File: minpack.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (528 lines) | stat: -rw-r--r-- 20,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import _minpack

from numpy import atleast_1d, dot, take, triu, shape, eye, \
                  transpose, zeros, product, greater, array, \
                  all, where, isscalar, asarray

error = _minpack.error

__all__ = ['fsolve', 'leastsq', 'newton', 'fixed_point','bisection']

def check_func(thefunc, x0, args, numinputs, output_shape=None):
    res = atleast_1d(thefunc(*((x0[:numinputs],)+args)))
    if (output_shape is not None) and (shape(res) != output_shape):
        if (output_shape[0] != 1):
            if len(output_shape) > 1:
                if output_shape[1] == 1:
                    return shape(res)
            raise TypeError, "There is a mismatch between the input and output shape of %s." % thefunc.func_name
    return shape(res)


def fsolve(func,x0,args=(),fprime=None,full_output=0,col_deriv=0,xtol=1.49012e-8,maxfev=0,band=None,epsfcn=0.0,factor=100,diag=None, warning=True):
    """Find the roots of a function.

  Description:

    Return the roots of the (non-linear) equations defined by
    func(x)=0 given a starting estimate.

  Inputs:

    func -- A Python function or method which takes at least one
            (possibly vector) argument.
    x0 -- The starting estimate for the roots of func(x)=0.
    args -- Any extra arguments to func are placed in this tuple.
    fprime -- A function or method to compute the Jacobian of func with
            derivatives across the rows. If this is None, the
            Jacobian will be estimated.
    full_output -- non-zero to return the optional outputs.
    col_deriv -- non-zero to specify that the Jacobian function
                 computes derivatives down the columns (faster, because
                 there is no transpose operation).
    warning -- True to print a warning message when the call is
                unsuccessful; False to suppress the warning message.
  Outputs: (x, {infodict, ier, mesg})

    x -- the solution (or the result of the last iteration for an
         unsuccessful call.

    infodict -- a dictionary of optional outputs with the keys:
                'nfev' : the number of function calls
                'njev' : the number of jacobian calls
                'fvec' : the function evaluated at the output
                'fjac' : the orthogonal matrix, q, produced by the
                         QR factorization of the final approximate
                         Jacobian matrix, stored column wise.
                'r'    : upper triangular matrix produced by QR
                         factorization of same matrix.
                'qtf'  : the vector (transpose(q) * fvec).
    ier -- an integer flag.  If it is equal to 1 the solution was
           found.  If it is not equal to 1, the solution was not
           found and the following message gives more information.
    mesg -- a string message giving information about the cause of
            failure.

  Extended Inputs:

   xtol -- The calculation will terminate if the relative error
           between two consecutive iterates is at most xtol.
   maxfev -- The maximum number of calls to the function. If zero,
             then 100*(N+1) is the maximum where N is the number
             of elements in x0.
   band -- If set to a two-sequence containing the number of sub-
           and superdiagonals within the band of the Jacobi matrix,
           the Jacobi matrix is considered banded (only for fprime=None).
   epsfcn -- A suitable step length for the forward-difference
             approximation of the Jacobian (for fprime=None). If
             epsfcn is less than the machine precision, it is assumed
             that the relative errors in the functions are of
             the order of the machine precision.
   factor -- A parameter determining the initial step bound
             (factor * || diag * x||). Should be in interval (0.1,100).
   diag -- A sequency of N positive entries that serve as a
           scale factors for the variables.

  Remarks:

    "fsolve" is a wrapper around MINPACK's hybrd and hybrj algorithms.

  See also:

      scikits.openopt, which offers a unified syntax to call this and other solvers

      fmin, fmin_powell, fmin_cg,
             fmin_bfgs, fmin_ncg -- multivariate local optimizers
      leastsq -- nonlinear least squares minimizer

      fmin_l_bfgs_b, fmin_tnc,
             fmin_cobyla -- constrained multivariate optimizers

      anneal, brute -- global optimizers

      fminbound, brent, golden, bracket -- local scalar minimizers

      brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding

      fixed_point -- scalar and vector fixed-point finder

    """
    x0 = array(x0,ndmin=1)
    n = len(x0)
    if type(args) != type(()): args = (args,)
    check_func(func,x0,args,n,(n,))
    Dfun = fprime
    if Dfun is None:
        if band is None:
            ml,mu = -10,-10
        else:
            ml,mu = band[:2]
        if (maxfev == 0):
            maxfev = 200*(n+1)
        retval = _minpack._hybrd(func,x0,args,full_output,xtol,maxfev,ml,mu,epsfcn,factor,diag)
    else:
        check_func(Dfun,x0,args,n,(n,n))
        if (maxfev == 0):
            maxfev = 100*(n+1)
        retval = _minpack._hybrj(func,Dfun,x0,args,full_output,col_deriv,xtol,maxfev,factor,diag)

