File: pilutil.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (270 lines) | stat: -rw-r--r-- 8,848 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Functions which need the PIL

import numpy
import tempfile

from numpy import amin, amax, ravel, asarray, cast, arange, \
     ones, newaxis, transpose, mgrid, iscomplexobj, sum, zeros, uint8, \
     issubdtype, array

import Image
import ImageFilter

__all__ = ['fromimage','toimage','imsave','imread','bytescale',
           'imrotate','imresize','imshow','imfilter','radon']

# Returns a byte-scaled image
def bytescale(data, cmin=None, cmax=None, high=255, low=0):
    if data.dtype == uint8:
        return data
    high = high - low
    if cmin is None: cmin = data.min()
    if cmax is None: cmax = data.max()
    scale = high *1.0 / (cmax-cmin or 1)
    bytedata = ((data*1.0-cmin)*scale + 0.4999).astype(uint8)
    return bytedata + cast[uint8](low)

def imread(name,flatten=0):
    """Read an image file from a filename.

    Optional arguments:

     - flatten (0): if true, the image is flattened by calling convert('F') on
     the resulting image object.  This flattens the color layers into a single
     grayscale layer.
    """

    im = Image.open(name)
    return fromimage(im,flatten=flatten)

def imsave(name, arr):
    """Save an array to an image file.
    """
    im = toimage(arr)
    im.save(name)
    return

def fromimage(im, flatten=0):
    """Return a copy of a PIL image as a numpy array.

    :Parameters:
        im : PIL image
            Input image.
        flatten : bool
            If true, convert the output to grey-scale.

    :Returns:
        img_array : ndarray
            The different colour bands/channels are stored in the
            third dimension, such that a grey-image is MxN, an
            RGB-image MxNx3 and an RGBA-image MxNx4.

    """
    if not Image.isImageType(im):
        raise TypeError("Input is not a PIL image.")
    if flatten:
        im = im.convert('F')
    return array(im)

_errstr = "Mode is unknown or incompatible with input array shape."
def toimage(arr,high=255,low=0,cmin=None,cmax=None,pal=None,
            mode=None,channel_axis=None):
    """Takes a numpy array and returns a PIL image.  The mode of the
    PIL image depends on the array shape, the pal keyword, and the mode
    keyword.

    For 2-D arrays, if pal is a valid (N,3) byte-array giving the RGB values
    (from 0 to 255) then mode='P', otherwise mode='L', unless mode is given
    as 'F' or 'I' in which case a float and/or integer array is made

    For 3-D arrays, the channel_axis argument tells which dimension of the
      array holds the channel data.
    For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
      by default or 'YCbCr' if selected.
    if the

    The numpy array must be either 2 dimensional or 3 dimensional.
    """
    data = asarray(arr)
    if iscomplexobj(data):
        raise ValueError, "Cannot convert a complex-valued array."
    shape = list(data.shape)
    valid = len(shape)==2 or ((len(shape)==3) and \
                              ((3 in shape) or (4 in shape)))
    assert valid, "Not a suitable array shape for any mode."
    if len(shape) == 2:
        shape = (shape[1],shape[0]) # columns show up first
        if mode == 'F':
            data32 = data.astype(numpy.float32)
            image = Image.fromstring(mode,shape,data32.tostring())
            return image
        if mode in [None, 'L', 'P']:
            bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax)
            image = Image.fromstring('L',shape,bytedata.tostring())
            if pal is not None:
                image.putpalette(asarray(pal,dtype=uint8).tostring())
                # Becomes a mode='P' automagically.
            elif mode == 'P':  # default gray-scale
                pal = arange(0,256,1,dtype=uint8)[:,newaxis] * \
                      ones((3,),dtype=uint8)[newaxis,:]
                image.putpalette(asarray(pal,dtype=uint8).tostring())
            return image
        if mode == '1':  # high input gives threshold for 1
            bytedata = (data > high)
            image = Image.fromstring('1',shape,bytedata.tostring())
            return image
        if cmin is None:
            cmin = amin(ravel(data))
        if cmax is None:
            cmax = amax(ravel(data))
        data = (data*1.0 - cmin)*(high-low)/(cmax-cmin) + low
        if mode == 'I':
            data32 = data.astype(numpy.uint32)
            image = Image.fromstring(mode,shape,data32.tostring())
        else:
            raise ValueError, _errstr
        return image

