1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
import _minpack
from numpy import atleast_1d, dot, take, triu, shape, eye, \
transpose, zeros, product, greater, array, \
all, where, isscalar, asarray
error = _minpack.error
__all__ = ['fsolve', 'leastsq', 'newton', 'fixed_point','bisection']
def check_func(thefunc, x0, args, numinputs, output_shape=None):
res = atleast_1d(thefunc(*((x0[:numinputs],)+args)))
if (output_shape is not None) and (shape(res) != output_shape):
if (output_shape[0] != 1):
if len(output_shape) > 1:
if output_shape[1] == 1:
return shape(res)
raise TypeError, "There is a mismatch between the input and output shape of %s." % thefunc.func_name
return shape(res)
def fsolve(func,x0,args=(),fprime=None,full_output=0,col_deriv=0,xtol=1.49012e-8,maxfev=0,band=None,epsfcn=0.0,factor=100,diag=None, warning=True):
"""Find the roots of a function.
Description:
Return the roots of the (non-linear) equations defined by
func(x)=0 given a starting estimate.
Inputs:
func -- A Python function or method which takes at least one
(possibly vector) argument.
x0 -- The starting estimate for the roots of func(x)=0.
args -- Any extra arguments to func are placed in this tuple.
fprime -- A function or method to compute the Jacobian of func with
derivatives across the rows. If this is None, the
Jacobian will be estimated.
full_output -- non-zero to return the optional outputs.
col_deriv -- non-zero to specify that the Jacobian function
computes derivatives down the columns (faster, because
there is no transpose operation).
warning -- True to print a warning message when the call is
unsuccessful; False to suppress the warning message.
Outputs: (x, {infodict, ier, mesg})
x -- the solution (or the result of the last iteration for an
unsuccessful call.
infodict -- a dictionary of optional outputs with the keys:
'nfev' : the number of function calls
'njev' : the number of jacobian calls
'fvec' : the function evaluated at the output
'fjac' : the orthogonal matrix, q, produced by the
QR factorization of the final approximate
Jacobian matrix, stored column wise.
'r' : upper triangular matrix produced by QR
factorization of same matrix.
'qtf' : the vector (transpose(q) * fvec).
ier -- an integer flag. If it is equal to 1 the solution was
found. If it is not equal to 1, the solution was not
found and the following message gives more information.
mesg -- a string message giving information about the cause of
failure.
Extended Inputs:
xtol -- The calculation will terminate if the relative error
between two consecutive iterates is at most xtol.
maxfev -- The maximum number of calls to the function. If zero,
then 100*(N+1) is the maximum where N is the number
of elements in x0.
band -- If set to a two-sequence containing the number of sub-
and superdiagonals within the band of the Jacobi matrix,
the Jacobi matrix is considered banded (only for fprime=None).
epsfcn -- A suitable step length for the forward-difference
approximation of the Jacobian (for fprime=None). If
epsfcn is less than the machine precision, it is assumed
that the relative errors in the functions are of
the order of the machine precision.
factor -- A parameter determining the initial step bound
(factor * || diag * x||). Should be in interval (0.1,100).
diag -- A sequency of N positive entries that serve as a
scale factors for the variables.
Remarks:
"fsolve" is a wrapper around MINPACK's hybrd and hybrj algorithms.
