1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy
import _ni_support
import _nd_image
def _extend_mode_to_code(mode):
mode = _ni_support._extend_mode_to_code(mode)
return mode
def spline_filter1d(input, order = 3, axis = -1, output = numpy.float64,
output_type = None):
"""Calculates a one-dimensional spline filter along the given axis.
The lines of the array along the given axis are filtered by a
spline filter. The order of the spline must be >= 2 and <= 5.
"""
if order < 0 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
output, return_value = _ni_support._get_output(output, input,
output_type)
if order in [0, 1]:
output[...] = numpy.array(input)
else:
axis = _ni_support._check_axis(axis, input.ndim)
_nd_image.spline_filter1d(input, order, axis, output)
return return_value
def spline_filter(input, order = 3, output = numpy.float64,
output_type = None):
"""Multi-dimensional spline filter.
Note: The multi-dimensional filter is implemented as a sequence of
one-dimensional spline filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision.
"""
if order < 2 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
output, return_value = _ni_support._get_output(output, input,
output_type)
if order not in [0, 1] and input.ndim > 0:
for axis in range(input.ndim):
spline_filter1d(input, order, axis, output = output)
input = output
else:
output[...] = input[...]
return return_value
def geometric_transform(input, mapping, output_shape = None,
output_type = None, output = None, order = 3,
mode = 'constant', cval = 0.0, prefilter = True,
extra_arguments = (), extra_keywords = {}):
"""Apply an arbritrary geometric transform.
The given mapping function is used to find, for each point in the
output, the corresponding coordinates in the input. The value of the
input at those coordinates is determined by spline interpolation of
the requested order.
mapping must be a callable object that accepts a tuple of length
equal to the output array rank and returns the corresponding input
coordinates as a tuple of length equal to the input array
rank. Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest', 'reflect' or
'wrap'). The output shape can optionally be given. If not given,
it is equal to the input shape. The parameter prefilter determines
if the input is pre-filtered before interpolation (necessary for
spline interpolation of order > 1). If False it is assumed that
the input is already filtered. The extra_arguments and
extra_keywords arguments can be used to provide extra arguments
and keywords that are passed to the mapping function at each call.
Example
-------
>>> a = arange(12.).reshape((4,3))
>>> def shift_func(output_coordinates):
... return (output_coordinates[0]-0.5, output_coordinates[1]-0.5)
...
>>> print geometric_transform(a,shift_func)
array([[ 0. , 0. , 0. ],
[ 0. , 1.3625, 2.7375],
[ 0. , 4.8125, 6.1875],
[ 0. , 8.2625, 9.6375]])
"""
if order < 0 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
if output_shape is None:
output_shape = input.shape
if input.ndim < 1 or len(output_shape) < 1:
raise RuntimeError, 'input and output rank must be > 0'
mode = _extend_mode_to_code(mode)
if prefilter and order > 1:
filtered = spline_filter(input, order, output = numpy.float64)
else:
filtered = input
output, return_value = _ni_support._get_output(output, input,
output_type, shape = output_shape)
_nd_image.geometric_transform(filtered, mapping, None, None, None,
output, order, mode, cval, extra_arguments, extra_keywords)
return return_value
def map_coordinates(input, coordinates, output_type = None, output = None,
order = 3, mode = 'constant', cval = 0.0, prefilter = True):
"""
Map the input array to new coordinates by interpolation.
The array of coordinates is used to find, for each point in the output,
the corresponding coordinates in the input. The value of the input at
those coordinates is determined by spline interpolation of the
requested order.
The shape of the output is derived from that of the coordinate
array by dropping the first axis. The values of the array along
the first axis are the coordinates in the input array at which the
output value is found.
Parameters
----------
input : ndarray
The input array
coordinates : array_like
The coordinates at which `input` is evaluated.
output_type : deprecated
Use `output` instead.
output : dtype, optional
If the output has to have a certain type, specify the dtype.
The default behavior is for the output to have the same type
as `input`.
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according
to the given mode ('constant', 'nearest', 'reflect' or 'wrap').
Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if
`mode='constant`. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is
pre-filtered with `spline_filter`_ before interpolation
(necessary for spline interpolation of order > 1).
If False, it is assumed that the input is already filtered.
Returns
-------
return_value : ndarray
The result of transforming the input. The shape of the
output is derived from that of `coordinates` by dropping
the first axis.
See Also
--------
spline_filter, geometric_transform, scipy.interpolate
Examples
--------
>>> import scipy.ndimage
>>> a = np.arange(12.).reshape((4,3))
>>> print a
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])
>>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
[ 2. 7.]
Above, the interpolated value of a[0.5, 0.5] gives output[0], while
a[2, 1] is output[1].
