#     runner = <odeint function> or None
#
#     def __init__(self,...):                           # required
#         <initialize>
#
#     def reset(self,n,has_jac):                        # optional
#         # n - the size of the problem (number of equations)
#         # has_jac - whether user has supplied its own routine for Jacobian
#         <allocate memory,initialize further>
#
#     def run(self,f,jac,y0,t0,t1,f_params,jac_params): # required
#         # this method is called to integrate from t=t0 to t=t1
#         # with initial condition y0. f and jac are user-supplied functions
#         # that define the problem. f_params,jac_params are additional
#         # arguments
#         # to these functions.
#         <calculate y1>
#         if <calculation was unsuccesful>:
#             self.success = 0
#         return t1,y1
#
#     # In addition, one can define step() and run_relax() methods (they
#     # take the same arguments as run()) if the integrator can support
#     # these features (see IntegratorBase doc strings).
#
# if myodeint.runner:
#     IntegratorBase.integrator_classes.append(myodeint)

__all__ = ['ode']
__version__ = "$Id$"
__docformat__ = "restructuredtext en"

from numpy import asarray, array, zeros, int32, isscalar
import re, sys

#------------------------------------------------------------------------------
# User interface
#------------------------------------------------------------------------------

class ode(object):
    """\
A generic interface class to numeric integrators.

See also
--------
odeint : an integrator with a simpler interface based on lsoda from ODEPACK
quad : for finding the area under a curve

Examples
--------
A problem to integrate and the corresponding jacobian:

>>> from scipy import eye
>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.0j, 2.0], 0
>>>
>>> def f(t, y, arg1):
>>>     return [1j*arg1*y[0] + y[1], -arg1*y[1]**2]
>>> def jac(t, y, arg1):
>>>     return [[1j*arg1, 1], [0, -arg1*2*y[1]]]

The integration:

>>> r = ode(f, jac).set_integrator('zvode', method='bdf', with_jacobian=True)
>>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0)
>>> t1 = 10
>>> dt = 1
>>> while r.successful() and r.t < t1:
>>>     r.integrate(r.t+dt)
>>>     print r.t, r.y

"""

    if __doc__:
        __doc__ += integrator_info

    def __init__(self, f, jac=None):
        """
        Define equation y' = f(y,t) where (optional) jac = df/dy.

        Parameters
        ----------
        f : f(t, y, *f_args)
            Rhs of the equation. t is a scalar, y.shape == (n,).
            f_args is set by calling set_f_params(*args)
        jac : jac(t, y, *jac_args)
            Jacobian of the rhs, jac[i,j] = d f[i] / d y[j]
            jac_args is set by calling set_f_params(*args)
        """
        self.stiff = 0
        self.f = f
        self.jac  = jac
        self.f_params = ()
        self.jac_params = ()
        self.y = []

    def set_initial_value(self, y, t=0.0):
        """Set initial conditions y(t) = y."""
        if isscalar(y):
            y = [y]
        n_prev = len(self.y)
        if not n_prev:
            self.set_integrator('') # find first available integrator
        self.y = asarray(y, self._integrator.scalar)
        self.t = t
        self._integrator.reset(len(self.y),self.jac is not None)
        return self

    def set_integrator(self, name, **integrator_params):
        """
        Set integrator by name.

        Parameters
        ----------
        name : str
            Name of the integrator
        integrator_params
            Additional parameters for the integrator.
        """
        integrator = find_integrator(name)
        if integrator is None:
            print 'No integrator name match with %s or is not available.'\
                  %(`name`)
        else:
            self._integrator = integrator(**integrator_params)
            if not len(self.y):
                self.t = 0.0
                self.y = array([0.0], self._integrator.scalar)
            self._integrator.reset(len(self.y),self.jac is not None)
        return self

    def integrate(self, t, step=0, relax=0):
        """Find y=y(t), set y as an initial condition, and return y."""
        if step and self._integrator.supports_step:
            mth = self._integrator.step
        elif relax and self._integrator.supports_run_relax:
            mth = self._integrator.run_relax
        else:
            mth = self._integrator.run
        self.y,self.t = mth(self.f,self.jac or (lambda :None),
                            self.y,self.t,t,
                            self.f_params,self.jac_params)
        return self.y

    def successful(self):
        """Check if integration was successful."""
        try: self._integrator
        except AttributeError: self.set_integrator('')
        return self._integrator.success==1

    def set_f_params(self,*args):
        """Set extra parameters for user-supplied function f."""
        self.f_params = args
        return self

    def set_jac_params(self,*args):
        """Set extra parameters for user-supplied function jac."""
        self.jac_params = args
        return self