See also:
scikits.openopt, which offers a unified syntax to call this and other solvers
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg -- multivariate local optimizers
leastsq -- nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla -- constrained multivariate optimizers
anneal, brute -- global optimizers
fminbound, brent, golden, bracket -- local scalar minimizers
brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding
fixed_point -- scalar and vector fixed-point finder
"""
x0 = array(x0,ndmin=1)
n = len(x0)
if type(args) != type(()): args = (args,)
check_func(func,x0,args,n,(n,))
Dfun = fprime
if Dfun is None:
if band is None:
ml,mu = -10,-10
else:
ml,mu = band[:2]
if (maxfev == 0):
maxfev = 200*(n+1)
retval = _minpack._hybrd(func,x0,args,full_output,xtol,maxfev,ml,mu,epsfcn,factor,diag)
else:
check_func(Dfun,x0,args,n,(n,n))
if (maxfev == 0):
maxfev = 100*(n+1)
retval = _minpack._hybrj(func,Dfun,x0,args,full_output,col_deriv,xtol,maxfev,factor,diag)
errors = {0:["Improper input parameters were entered.",TypeError],
1:["The solution converged.",None],
2:["The number of calls to function has reached maxfev = %d." % maxfev, ValueError],
3:["xtol=%f is too small, no further improvement in the approximate\n solution is possible." % xtol, ValueError],
4:["The iteration is not making good progress, as measured by the \n improvement from the last five Jacobian evaluations.", ValueError],
5:["The iteration is not making good progress, as measured by the \n improvement from the last ten iterations.", ValueError],
'unknown': ["An error occurred.", TypeError]}
info = retval[-1] # The FORTRAN return value
if (info != 1 and not full_output):
if info in [2,3,4,5]:
if warning: print "Warning: " + errors[info][0]
else:
try:
raise errors[info][1], errors[info][0]
except KeyError:
raise errors['unknown'][1], errors['unknown'][0]
if n == 1:
retval = (retval[0][0],) + retval[1:]
if full_output:
try:
return retval + (errors[info][0],) # Return all + the message
except KeyError:
return retval + (errors['unknown'][0],)
else:
return retval[0]
def leastsq(func,x0,args=(),Dfun=None,full_output=0,col_deriv=0,ftol=1.49012e-8,xtol=1.49012e-8,gtol=0.0,maxfev=0,epsfcn=0.0,factor=100,diag=None,warning=True):
"""Minimize the sum of squares of a set of equations.
Description:
Return the point which minimizes the sum of squares of M
(non-linear) equations in N unknowns given a starting estimate, x0,
using a modification of the Levenberg-Marquardt algorithm.
x = arg min(sum(func(y)**2,axis=0))
y
Inputs:
func -- A Python function or method which takes at least one
(possibly length N vector) argument and returns M
floating point numbers.
x0 -- The starting estimate for the minimization.
args -- Any extra arguments to func are placed in this tuple.
Dfun -- A function or method to compute the Jacobian of func with
derivatives across the rows. If this is None, the
Jacobian will be estimated.
full_output -- non-zero to return all optional outputs.
col_deriv -- non-zero to specify that the Jacobian function
computes derivatives down the columns (faster, because
there is no transpose operation).
warning -- True to print a warning message when the call is
unsuccessful; False to suppress the warning message.
Outputs: (x, {cov_x, infodict, mesg}, ier)
x -- the solution (or the result of the last iteration for an
unsuccessful call.
cov_x -- uses the fjac and ipvt optional outputs to construct an
estimate of the covariance matrix of the solution.
None if a singular matrix encountered (indicates
infinite covariance in some direction).
infodict -- a dictionary of optional outputs with the keys:
'nfev' : the number of function calls
'fvec' : the function evaluated at the output
'fjac' : A permutation of the R matrix of a QR
factorization of the final approximate
Jacobian matrix, stored column wise.
Together with ipvt, the covariance of the
estimate can be approximated.
'ipvt' : an integer array of length N which defines
a permutation matrix, p, such that
fjac*p = q*r, where r is upper triangular
with diagonal elements of nonincreasing
magnitude. Column j of p is column ipvt(j)
of the identity matrix.
'qtf' : the vector (transpose(q) * fvec).
mesg -- a string message giving information about the cause of failure.
ier -- an integer flag. If it is equal to 1, 2, 3 or 4, the
solution was found. Otherwise, the solution was not
found. In either case, the optional output variable 'mesg'
gives more information.
Extended Inputs:
ftol -- Relative error desired in the sum of squares.
xtol -- Relative error desired in the approximate solution.
gtol -- Orthogonality desired between the function vector
and the columns of the Jacobian.
maxfev -- The maximum number of calls to the function. If zero,
then 100*(N+1) is the maximum where N is the number
of elements in x0.
epsfcn -- A suitable step length for the forward-difference
approximation of the Jacobian (for Dfun=None). If
epsfcn is less than the machine precision, it is assumed
that the relative errors in the functions are of
the order of the machine precision.
factor -- A parameter determining the initial step bound
(factor * || diag * x||). Should be in interval (0.1,100).
diag -- A sequency of N positive entries that serve as a
scale factors for the variables.
