File: anneal.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (316 lines) | stat: -rw-r--r-- 10,783 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Original Author: Travis Oliphant 2002
# Bug-fixes in 2006 by Tim Leslie


import numpy
from numpy import asarray, tan, exp, ones, squeeze, sign, \
     all, log, sqrt, pi, shape, array, minimum, where
from numpy import random

__all__ = ['anneal']

_double_min = numpy.finfo(float).min
_double_max = numpy.finfo(float).max
class base_schedule(object):
    def __init__(self):
        self.dwell = 20
        self.learn_rate = 0.5
        self.lower = -10
        self.upper = 10
        self.Ninit = 50
        self.accepted = 0
        self.tests = 0
        self.feval = 0
        self.k = 0
        self.T = None

    def init(self, **options):
        self.__dict__.update(options)
        self.lower = asarray(self.lower)
        self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower)
        self.upper = asarray(self.upper)
        self.upper = where(self.upper == numpy.PINF, _double_max, self.upper)
        self.k = 0
        self.accepted = 0
        self.feval = 0
        self.tests = 0

    def getstart_temp(self, best_state):
        """ Find a matching starting temperature and starting parameters vector
        i.e. find x0 such that func(x0) = T0.

        Parameters
        ----------
        best_state : _state
            A _state object to store the function value and x0 found.

        Returns
        -------
        x0 : array
            The starting parameters vector.
        """

        assert(not self.dims is None)
        lrange = self.lower
        urange = self.upper
        fmax = _double_min
        fmin = _double_max
        for _ in range(self.Ninit):
            x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange
            fval = self.func(x0, *self.args)
            self.feval += 1
            if fval > fmax:
                fmax = fval
            if fval < fmin:
                fmin = fval
                best_state.cost = fval
                best_state.x = array(x0)

        self.T0 = (fmax-fmin)*1.5
        return best_state.x

    def accept_test(self, dE):
        T = self.T
        self.tests += 1
        if dE < 0:
            self.accepted += 1
            return 1
        p = exp(-dE*1.0/self.boltzmann/T)
        if (p > random.uniform(0.0, 1.0)):
            self.accepted += 1
            return 1
        return 0

    def update_guess(self, x0):
        pass

    def update_temp(self, x0):
        pass


#  A schedule due to Lester Ingber
class fast_sa(base_schedule):
    def init(self, **options):
        self.__dict__.update(options)
        if self.m is None:
            self.m = 1.0
        if self.n is None:
            self.n = 1.0
        self.c = self.m * exp(-self.n * self.quench)

    def update_guess(self, x0):
        x0 = asarray(x0)
        u = squeeze(random.uniform(0.0, 1.0, size=self.dims))
        T = self.T
        y = sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)
        xc = y*(self.upper - self.lower)
        xnew = x0 + xc
        return xnew

    def update_temp(self):
        self.T = self.T0*exp(-self.c * self.k**(self.quench))
        self.k += 1
        return

class cauchy_sa(base_schedule):
    def update_guess(self, x0):
        x0 = asarray(x0)
        numbers = squeeze(random.uniform(-pi/2, pi/2, size=self.dims))
        xc = self.learn_rate * self.T * tan(numbers)
        xnew = x0 + xc
        return xnew

    def update_temp(self):
        self.T = self.T0/(1+self.k)
        self.k += 1
        return

class boltzmann_sa(base_schedule):
    def update_guess(self, x0):
        std = minimum(sqrt(self.T)*ones(self.dims), (self.upper-self.lower)/3.0/self.learn_rate)
        x0 = asarray(x0)
        xc = squeeze(random.normal(0, 1.0, size=self.dims))

        xnew = x0 + xc*std*self.learn_rate
        return xnew

    def update_temp(self):
        self.k += 1
        self.T = self.T0 / log(self.k+1.0)
        return

class _state(object):
    def __init__(self):
        self.x = None
        self.cost = None

# TODO:
#     allow for general annealing temperature profile
#     in that case use update given by alpha and omega and
#     variation of all previous updates and temperature?

# Simulated annealing

def anneal(func, x0, args=(), schedule='fast', full_output=0,
           T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400,
           boltzmann=1.0, learn_rate=0.5, feps=1e-6, quench=1.0, m=1.0, n=1.0,
           lower=-100, upper=100, dwell=50):
    """Minimize a function using simulated annealing.

    Schedule is a schedule class implementing the annealing schedule.
    Available ones are 'fast', 'cauchy', 'boltzmann'

    Inputs:

    func         -- Function to be optimized
    x0           -- Parameters to be optimized over
    args         -- Extra parameters to function
    schedule     -- Annealing schedule to use (a class)
    full_output  -- Return optional outputs
    T0           -- Initial Temperature (estimated as 1.2 times the largest
                    cost-function deviation over random points in the range)
    Tf           -- Final goal temperature
    maxeval      -- Maximum function evaluations
    maxaccept    -- Maximum changes to accept
    maxiter      -- Maximum cooling iterations
    learn_rate   -- scale constant for adjusting guesses
    boltzmann    -- Boltzmann constant in acceptance test
                     (increase for less stringent test at each temperature).
    feps         -- Stopping relative error tolerance for the function value in
                     last four coolings.
    quench, m, n -- Parameters to alter fast_sa schedule
    lower, upper -- lower and upper bounds on x0 (scalar or array).
    dwell        -- The number of times to search the space at each temperature.

