File: test_interpolate.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (335 lines) | stat: -rw-r--r-- 11,222 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from numpy.testing import *
from numpy import mgrid, pi, sin, ogrid, poly1d, linspace
import numpy as np

from scipy.interpolate import interp1d, interp2d, lagrange


class TestInterp2D(TestCase):
    def test_interp2d(self):
        y, x = mgrid[0:2:20j, 0:pi:21j]
        z = sin(x+0.5*y)
        I = interp2d(x, y, z)
        assert_almost_equal(I(1.0, 2.0), sin(2.0), decimal=2)

        v,u = ogrid[0:2:24j, 0:pi:25j]
        assert_almost_equal(I(u.ravel(), v.ravel()), sin(u+0.5*v), decimal=2)

    def test_interp2d_meshgrid_input(self):
        # Ticket #703
        x = linspace(0, 2, 16)
        y = linspace(0, pi, 21)
        z = sin(x[None,:] + y[:,None]/2.)
        I = interp2d(x, y, z)
        assert_almost_equal(I(1.0, 2.0), sin(2.0), decimal=2)

class TestInterp1D(object):

    def setUp(self):
        self.x10 = np.arange(10.)
        self.y10 = np.arange(10.)
        self.x25 = self.x10.reshape((2,5))
        self.x2 = np.arange(2.)
        self.y2 = np.arange(2.)
        self.x1 = np.array([0.])
        self.y1 = np.array([0.])

        self.y210 = np.arange(20.).reshape((2, 10))
        self.y102 = np.arange(20.).reshape((10, 2))

        self.fill_value = -100.0

    def test_validation(self):
        """ Make sure that appropriate exceptions are raised when invalid values
        are given to the constructor.
        """

        # These should all work.
        interp1d(self.x10, self.y10, kind='linear')
        interp1d(self.x10, self.y10, kind='cubic')
        interp1d(self.x10, self.y10, kind='slinear')
        interp1d(self.x10, self.y10, kind='quadratic')
        interp1d(self.x10, self.y10, kind='zero')
        interp1d(self.x10, self.y10, kind='nearest')
        interp1d(self.x10, self.y10, kind=0)
        interp1d(self.x10, self.y10, kind=1)
        interp1d(self.x10, self.y10, kind=2)
        interp1d(self.x10, self.y10, kind=3)

        # x array must be 1D.
        assert_raises(ValueError, interp1d, self.x25, self.y10)

        # y array cannot be a scalar.
        assert_raises(ValueError, interp1d, self.x10, np.array(0))

        # Check for x and y arrays having the same length.
        assert_raises(ValueError, interp1d, self.x10, self.y2)
        assert_raises(ValueError, interp1d, self.x2, self.y10)
        assert_raises(ValueError, interp1d, self.x10, self.y102)
        interp1d(self.x10, self.y210)
        interp1d(self.x10, self.y102, axis=0)

        # Check for x and y having at least 1 element.
        assert_raises(ValueError, interp1d, self.x1, self.y10)
        assert_raises(ValueError, interp1d, self.x10, self.y1)
        assert_raises(ValueError, interp1d, self.x1, self.y1)


    def test_init(self):
        """ Check that the attributes are initialized appropriately by the
        constructor.
        """

        assert interp1d(self.x10, self.y10).copy
        assert not interp1d(self.x10, self.y10, copy=False).copy
        assert interp1d(self.x10, self.y10).bounds_error
        assert not interp1d(self.x10, self.y10, bounds_error=False).bounds_error
        assert np.isnan(interp1d(self.x10, self.y10).fill_value)
        assert_equal(
            interp1d(self.x10, self.y10, fill_value=3.0).fill_value,
            3.0,
        )
        assert_equal(
            interp1d(self.x10, self.y10).axis,
            0,
        )
        assert_equal(
            interp1d(self.x10, self.y210).axis,
            1,
        )
        assert_equal(
            interp1d(self.x10, self.y102, axis=0).axis,
            0,
        )
        assert_array_equal(
            interp1d(self.x10, self.y10).x,
            self.x10,
        )
        assert_array_equal(
            interp1d(self.x10, self.y10).y,
            self.y10,
        )
        assert_array_equal(
            interp1d(self.x10, self.y210).y,
            self.y210,
        )