Remarks:
"leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms.
See also:
scikits.openopt, which offers a unified syntax to call this and other solvers
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg -- multivariate local optimizers
fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla -- constrained multivariate optimizers
anneal, brute -- global optimizers
fminbound, brent, golden, bracket -- local scalar minimizers
fsolve -- n-dimenstional root-finding
brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding
fixed_point -- scalar and vector fixed-point finder
"""
x0 = array(x0,ndmin=1)
n = len(x0)
if type(args) != type(()): args = (args,)
m = check_func(func,x0,args,n)[0]
if Dfun is None:
if (maxfev == 0):
maxfev = 200*(n+1)
retval = _minpack._lmdif(func,x0,args,full_output,ftol,xtol,gtol,maxfev,epsfcn,factor,diag)
else:
if col_deriv:
check_func(Dfun,x0,args,n,(n,m))
else:
check_func(Dfun,x0,args,n,(m,n))
if (maxfev == 0):
maxfev = 100*(n+1)
retval = _minpack._lmder(func,Dfun,x0,args,full_output,col_deriv,ftol,xtol,gtol,maxfev,factor,diag)
errors = {0:["Improper input parameters.", TypeError],
1:["Both actual and predicted relative reductions in the sum of squares\n are at most %f" % ftol, None],
2:["The relative error between two consecutive iterates is at most %f" % xtol, None],
3:["Both actual and predicted relative reductions in the sum of squares\n are at most %f and the relative error between two consecutive iterates is at \n most %f" % (ftol,xtol), None],
4:["The cosine of the angle between func(x) and any column of the\n Jacobian is at most %f in absolute value" % gtol, None],
5:["Number of calls to function has reached maxfev = %d." % maxfev, ValueError],
6:["ftol=%f is too small, no further reduction in the sum of squares\n is possible.""" % ftol, ValueError],
7:["xtol=%f is too small, no further improvement in the approximate\n solution is possible." % xtol, ValueError],
8:["gtol=%f is too small, func(x) is orthogonal to the columns of\n the Jacobian to machine precision." % gtol, ValueError],
'unknown':["Unknown error.", TypeError]}
info = retval[-1] # The FORTRAN return value
if (info not in [1,2,3,4] and not full_output):
if info in [5,6,7,8]:
if warning: print "Warning: " + errors[info][0]
else:
try:
raise errors[info][1], errors[info][0]
except KeyError:
raise errors['unknown'][1], errors['unknown'][0]
if n == 1:
retval = (retval[0][0],) + retval[1:]
mesg = errors[info][0]
if full_output:
from numpy.dual import inv
from numpy.linalg import LinAlgError
perm = take(eye(n),retval[1]['ipvt']-1,0)
r = triu(transpose(retval[1]['fjac'])[:n,:])
R = dot(r, perm)
try:
cov_x = inv(dot(transpose(R),R))
except LinAlgError:
cov_x = None
return (retval[0], cov_x) + retval[1:-1] + (mesg,info)
else:
return (retval[0], info)
def check_gradient(fcn,Dfcn,x0,args=(),col_deriv=0):
"""Perform a simple check on the gradient for correctness.
"""
x = atleast_1d(x0)
n = len(x)
x=x.reshape((n,))
fvec = atleast_1d(fcn(x,*args))
m = len(fvec)
fvec=fvec.reshape((m,))
ldfjac = m
fjac = atleast_1d(Dfcn(x,*args))
fjac=fjac.reshape((m,n))
if col_deriv == 0:
fjac = transpose(fjac)
xp = zeros((n,), float)
err = zeros((m,), float)
fvecp = None
_minpack._chkder(m,n,x,fvec,fjac,ldfjac,xp,fvecp,1,err)
fvecp = atleast_1d(fcn(xp,*args))
fvecp=fvecp.reshape((m,))
_minpack._chkder(m,n,x,fvec,fjac,ldfjac,xp,fvecp,2,err)
good = (product(greater(err,0.5),axis=0))
return (good,err)
# Netwon-Raphson method
def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50):
"""Given a function of a single variable and a starting point,
find a nearby zero using Newton-Raphson.
fprime is the derivative of the function. If not given, the
Secant method is used.