#------------------------------------------------------------------------------
# ODE integrators
#------------------------------------------------------------------------------

def find_integrator(name):
    for cl in IntegratorBase.integrator_classes:
        if re.match(name,cl.__name__,re.I):
            return cl
    return

class IntegratorBase(object):

    runner = None            # runner is None => integrator is not available
    success = None           # success==1 if integrator was called successfully
    supports_run_relax = None
    supports_step = None
    integrator_classes = []
    scalar = float

    def reset(self,n,has_jac):
        """Prepare integrator for call: allocate memory, set flags, etc.
        n - number of equations.
        has_jac - if user has supplied function for evaluating Jacobian.
        """

    def run(self,f,jac,y0,t0,t1,f_params,jac_params):
        """Integrate from t=t0 to t=t1 using y0 as an initial condition.
        Return 2-tuple (y1,t1) where y1 is the result and t=t1
        defines the stoppage coordinate of the result.
        """
        raise NotImplementedError,\
        'all integrators must define run(f,jac,t0,t1,y0,f_params,jac_params)'

    def step(self,f,jac,y0,t0,t1,f_params,jac_params):
        """Make one integration step and return (y1,t1)."""
        raise NotImplementedError,'%s does not support step() method' %\
              (self.__class__.__name__)

    def run_relax(self,f,jac,y0,t0,t1,f_params,jac_params):
        """Integrate from t=t0 to t>=t1 and return (y1,t)."""
        raise NotImplementedError,'%s does not support run_relax() method' %\
              (self.__class__.__name__)

    #XXX: __str__ method for getting visual state of the integrator

class vode(IntegratorBase):
    try:
        import vode as _vode
    except ImportError:
        print sys.exc_value
        _vode = None
    runner = getattr(_vode,'dvode',None)

    messages = {-1:'Excess work done on this call. (Perhaps wrong MF.)',
                -2:'Excess accuracy requested. (Tolerances too small.)',
                -3:'Illegal input detected. (See printed message.)',
                -4:'Repeated error test failures. (Check all input.)',
                -5:'Repeated convergence failures. (Perhaps bad'
                ' Jacobian supplied or wrong choice of MF or tolerances.)',
                -6:'Error weight became zero during problem. (Solution'
                ' component i vanished, and ATOL or ATOL(i) = 0.)'
                }
    supports_run_relax = 1
    supports_step = 1

    def __init__(self,
                 method = 'adams',
                 with_jacobian = 0,
                 rtol=1e-6,atol=1e-12,
                 lband=None,uband=None,
                 order = 12,
                 nsteps = 500,
                 max_step = 0.0, # corresponds to infinite
                 min_step = 0.0,
                 first_step = 0.0, # determined by solver
                 ):

        if re.match(method,r'adams',re.I): self.meth = 1
        elif re.match(method,r'bdf',re.I): self.meth = 2
        else: raise ValueError,'Unknown integration method %s'%(method)
        self.with_jacobian = with_jacobian
        self.rtol = rtol
        self.atol = atol
        self.mu = uband
        self.ml = lband

        self.order = order
        self.nsteps = nsteps
        self.max_step = max_step
        self.min_step = min_step
        self.first_step = first_step
        self.success = 1

    def reset(self,n,has_jac):
        # Calculate parameters for Fortran subroutine dvode.
        if has_jac:
            if self.mu is None and self.ml is None:
                miter = 1
            else:
                if self.mu is None: self.mu = 0
                if self.ml is None: self.ml = 0
                miter = 4
        else:
            if self.mu is None and self.ml is None:
                if self.with_jacobian:
                    miter = 2
                else:
                    miter = 0
            else:
                if self.mu is None: self.mu = 0
                if self.ml is None: self.ml = 0
                if self.ml==self.mu==0:
                    miter = 3
                else:
                    miter = 5
        mf = 10*self.meth + miter
        if mf==10:
            lrw = 20 + 16*n
        elif mf in [11,12]:
            lrw = 22 + 16*n + 2*n*n
        elif mf == 13:
            lrw = 22 + 17*n
        elif mf in [14,15]:
            lrw = 22 + 18*n + (3*self.ml+2*self.mu)*n
        elif mf == 20:
            lrw =  20 +  9*n
        elif mf in [21,22]:
            lrw = 22 + 9*n + 2*n*n
        elif mf == 23:
            lrw = 22 + 10*n
        elif mf in [24,25]:
            lrw = 22 + 11*n + (3*self.ml+2*self.mu)*n
        else:
            raise ValueError,'Unexpected mf=%s'%(mf)
        if miter in [0,3]:
            liw = 30
        else:
            liw = 30 + n
        rwork = zeros((lrw,), float)
        rwork[4] = self.first_step
        rwork[5] = self.max_step
        rwork[6] = self.min_step
        self.rwork = rwork
        iwork = zeros((liw,), int32)
        if self.ml is not None:
            iwork[0] = self.ml
        if self.mu is not None:
            iwork[1] = self.mu
        iwork[4] = self.order
        iwork[5] = self.nsteps
        iwork[6] = 2           # mxhnil
        self.iwork = iwork
        self.call_args = [self.rtol,self.atol,1,1,self.rwork,self.iwork,mf]
        self.success = 1