    def test_linear(self):
        """ Check the actual implementation of linear interpolation.
        """

        interp10 = interp1d(self.x10, self.y10)
        assert_array_almost_equal(
            interp10(self.x10),
            self.y10,
        )
        assert_array_almost_equal(
            interp10(1.2),
            np.array([1.2]),
        )
        assert_array_almost_equal(
            interp10([2.4, 5.6, 6.0]),
            np.array([2.4, 5.6, 6.0]),
        )

    def test_cubic(self):
        """ Check the actual implementation of spline interpolation.
        """

        interp10 = interp1d(self.x10, self.y10, kind='cubic')
        assert_array_almost_equal(
            interp10(self.x10),
            self.y10,
        )
        assert_array_almost_equal(
            interp10(1.2),
            np.array([1.2]),
        )
        assert_array_almost_equal(
            interp10([2.4, 5.6, 6.0]),
            np.array([2.4, 5.6, 6.0]),
        )

    def test_nearest(self):
        """Check the actual implementation of nearest-neighbour interpolation.
        """

        interp10 = interp1d(self.x10, self.y10, kind='nearest')
        assert_array_almost_equal(
            interp10(self.x10),
            self.y10,
        )
        assert_array_almost_equal(
            interp10(1.2),
            np.array(1.),
        )
        assert_array_almost_equal(
            interp10([2.4, 5.6, 6.0]),
            np.array([2., 6., 6.]),
        )

    @dec.knownfailureif(True, "zero-order splines fail for the last point")
    def test_zero(self):
        """Check the actual implementation of zero-order spline interpolation.
        """
        interp10 = interp1d(self.x10, self.y10, kind='zero')
        assert_array_almost_equal(interp10(self.x10), self.y10)
        assert_array_almost_equal(interp10(1.2), np.array(1.))
        assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
                                  np.array([2., 6., 6.]))

    def _bounds_check(self, kind='linear'):
        """ Test that our handling of out-of-bounds input is correct.
        """

        extrap10 = interp1d(self.x10, self.y10, fill_value=self.fill_value,
            bounds_error=False, kind=kind)
        assert_array_equal(
            extrap10(11.2),
            np.array(self.fill_value),
        )
        assert_array_equal(
            extrap10(-3.4),
            np.array(self.fill_value),
        )
        assert_array_equal(
            extrap10([[[11.2], [-3.4], [12.6], [19.3]]]),
            np.array(self.fill_value),
        )
        assert_array_equal(
            extrap10._check_bounds(np.array([-1.0, 0.0, 5.0, 9.0, 11.0])),
            np.array([True, False, False, False, True]),
        )

        raises_bounds_error = interp1d(self.x10, self.y10, bounds_error=True,
                                       kind=kind)
        assert_raises(ValueError, raises_bounds_error, -1.0)
        assert_raises(ValueError, raises_bounds_error, 11.0)
        raises_bounds_error([0.0, 5.0, 9.0])

    def _bounds_check_int_nan_fill(self, kind='linear'):
        x = np.arange(10).astype(np.int_)
        y = np.arange(10).astype(np.int_)
        c = interp1d(x, y, kind=kind, fill_value=np.nan, bounds_error=False)
        yi = c(x - 1)
        assert np.isnan(yi[0])
        assert_array_almost_equal(yi, np.r_[np.nan, y[:-1]])

    def test_bounds(self):
        for kind in ('linear', 'cubic', 'nearest',
                     'slinear', 'zero', 'quadratic'):
            yield self._bounds_check, kind
            yield self._bounds_check_int_nan_fill, kind

    def _nd_check_interp(self, kind='linear'):
        """Check the behavior when the inputs and outputs are multidimensional.
        """