See also:
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg -- multivariate local optimizers
leastsq -- nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla -- constrained multivariate optimizers
anneal, brute -- global optimizers
fminbound, brent, golden, bracket -- local scalar minimizers
fsolve -- n-dimenstional root-finding
brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding
fixed_point -- scalar and vector fixed-point finder
"""
if fprime is not None:
p0 = x0
for iter in range(maxiter):
myargs = (p0,)+args
fval = func(*myargs)
fpval = fprime(*myargs)
if fpval == 0:
print "Warning: zero-derivative encountered."
return p0
p = p0 - func(*myargs)/fprime(*myargs)
if abs(p-p0) < tol:
return p
p0 = p
else: # Secant method
p0 = x0
p1 = x0*(1+1e-4)
q0 = func(*((p0,)+args))
q1 = func(*((p1,)+args))
for iter in range(maxiter):
if q1 == q0:
if p1 != p0:
print "Tolerance of %s reached" % (p1-p0)
return (p1+p0)/2.0
else:
p = p1 - q1*(p1-p0)/(q1-q0)
if abs(p-p1) < tol:
return p
p0 = p1
q0 = q1
p1 = p
q1 = func(*((p1,)+args))
raise RuntimeError, "Failed to converge after %d iterations, value is %s" % (maxiter,p)
# Steffensen's Method using Aitken's Del^2 convergence acceleration.
def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500):
"""Find the point where func(x) == x
Given a function of one or more variables and a starting point, find a
fixed-point of the function: i.e. where func(x)=x.
Uses Steffensen's Method using Aitken's Del^2 convergence acceleration.
See Burden, Faires, "Numerical Analysis", 5th edition, pg. 80
Example
-------
>>> from numpy import sqrt, array
>>> from scipy.optimize import fixed_point
>>> def func(x, c1, c2):
return sqrt(c1/(x+c2))
>>> c1 = array([10,12.])
>>> c2 = array([3, 5.])
>>> fixed_point(func, [1.2, 1.3], args=(c1,c2))
array([ 1.4920333 , 1.37228132])
See also:
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg -- multivariate local optimizers
leastsq -- nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla -- constrained multivariate optimizers
anneal, brute -- global optimizers
fminbound, brent, golden, bracket -- local scalar minimizers
fsolve -- n-dimenstional root-finding
brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding
"""
if not isscalar(x0):
x0 = asarray(x0)
p0 = x0
for iter in range(maxiter):
p1 = func(p0, *args)
p2 = func(p1, *args)
d = p2 - 2.0 * p1 + p0
p = where(d == 0, p2, p0 - (p1 - p0)*(p1-p0) / d)
relerr = where(p0 == 0, p, (p-p0)/p0)
if all(relerr < xtol):
return p
p0 = p
else:
p0 = x0
for iter in range(maxiter):
p1 = func(p0, *args)
p2 = func(p1, *args)
d = p2 - 2.0 * p1 + p0
if d == 0.0:
return p2
else:
p = p0 - (p1 - p0)*(p1-p0) / d
if p0 == 0:
relerr = p
else:
relerr = (p-p0)/p0
if relerr < xtol:
return p
p0 = p
raise RuntimeError, "Failed to converge after %d iterations, value is %s" % (maxiter,p)
def bisection(func, a, b, args=(), xtol=1e-10, maxiter=400):
"""Bisection root-finding method. Given a function and an interval with
func(a) * func(b) < 0, find the root between a and b.
See also:
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg -- multivariate local optimizers
leastsq -- nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc,
fmin_cobyla -- constrained multivariate optimizers
anneal, brute -- global optimizers
fminbound, brent, golden, bracket -- local scalar minimizers
fsolve -- n-dimenstional root-finding
brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding
fixed_point -- scalar and vector fixed-point finder
"""
i = 1
eva = func(a,*args)
evb = func(b,*args)
assert (eva*evb < 0), "Must start with interval with func(a) * func(b) <0"
while i<=maxiter:
dist = (b-a)/2.0
p = a + dist
if dist < xtol:
return p
ev = func(p,*args)
if ev == 0:
return p
i += 1
if ev*eva > 0:
a = p
eva = ev
else:
b = p
print "Warning: Method failed after %d iterations." % maxiter
return p
|