    Outputs: (xmin, {Jmin, T, feval, iters, accept,} retval)

    xmin -- Point giving smallest value found
    retval -- Flag indicating stopping condition:
                0 : Cooled to global optimum
                1 : Cooled to final temperature
                2 : Maximum function evaluations
                3 : Maximum cooling iterations reached
                4 : Maximum accepted query locations reached

    Jmin  -- Minimum value of function found
    T     -- final temperature
    feval -- Number of function evaluations
    iters  -- Number of cooling iterations
    accept -- Number of tests accepted.

    See also:

      fmin, fmin_powell, fmin_cg,
             fmin_bfgs, fmin_ncg -- multivariate local optimizers
      leastsq -- nonlinear least squares minimizer

      fmin_l_bfgs_b, fmin_tnc,
             fmin_cobyla -- constrained multivariate optimizers

      anneal, brute -- global optimizers

      fminbound, brent, golden, bracket -- local scalar minimizers

      fsolve -- n-dimenstional root-finding

      brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding

      fixed_point -- scalar fixed-point finder

    """
    x0 = asarray(x0)
    lower = asarray(lower)
    upper = asarray(upper)

    schedule = eval(schedule+'_sa()')
    #   initialize the schedule
    schedule.init(dims=shape(x0),func=func,args=args,boltzmann=boltzmann,T0=T0,
                  learn_rate=learn_rate, lower=lower, upper=upper,
                  m=m, n=n, quench=quench, dwell=dwell)

    current_state, last_state, best_state = _state(), _state(), _state()
    if T0 is None:
        x0 = schedule.getstart_temp(best_state)
    else:
        best_state.x = None
        best_state.cost = 300e8

    last_state.x = asarray(x0).copy()
    fval = func(x0,*args)
    schedule.feval += 1
    last_state.cost = fval
    if last_state.cost < best_state.cost:
        best_state.cost = fval
        best_state.x = asarray(x0).copy()
    schedule.T = schedule.T0
    fqueue = [100, 300, 500, 700]
    iters = 0
    while 1:
        for n in range(dwell):
            current_state.x = schedule.update_guess(last_state.x)
            current_state.cost = func(current_state.x,*args)
            schedule.feval += 1

            dE = current_state.cost - last_state.cost
            if schedule.accept_test(dE):
                last_state.x = current_state.x.copy()
                last_state.cost = current_state.cost
                if last_state.cost < best_state.cost:
                    best_state.x = last_state.x.copy()
                    best_state.cost = last_state.cost
        schedule.update_temp()
        iters += 1
        # Stopping conditions
        # 0) last saved values of f from each cooling step
        #     are all very similar (effectively cooled)
        # 1) Tf is set and we are below it
        # 2) maxeval is set and we are past it
        # 3) maxiter is set and we are past it
        # 4) maxaccept is set and we are past it

        fqueue.append(squeeze(last_state.cost))
        fqueue.pop(0)
        af = asarray(fqueue)*1.0
        if all(abs((af-af[0])/af[0]) < feps):
            retval = 0
            if abs(af[-1]-best_state.cost) > feps*10:
                retval = 5
                print "Warning: Cooled to %f at %s but this is not" \
                      % (squeeze(last_state.cost), str(squeeze(last_state.x))) \
                      + " the smallest point found."
            break
        if (Tf is not None) and (schedule.T < Tf):
            retval = 1
            break
        if (maxeval is not None) and (schedule.feval > maxeval):
            retval = 2
            break
        if (iters > maxiter):
            print "Warning: Maximum number of iterations exceeded."
            retval = 3
            break
        if (maxaccept is not None) and (schedule.accepted > maxaccept):
            retval = 4
            break

    if full_output:
        return best_state.x, best_state.cost, schedule.T, \
               schedule.feval, iters, schedule.accepted, retval
    else:
        return best_state.x, retval



if __name__ == "__main__":
    from numpy import cos
    # minimum expected at ~-0.195
    func = lambda x: cos(14.5*x-0.3) + (x+0.2)*x
    print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='cauchy')
    print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='fast')
    print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='boltzmann')

    # minimum expected at ~[-0.195, -0.1]
    func = lambda x: cos(14.5*x[0]-0.3) + (x[1]+0.2)*x[1] + (x[0]+0.2)*x[0]
    print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='cauchy')
    print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='fast')
    print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='boltzmann')