        # Multidimensional input.
        interp10 = interp1d(self.x10, self.y10, kind=kind)
        assert_array_almost_equal(
            interp10(np.array([[3., 5.], [2., 7.]])),
            np.array([[3., 5.], [2., 7.]]),
        )

        # Scalar input -> 0-dim scalar array output
        assert isinstance(interp10(1.2), np.ndarray)
        assert_equal(interp10(1.2).shape, ())

        # Multidimensional outputs.
        interp210 = interp1d(self.x10, self.y210, kind=kind)
        assert_array_almost_equal(
            interp210(1.),
            np.array([1., 11.]),
        )
        assert_array_almost_equal(
            interp210(np.array([1., 2.])),
            np.array([[1., 2.],
                      [11., 12.]]),
        )

        interp102 = interp1d(self.x10, self.y102, axis=0, kind=kind)
        assert_array_almost_equal(
            interp102(1.),
            np.array([2.0, 3.0]),
        )
        assert_array_almost_equal(
            interp102(np.array([1., 3.])),
            np.array([[2., 3.],
                      [6., 7.]]),
        )

        # Both at the same time!
        x_new = np.array([[3., 5.], [2., 7.]])
        assert_array_almost_equal(
            interp210(x_new),
            np.array([[[3., 5.], [2., 7.]],
                      [[13., 15.], [12., 17.]]]),
        )
        assert_array_almost_equal(
            interp102(x_new),
            np.array([[[6., 7.], [10., 11.]],
                      [[4., 5.], [14., 15.]]]),
        )

    def _nd_check_shape(self, kind='linear'):
        # Check large ndim output shape
        a = [4, 5, 6, 7]
        y = np.arange(np.prod(a)).reshape(*a)
        for n, s in enumerate(a):
            x = np.arange(s)
            z = interp1d(x, y, axis=n, kind=kind)
            assert_array_almost_equal(z(x), y, err_msg=kind)

            x2 = np.arange(2*3*1).reshape((2,3,1)) / 12.
            b = list(a)
            b[n:n+1] = [2,3,1]
            assert_array_almost_equal(z(x2).shape, b, err_msg=kind)

    def test_nd(self):
        for kind in ('linear', 'cubic', 'slinear', 'quadratic', 'nearest'):
            yield self._nd_check_interp, kind
            yield self._nd_check_shape, kind

    def _check_complex(self, dtype=np.complex_, kind='linear'):
        x = np.array([1, 2.5, 3, 3.1, 4, 6.4, 7.9, 8.0, 9.5, 10])
        y = x * x ** (1 + 2j)
        y = y.astype(dtype)

        # simple test
        c = interp1d(x, y, kind=kind)
        assert_array_almost_equal(y[:-1], c(x)[:-1])

        # check against interpolating real+imag separately
        xi = np.linspace(1, 10, 31)
        cr = interp1d(x, y.real, kind=kind)
        ci = interp1d(x, y.imag, kind=kind)
        assert_array_almost_equal(c(xi).real, cr(xi))
        assert_array_almost_equal(c(xi).imag, ci(xi))

    def test_complex(self):
        for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic',
                     'zero'):
            yield self._check_complex, np.complex64, kind
            yield self._check_complex, np.complex128, kind

    @dec.knownfailureif(True, "zero-order splines fail for the last point")
    def test_nd_zero_spline(self):
        # zero-order splines don't get the last point right,
        # see test_zero above
        #yield self._nd_check_interp, 'zero'
        #yield self._nd_check_interp, 'zero'
        pass

class TestLagrange(TestCase):

    def test_lagrange(self):
        p = poly1d([5,2,1,4,3])
        xs = np.arange(len(p.coeffs))
        ys = p(xs)
        pl = lagrange(xs,ys)
        assert_array_almost_equal(p.coeffs,pl.coeffs)

if __name__ == "__main__":
    run_module_suite()