    def run(self,*args):
        y1,t,istate = self.runner(*(args[:5]+tuple(self.call_args)+args[5:]))
        if istate <0:
            print 'vode:',self.messages.get(istate,'Unexpected istate=%s'%istate)
            self.success = 0
        else:
            self.call_args[3] = 2 # upgrade istate from 1 to 2
        return y1,t

    def step(self,*args):
        itask = self.call_args[2]
        self.call_args[2] = 2
        r = self.run(*args)
        self.call_args[2] = itask
        return r

    def run_relax(self,*args):
        itask = self.call_args[2]
        self.call_args[2] = 3
        r = self.run(*args)
        self.call_args[2] = itask
        return r

if vode.runner:
    IntegratorBase.integrator_classes.append(vode)


class zvode(vode):
    try:
        import vode as _vode
    except ImportError:
        print sys.exc_value
        _vode = None
    runner = getattr(_vode,'zvode',None)

    supports_run_relax = 1
    supports_step = 1
    scalar = complex

    def reset(self, n, has_jac):
        # Calculate parameters for Fortran subroutine dvode.
        if has_jac:
            if self.mu is None and self.ml is None:
                miter = 1
            else:
                if self.mu is None: self.mu = 0
                if self.ml is None: self.ml = 0
                miter = 4
        else:
            if self.mu is None and self.ml is None:
                if self.with_jacobian:
                    miter = 2
                else:
                    miter = 0
            else:
                if self.mu is None: self.mu = 0
                if self.ml is None: self.ml = 0
                if self.ml==self.mu==0:
                    miter = 3
                else:
                    miter = 5

        mf = 10*self.meth + miter

        if mf in (10,):
            lzw = 15*n
        elif mf in (11, 12):
            lzw = 15*n + 2*n**2
        elif mf in (-11, -12):
            lzw = 15*n + n**2
        elif mf in (13,):
            lzw = 16*n
        elif mf in (14,15):
            lzw = 17*n + (3*self.ml + 2*self.mu)*n
        elif mf in (-14,-15):
            lzw = 16*n + (2*self.ml + self.mu)*n
        elif mf in (20,):
            lzw = 8*n
        elif mf in (21, 22):
            lzw = 8*n + 2*n**2
        elif mf in (-21,-22):
            lzw = 8*n + n**2
        elif mf in (23,):
            lzw = 9*n
        elif mf in (24, 25):
            lzw = 10*n + (3*self.ml + 2*self.mu)*n
        elif mf in (-24, -25):
            lzw = 9*n + (2*self.ml + self.mu)*n

        lrw = 20 + n

        if miter in (0, 3):
            liw = 30
        else:
            liw = 30 + n

        zwork = zeros((lzw,), complex)
        self.zwork = zwork

        rwork = zeros((lrw,), float)
        rwork[4] = self.first_step
        rwork[5] = self.max_step
        rwork[6] = self.min_step
        self.rwork = rwork

        iwork = zeros((liw,), int32)
        if self.ml is not None:
            iwork[0] = self.ml
        if self.mu is not None:
            iwork[1] = self.mu
        iwork[4] = self.order
        iwork[5] = self.nsteps
        iwork[6] = 2           # mxhnil
        self.iwork = iwork

        self.call_args = [self.rtol,self.atol,1,1,
                          self.zwork,self.rwork,self.iwork,mf]
        self.success = 1

    def run(self,*args):
        y1,t,istate = self.runner(*(args[:5]+tuple(self.call_args)+args[5:]))
        if istate < 0:
            print 'zvode:', self.messages.get(istate,
                                              'Unexpected istate=%s'%istate)
            self.success = 0
        else:
            self.call_args[3] = 2 # upgrade istate from 1 to 2
        return y1, t

if zvode.runner:
    IntegratorBase.integrator_classes.append(zvode)