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> sp.ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2., 8.])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool
"""
if order < 0 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
coordinates = numpy.asarray(coordinates)
if numpy.iscomplexobj(coordinates):
raise TypeError, 'Complex type not supported'
output_shape = coordinates.shape[1:]
if input.ndim < 1 or len(output_shape) < 1:
raise RuntimeError, 'input and output rank must be > 0'
if coordinates.shape[0] != input.ndim:
raise RuntimeError, 'invalid shape for coordinate array'
mode = _extend_mode_to_code(mode)
if prefilter and order > 1:
filtered = spline_filter(input, order, output = numpy.float64)
else:
filtered = input
output, return_value = _ni_support._get_output(output, input,
output_type, shape = output_shape)
_nd_image.geometric_transform(filtered, None, coordinates, None, None,
output, order, mode, cval, None, None)
return return_value
def affine_transform(input, matrix, offset = 0.0, output_shape = None,
output_type = None, output = None, order = 3,
mode = 'constant', cval = 0.0, prefilter = True):
"""Apply an affine transformation.
The given matrix and offset are used to find for each point in the
output the corresponding coordinates in the input by an affine
transformation. The value of the input at those coordinates is
determined by spline interpolation of the requested order. Points
outside the boundaries of the input are filled according to the given
mode. The output shape can optionally be given. If not given it is
equal to the input shape. The parameter prefilter determines if the
input is pre-filtered before interpolation, if False it is assumed
that the input is already filtered.
The matrix must be two-dimensional or can also be given as a
one-dimensional sequence or array. In the latter case, it is
assumed that the matrix is diagonal. A more efficient algorithms
is then applied that exploits the separability of the problem.
"""
if order < 0 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
if output_shape is None:
output_shape = input.shape
if input.ndim < 1 or len(output_shape) < 1:
raise RuntimeError, 'input and output rank must be > 0'
mode = _extend_mode_to_code(mode)
if prefilter and order > 1:
filtered = spline_filter(input, order, output = numpy.float64)
else:
filtered = input
output, return_value = _ni_support._get_output(output, input,
output_type, shape = output_shape)
matrix = numpy.asarray(matrix, dtype = numpy.float64)
if matrix.ndim not in [1, 2] or matrix.shape[0] < 1:
raise RuntimeError, 'no proper affine matrix provided'
if matrix.shape[0] != input.ndim:
raise RuntimeError, 'affine matrix has wrong number of rows'
if matrix.ndim == 2 and matrix.shape[1] != output.ndim:
raise RuntimeError, 'affine matrix has wrong number of columns'
if not matrix.flags.contiguous:
matrix = matrix.copy()
offset = _ni_support._normalize_sequence(offset, input.ndim)
offset = numpy.asarray(offset, dtype = numpy.float64)
if offset.ndim != 1 or offset.shape[0] < 1:
raise RuntimeError, 'no proper offset provided'
if not offset.flags.contiguous:
offset = offset.copy()
if matrix.ndim == 1:
_nd_image.zoom_shift(filtered, matrix, offset, output, order,
mode, cval)
else:
_nd_image.geometric_transform(filtered, None, None, matrix, offset,
output, order, mode, cval, None, None)
return return_value
def shift(input, shift, output_type = None, output = None, order = 3,
mode = 'constant', cval = 0.0, prefilter = True):
"""Shift an array.
The array is shifted using spline interpolation of the requested
order. Points outside the boundaries of the input are filled according
to the given mode. The parameter prefilter determines if the input is
pre-filtered before interpolation, if False it is assumed that the
input is already filtered.
"""
if order < 0 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
if input.ndim < 1:
raise RuntimeError, 'input and output rank must be > 0'
mode = _extend_mode_to_code(mode)
if prefilter and order > 1:
filtered = spline_filter(input, order, output = numpy.float64)
else:
filtered = input
output, return_value = _ni_support._get_output(output, input,
output_type)
shift = _ni_support._normalize_sequence(shift, input.ndim)
shift = [-ii for ii in shift]
shift = numpy.asarray(shift, dtype = numpy.float64)
if not shift.flags.contiguous:
shift = shift.copy()
_nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval)
return return_value
def zoom(input, zoom, output_type = None, output = None, order = 3,
mode = 'constant', cval = 0.0, prefilter = True):
"""Zoom an array.
The array is zoomed using spline interpolation of the requested order.
Points outside the boundaries of the input are filled according to the
given mode. The parameter prefilter determines if the input is pre-
filtered before interpolation, if False it is assumed that the input
is already filtered.