    errors = {0:["Improper input parameters were entered.",TypeError],
              1:["The solution converged.",None],
              2:["The number of calls to function has reached maxfev = %d." % maxfev, ValueError],
              3:["xtol=%f is too small, no further improvement in the approximate\n  solution is possible." % xtol, ValueError],
              4:["The iteration is not making good progress, as measured by the \n  improvement from the last five Jacobian evaluations.", ValueError],
              5:["The iteration is not making good progress, as measured by the \n  improvement from the last ten iterations.", ValueError],
              'unknown': ["An error occurred.", TypeError]}

    info = retval[-1]    # The FORTRAN return value
    if (info != 1 and not full_output):
        if info in [2,3,4,5]:
            if warning:  print "Warning: " + errors[info][0]
        else:
            try:
                raise errors[info][1], errors[info][0]
            except KeyError:
                raise errors['unknown'][1], errors['unknown'][0]

    if n == 1:
        retval = (retval[0][0],) + retval[1:]

    if full_output:
        try:
            return retval + (errors[info][0],)  # Return all + the message
        except KeyError:
            return retval + (errors['unknown'][0],)
    else:
        return retval[0]


def leastsq(func,x0,args=(),Dfun=None,full_output=0,col_deriv=0,ftol=1.49012e-8,xtol=1.49012e-8,gtol=0.0,maxfev=0,epsfcn=0.0,factor=100,diag=None,warning=True):
    """Minimize the sum of squares of a set of equations.

  Description:

    Return the point which minimizes the sum of squares of M
    (non-linear) equations in N unknowns given a starting estimate, x0,
    using a modification of the Levenberg-Marquardt algorithm.

                    x = arg min(sum(func(y)**2,axis=0))
                             y

  Inputs:

    func -- A Python function or method which takes at least one
            (possibly length N vector) argument and returns M
            floating point numbers.
    x0 -- The starting estimate for the minimization.
    args -- Any extra arguments to func are placed in this tuple.
    Dfun -- A function or method to compute the Jacobian of func with
            derivatives across the rows. If this is None, the
            Jacobian will be estimated.
    full_output -- non-zero to return all optional outputs.
    col_deriv -- non-zero to specify that the Jacobian function
                 computes derivatives down the columns (faster, because
                 there is no transpose operation).
        warning -- True to print a warning message when the call is
             unsuccessful; False to suppress the warning message.

  Outputs: (x, {cov_x, infodict, mesg}, ier)

    x -- the solution (or the result of the last iteration for an
         unsuccessful call.

    cov_x -- uses the fjac and ipvt optional outputs to construct an
             estimate of the covariance matrix of the solution.
             None if a singular matrix encountered (indicates
             infinite covariance in some direction).
    infodict -- a dictionary of optional outputs with the keys:
                'nfev' : the number of function calls
                'fvec' : the function evaluated at the output
                'fjac' : A permutation of the R matrix of a QR
                         factorization of the final approximate
                         Jacobian matrix, stored column wise.
                         Together with ipvt, the covariance of the
                         estimate can be approximated.
                'ipvt' : an integer array of length N which defines
                         a permutation matrix, p, such that
                         fjac*p = q*r, where r is upper triangular
                         with diagonal elements of nonincreasing
                         magnitude. Column j of p is column ipvt(j)
                         of the identity matrix.
                'qtf'  : the vector (transpose(q) * fvec).
    mesg -- a string message giving information about the cause of failure.
    ier -- an integer flag.  If it is equal to 1, 2, 3 or 4, the
           solution was found.  Otherwise, the solution was not
           found. In either case, the optional output variable 'mesg'
           gives more information.


  Extended Inputs:

   ftol -- Relative error desired in the sum of squares.
   xtol -- Relative error desired in the approximate solution.
   gtol -- Orthogonality desired between the function vector
           and the columns of the Jacobian.
   maxfev -- The maximum number of calls to the function. If zero,
             then 100*(N+1) is the maximum where N is the number
             of elements in x0.
   epsfcn -- A suitable step length for the forward-difference
             approximation of the Jacobian (for Dfun=None). If
             epsfcn is less than the machine precision, it is assumed
             that the relative errors in the functions are of
             the order of the machine precision.
   factor -- A parameter determining the initial step bound
             (factor * || diag * x||). Should be in interval (0.1,100).
   diag -- A sequency of N positive entries that serve as a
           scale factors for the variables.

  Remarks:

    "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms.

