1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
""" helper_funcs.py.
scavenged from enthought,interpolate
"""
import numpy as np
import sys
import _interpolate # C extension. Does all the real work.
def atleast_1d_and_contiguous(ary, dtype = np.float64):
return np.atleast_1d( np.ascontiguousarray(ary, dtype) )
def nearest(x, y, new_x):
""" Rounds each new_x[i] to the closest value in x
and returns corresponding y.
"""
shifted_x = np.concatenate(( np.array([x[0]-1]) , x[0:-1] ))
midpoints_of_x = atleast_1d_and_contiguous( .5*(x + shifted_x) )
new_x = atleast_1d_and_contiguous(new_x)
TINY = 1e-10
indices = np.searchsorted(midpoints_of_x, new_x+TINY)-1
indices = np.atleast_1d(np.clip(indices, 0, np.Inf).astype(np.int))
new_y = np.take(y, indices, axis=-1)
return new_y
def linear(x, y, new_x):
""" Linearly interpolates values in new_x based on the values in x and y
Parameters
----------
x
1-D array
y
1-D or 2-D array
new_x
1-D array
"""
x = atleast_1d_and_contiguous(x, np.float64)
y = atleast_1d_and_contiguous(y, np.float64)
new_x = atleast_1d_and_contiguous(new_x, np.float64)
assert len(y.shape) < 3, "function only works with 1D or 2D arrays"
if len(y.shape) == 2:
new_y = np.zeros((y.shape[0], len(new_x)), np.float64)
for i in range(len(new_y)): # for each row
_interpolate.linear_dddd(x, y[i], new_x, new_y[i])
else:
new_y = np.zeros(len(new_x), np.float64)
_interpolate.linear_dddd(x, y, new_x, new_y)
return new_y
def logarithmic(x, y, new_x):
""" Linearly interpolates values in new_x based in the log space of y.
Parameters
----------
x
1-D array
y
1-D or 2-D array
new_x
1-D array
"""
x = atleast_1d_and_contiguous(x, np.float64)
y = atleast_1d_and_contiguous(y, np.float64)
new_x = atleast_1d_and_contiguous(new_x, np.float64)
assert len(y.shape) < 3, "function only works with 1D or 2D arrays"
if len(y.shape) == 2:
new_y = np.zeros((y.shape[0], len(new_x)), np.float64)
for i in range(len(new_y)):
_interpolate.loginterp_dddd(x, y[i], new_x, new_y[i])
else:
new_y = np.zeros(len(new_x), np.float64)
_interpolate.loginterp_dddd(x, y, new_x, new_y)
return new_y
def block_average_above(x, y, new_x):
""" Linearly interpolates values in new_x based on the values in x and y
Parameters
----------
x
1-D array
y
1-D or 2-D array
new_x
1-D array
"""
bad_index = None
x = atleast_1d_and_contiguous(x, np.float64)
y = atleast_1d_and_contiguous(y, np.float64)
new_x = atleast_1d_and_contiguous(new_x, np.float64)
assert len(y.shape) < 3, "function only works with 1D or 2D arrays"
if len(y.shape) == 2:
new_y = np.zeros((y.shape[0], len(new_x)), np.float64)
for i in range(len(new_y)):
bad_index = _interpolate.block_averave_above_dddd(x, y[i],
new_x, new_y[i])
if bad_index is not None:
break
else:
new_y = np.zeros(len(new_x), np.float64)
bad_index = _interpolate.block_average_above_dddd(x, y, new_x, new_y)
if bad_index is not None:
msg = "block_average_above cannot extrapolate and new_x[%d]=%f "\
"is out of the x range (%f, %f)" % \
(bad_index, new_x[bad_index], x[0], x[-1])
raise ValueError, msg
return new_y
def block(x, y, new_x):
""" Essentially a step function.
For each new_x[i], finds largest j such that
x[j] < new_x[j], and returns y[j].
"""
# find index of values in x that preceed values in x
# This code is a little strange -- we really want a routine that
# returns the index of values where x[j] < x[index]
TINY = 1e-10
indices = np.searchsorted(x, new_x+TINY)-1
# If the value is at the front of the list, it'll have -1.
# In this case, we will use the first (0), element in the array.
# take requires the index array to be an Int
indices = np.atleast_1d(np.clip(indices, 0, np.Inf).astype(np.int))
new_y = np.take(y, indices, axis=-1)
return new_y
|