"""
if order < 0 or order > 5:
raise RuntimeError, 'spline order not supported'
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
if input.ndim < 1:
raise RuntimeError, 'input and output rank must be > 0'
mode = _extend_mode_to_code(mode)
if prefilter and order > 1:
filtered = spline_filter(input, order, output = numpy.float64)
else:
filtered = input
zoom = _ni_support._normalize_sequence(zoom, input.ndim)
output_shape = tuple([int(ii * jj) for ii, jj in zip(input.shape, zoom)])
zoom = (numpy.array(input.shape)-1)/(numpy.array(output_shape,float)-1)
output, return_value = _ni_support._get_output(output, input,
output_type, shape = output_shape)
zoom = numpy.asarray(zoom, dtype = numpy.float64)
zoom = numpy.ascontiguousarray(zoom)
_nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval)
return return_value
def _minmax(coor, minc, maxc):
if coor[0] < minc[0]:
minc[0] = coor[0]
if coor[0] > maxc[0]:
maxc[0] = coor[0]
if coor[1] < minc[1]:
minc[1] = coor[1]
if coor[1] > maxc[1]:
maxc[1] = coor[1]
return minc, maxc
def rotate(input, angle, axes = (1, 0), reshape = True,
output_type = None, output = None, order = 3,
mode = 'constant', cval = 0.0, prefilter = True):
"""Rotate an array.
The array is rotated in the plane defined by the two axes given by the
axes parameter using spline interpolation of the requested order. The
angle is given in degrees. Points outside the boundaries of the input
are filled according to the given mode. If reshape is true, the output
shape is adapted so that the input array is contained completely in
the output. The parameter prefilter determines if the input is pre-
filtered before interpolation, if False it is assumed that the input
is already filtered.
"""
input = numpy.asarray(input)
axes = list(axes)
rank = input.ndim
if axes[0] < 0:
axes[0] += rank
if axes[1] < 0:
axes[1] += rank
if axes[0] < 0 or axes[1] < 0 or axes[0] > rank or axes[1] > rank:
raise RuntimeError, 'invalid rotation plane specified'
if axes[0] > axes[1]:
axes = axes[1], axes[0]
angle = numpy.pi / 180 * angle
m11 = math.cos(angle)
m12 = math.sin(angle)
m21 = -math.sin(angle)
m22 = math.cos(angle)
matrix = numpy.array([[m11, m12],
[m21, m22]], dtype = numpy.float64)
iy = input.shape[axes[0]]
ix = input.shape[axes[1]]
if reshape:
mtrx = numpy.array([[ m11, -m21],
[-m12, m22]], dtype = numpy.float64)
minc = [0, 0]
maxc = [0, 0]
coor = numpy.dot(mtrx, [0, ix])
minc, maxc = _minmax(coor, minc, maxc)
coor = numpy.dot(mtrx, [iy, 0])
minc, maxc = _minmax(coor, minc, maxc)
coor = numpy.dot(mtrx, [iy, ix])
minc, maxc = _minmax(coor, minc, maxc)
oy = int(maxc[0] - minc[0] + 0.5)
ox = int(maxc[1] - minc[1] + 0.5)
else:
oy = input.shape[axes[0]]
ox = input.shape[axes[1]]
offset = numpy.zeros((2,), dtype = numpy.float64)
offset[0] = float(oy) / 2.0 - 0.5
offset[1] = float(ox) / 2.0 - 0.5
offset = numpy.dot(matrix, offset)
tmp = numpy.zeros((2,), dtype = numpy.float64)
tmp[0] = float(iy) / 2.0 - 0.5
tmp[1] = float(ix) / 2.0 - 0.5
offset = tmp - offset
output_shape = list(input.shape)
output_shape[axes[0]] = oy
output_shape[axes[1]] = ox
output_shape = tuple(output_shape)
output, return_value = _ni_support._get_output(output, input,
output_type, shape = output_shape)
if input.ndim <= 2:
affine_transform(input, matrix, offset, output_shape, None, output,
order, mode, cval, prefilter)
else:
coordinates = []
size = numpy.product(input.shape,axis=0)
size /= input.shape[axes[0]]
size /= input.shape[axes[1]]
for ii in range(input.ndim):
if ii not in axes:
coordinates.append(0)
else:
coordinates.append(slice(None, None, None))
iter_axes = range(input.ndim)
iter_axes.reverse()
iter_axes.remove(axes[0])
iter_axes.remove(axes[1])
os = (output_shape[axes[0]], output_shape[axes[1]])
for ii in range(size):
ia = input[tuple(coordinates)]
oa = output[tuple(coordinates)]
affine_transform(ia, matrix, offset, os, None, oa, order, mode,
cval, prefilter)
for jj in iter_axes:
if coordinates[jj] < input.shape[jj] - 1:
coordinates[jj] += 1
break
else:
coordinates[jj] = 0
return return_value
|