File: test_fitpack.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (167 lines) | stat: -rw-r--r-- 5,894 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
# Created by Pearu Peterson, June 2003
""" Test functions for interpolate.fitpack2 module
"""
__usage__ = """
Build interpolate:
  python setup_interpolate.py build
Run tests if scipy is installed:
  python -c 'import scipy;scipy.interpolate.test(<level>)'
Run tests if interpolate is not installed:
  python tests/test_fitpack.py [<level>]
"""
#import libwadpy

from numpy.testing import *
from numpy import array, diff
from scipy.interpolate.fitpack2 import UnivariateSpline, LSQBivariateSpline, \
    SmoothBivariateSpline, RectBivariateSpline

class TestUnivariateSpline(TestCase):
    def test_linear_constant(self):
        x = [1,2,3]
        y = [3,3,3]
        lut = UnivariateSpline(x,y,k=1)
        assert_array_almost_equal(lut.get_knots(),[1,3])
        assert_array_almost_equal(lut.get_coeffs(),[3,3])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2]),[3,3,3])

    def test_linear_1d(self):
        x = [1,2,3]
        y = [0,2,4]
        lut = UnivariateSpline(x,y,k=1)
        assert_array_almost_equal(lut.get_knots(),[1,3])
        assert_array_almost_equal(lut.get_coeffs(),[0,4])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2]),[0,1,2])

    def test_subclassing(self):
        # See #731

        class ZeroSpline(UnivariateSpline):
            def __call__(self, x):
                return 0*array(x)

        sp = ZeroSpline([1,2,3,4,5], [3,2,3,2,3], k=2)
        assert_array_equal(sp([1.5, 2.5]), [0., 0.])

class TestLSQBivariateSpline(TestCase):
    def test_linear_constant(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [3,3,3,3,3,3,3,3,3]
        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)

        assert_almost_equal(lut(2,2), 3.)

    def test_bilinearity(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [0,7,8,3,4,7,1,3,4]
        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)

        tx, ty = lut.get_knots()

        for xa, xb in zip(tx[:-1], tx[1:]):
            for ya, yb in zip(ty[:-1], ty[1:]):
                for t in [0.1, 0.5, 0.9]:
                    for s in [0.3, 0.4, 0.7]:
                        xp = xa*(1-t) + xb*t
                        yp = ya*(1-s) + yb*s
                        zp = (+ lut(xa, ya)*(1-t)*(1-s)
                              + lut(xb, ya)*t*(1-s)
                              + lut(xa, yb)*(1-t)*s
                              + lut(xb, yb)*t*s)
                        assert_almost_equal(lut(xp,yp), zp)

    def test_integral(self):
        x = [1,1,1,2,2,2,8,8,8]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        s = 0.1
        tx = [1+s,3-s]
        ty = [1+s,3-s]
        lut = LSQBivariateSpline(x,y,z,tx,ty,kx=1,ky=1)
        tx, ty = lut.get_knots()

        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    *(tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()

        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

class TestSmoothBivariateSpline(TestCase):
    def test_linear_constant(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [3,3,3,3,3,3,3,3,3]
        lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
        assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
        assert_array_almost_equal(lut.get_coeffs(),[3,3,3,3])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[3,3],[3,3],[3,3]])

    def test_linear_1d(self):
        x = [1,1,1,2,2,2,3,3,3]
        y = [1,2,3,1,2,3,1,2,3]
        z = [0,0,0,2,2,2,4,4,4]
        lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1)
        assert_array_almost_equal(lut.get_knots(),([1,1,3,3],[1,1,3,3]))
        assert_array_almost_equal(lut.get_coeffs(),[0,0,4,4])
        assert_almost_equal(lut.get_residual(),0.0)
        assert_array_almost_equal(lut([1,1.5,2],[1,1.5]),[[0,0],[1,1],[2,2]])

    def test_integral(self):
        x = [1,1,1,2,2,2,4,4,4]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        lut = SmoothBivariateSpline(x,y,z,kx=1,ky=1,s=0)
        tx = [1,2,4]
        ty = [1,2,3]

        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    *(tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

        lut2 = SmoothBivariateSpline(x,y,z,kx=2,ky=2,s=0)
        assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz,
                            decimal=0) # the quadratures give 23.75 and 23.85

        tz = lut(tx[:-1], ty[:-1])
        trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:]
                    *(tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)

class TestRectBivariateSpline(TestCase):
    def test_defaults(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        lut = RectBivariateSpline(x,y,z)
        assert_array_almost_equal(lut(x,y),z)

    def test_evaluate(self):
        x = array([1,2,3,4,5])
        y = array([1,2,3,4,5])
        z = array([[1,2,1,2,1],[1,2,1,2,1],[1,2,3,2,1],[1,2,2,2,1],[1,2,1,2,1]])
        lut = RectBivariateSpline(x,y,z)

        xi = [1, 2.3, 5.3, 0.5, 3.3, 1.2, 3]
        yi = [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]
        zi = lut.ev(xi, yi)
        zi2 = array([lut(xp, yp)[0,0] for xp, yp in zip(xi, yi)])

        assert_almost_equal(zi, zi2)

if __name__ == "__main__":
    run_module_suite()