    # if here then 3-d array with a 3 or a 4 in the shape length.
    # Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
    if channel_axis is None:
        if (3 in shape):
            ca = numpy.flatnonzero(asarray(shape) == 3)[0]
        else:
            ca = numpy.flatnonzero(asarray(shape) == 4)
            if len(ca):
                ca = ca[0]
            else:
                raise ValueError, "Could not find channel dimension."
    else:
        ca = channel_axis

    numch = shape[ca]
    if numch not in [3,4]:
        raise ValueError, "Channel axis dimension is not valid."

    bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax)
    if ca == 2:
        strdata = bytedata.tostring()
        shape = (shape[1],shape[0])
    elif ca == 1:
        strdata = transpose(bytedata,(0,2,1)).tostring()
        shape = (shape[2],shape[0])
    elif ca == 0:
        strdata = transpose(bytedata,(1,2,0)).tostring()
        shape = (shape[2],shape[1])
    if mode is None:
        if numch == 3: mode = 'RGB'
        else: mode = 'RGBA'


    if mode not in ['RGB','RGBA','YCbCr','CMYK']:
        raise ValueError, _errstr

    if mode in ['RGB', 'YCbCr']:
        assert numch == 3, "Invalid array shape for mode."
    if mode in ['RGBA', 'CMYK']:
        assert numch == 4, "Invalid array shape for mode."

    # Here we know data and mode is coorect
    image = Image.fromstring(mode, shape, strdata)
    return image

def imrotate(arr,angle,interp='bilinear'):
    """Rotate an image counter-clockwise by angle degrees.

    Interpolation methods can be:
        'nearest' :  for nearest neighbor
        'bilinear' : for bilinear
        'cubic' or 'bicubic' : for bicubic
    """
    arr = asarray(arr)
    func = {'nearest':0,'bilinear':2,'bicubic':3,'cubic':3}
    im = toimage(arr)
    im = im.rotate(angle,resample=func[interp])
    return fromimage(im)

def imresize(arr,newsize,interp='bilinear',mode=None):
    newsize=list(newsize)
    newsize.reverse()
    newsize = tuple(newsize)
    arr = asarray(arr)
    func = {'nearest':0,'bilinear':2,'bicubic':3,'cubic':3}
    im = toimage(arr,mode=mode)
    im = im.resize(newsize,resample=func[interp])
    return fromimage(im)

def imshow(arr):
    """Simple showing of an image through an external viewer.
    """
    im = toimage(arr)
    fnum,fname = tempfile.mkstemp('.png')
    try:
        im.save(fname)
    except:
        raise RuntimeError("Error saving temporary image data.")

    import os
    os.close(fnum)

    cmd = os.environ.get('SCIPY_PIL_IMAGE_VIEWER','see')
    status = os.system("%s %s" % (cmd,fname))

    os.unlink(fname)
    if status != 0:
        raise RuntimeError('Could not execute image viewer.')

def imresize(arr,size):
    """Resize an image.

    If size is an integer it is a percentage of current size.
    If size is a float it is a fraction of current size.
    If size is a tuple it is the size of the output image.
    """
    im = toimage(arr)
    ts = type(size)
    if issubdtype(ts,int):
        size = size / 100.0
    elif issubdtype(type(size),float):
        size = (array(im.size)*size).astype(int)
    else:
        size = (size[1],size[0])
    imnew = im.resize(size)
    return fromimage(imnew)


def imfilter(arr,ftype):
    """Simple filtering of an image.

    type can be:
            'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more',
            'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'
    """
    _tdict = {'blur':ImageFilter.BLUR,
              'contour':ImageFilter.CONTOUR,
              'detail':ImageFilter.DETAIL,
              'edge_enhance':ImageFilter.EDGE_ENHANCE,
              'edge_enhance_more':ImageFilter.EDGE_ENHANCE_MORE,
              'emboss':ImageFilter.EMBOSS,
              'find_edges':ImageFilter.FIND_EDGES,
              'smooth':ImageFilter.SMOOTH,
              'smooth_more':ImageFilter.SMOOTH_MORE,
              'sharpen':ImageFilter.SHARPEN
              }

    im = toimage(arr)
    if ftype not in _tdict.keys():
        raise ValueError, "Unknown filter type."
    return fromimage(im.filter(_tdict[ftype]))


def radon(arr,theta=None):
    if theta is None:
        theta = mgrid[0:180]
    s = zeros((arr.shape[1],len(theta)), float)
    k = 0
    for th in theta:
        im = imrotate(arr,-th)
        s[:,k] = sum(im,axis=0)
        k += 1
    return s