  See also:

      scikits.openopt, which offers a unified syntax to call this and other solvers

      fmin, fmin_powell, fmin_cg,
             fmin_bfgs, fmin_ncg -- multivariate local optimizers

      fmin_l_bfgs_b, fmin_tnc,
             fmin_cobyla -- constrained multivariate optimizers

      anneal, brute -- global optimizers

      fminbound, brent, golden, bracket -- local scalar minimizers

      fsolve -- n-dimenstional root-finding

      brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding

      fixed_point -- scalar and vector fixed-point finder

    """
    x0 = array(x0,ndmin=1)
    n = len(x0)
    if type(args) != type(()): args = (args,)
    m = check_func(func,x0,args,n)[0]
    if Dfun is None:
        if (maxfev == 0):
            maxfev = 200*(n+1)
        retval = _minpack._lmdif(func,x0,args,full_output,ftol,xtol,gtol,maxfev,epsfcn,factor,diag)
    else:
        if col_deriv:
            check_func(Dfun,x0,args,n,(n,m))
        else:
            check_func(Dfun,x0,args,n,(m,n))
        if (maxfev == 0):
            maxfev = 100*(n+1)
        retval = _minpack._lmder(func,Dfun,x0,args,full_output,col_deriv,ftol,xtol,gtol,maxfev,factor,diag)

    errors = {0:["Improper input parameters.", TypeError],
              1:["Both actual and predicted relative reductions in the sum of squares\n  are at most %f" % ftol, None],
              2:["The relative error between two consecutive iterates is at most %f" % xtol, None],
              3:["Both actual and predicted relative reductions in the sum of squares\n  are at most %f and the relative error between two consecutive iterates is at \n  most %f" % (ftol,xtol), None],
              4:["The cosine of the angle between func(x) and any column of the\n  Jacobian is at most %f in absolute value" % gtol, None],
              5:["Number of calls to function has reached maxfev = %d." % maxfev, ValueError],
              6:["ftol=%f is too small, no further reduction in the sum of squares\n  is possible.""" % ftol, ValueError],
              7:["xtol=%f is too small, no further improvement in the approximate\n  solution is possible." % xtol, ValueError],
              8:["gtol=%f is too small, func(x) is orthogonal to the columns of\n  the Jacobian to machine precision." % gtol, ValueError],
              'unknown':["Unknown error.", TypeError]}

    info = retval[-1]    # The FORTRAN return value

    if (info not in [1,2,3,4] and not full_output):
        if info in [5,6,7,8]:
            if warning:  print "Warning: " + errors[info][0]
        else:
            try:
                raise errors[info][1], errors[info][0]
            except KeyError:
                raise errors['unknown'][1], errors['unknown'][0]

    if n == 1:
        retval = (retval[0][0],) + retval[1:]

    mesg = errors[info][0]
    if full_output:
        from numpy.dual import inv
        from numpy.linalg import LinAlgError
        perm = take(eye(n),retval[1]['ipvt']-1,0)
        r = triu(transpose(retval[1]['fjac'])[:n,:])
        R = dot(r, perm)
        try:
            cov_x = inv(dot(transpose(R),R))
        except LinAlgError:
            cov_x = None
        return (retval[0], cov_x) + retval[1:-1] + (mesg,info)
    else:
        return (retval[0], info)


def check_gradient(fcn,Dfcn,x0,args=(),col_deriv=0):
    """Perform a simple check on the gradient for correctness.
    """

    x = atleast_1d(x0)
    n = len(x)
    x=x.reshape((n,))
    fvec = atleast_1d(fcn(x,*args))
    m = len(fvec)
    fvec=fvec.reshape((m,))
    ldfjac = m
    fjac = atleast_1d(Dfcn(x,*args))
    fjac=fjac.reshape((m,n))
    if col_deriv == 0:
        fjac = transpose(fjac)

    xp = zeros((n,), float)
    err = zeros((m,), float)
    fvecp = None
    _minpack._chkder(m,n,x,fvec,fjac,ldfjac,xp,fvecp,1,err)

    fvecp = atleast_1d(fcn(xp,*args))
    fvecp=fvecp.reshape((m,))
    _minpack._chkder(m,n,x,fvec,fjac,ldfjac,xp,fvecp,2,err)

    good = (product(greater(err,0.5),axis=0))

    return (good,err)


# Netwon-Raphson method
def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50):
    """Given a function of a single variable and a starting point,
    find a nearby zero using Newton-Raphson.

    fprime is the derivative of the function.  If not given, the
    Secant method is used.

    See also:

      fmin, fmin_powell, fmin_cg,
             fmin_bfgs, fmin_ncg -- multivariate local optimizers
      leastsq -- nonlinear least squares minimizer

      fmin_l_bfgs_b, fmin_tnc,
             fmin_cobyla -- constrained multivariate optimizers

      anneal, brute -- global optimizers

      fminbound, brent, golden, bracket -- local scalar minimizers

      fsolve -- n-dimenstional root-finding

      brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding

      fixed_point -- scalar and vector fixed-point finder

    """

    if fprime is not None:
        p0 = x0
        for iter in range(maxiter):
            myargs = (p0,)+args
            fval = func(*myargs)
            fpval = fprime(*myargs)
            if fpval == 0:
                print "Warning: zero-derivative encountered."
                return p0
            p = p0 - func(*myargs)/fprime(*myargs)
            if abs(p-p0) < tol:
                return p
            p0 = p
    else: # Secant method
        p0 = x0
        p1 = x0*(1+1e-4)
        q0 = func(*((p0,)+args))
        q1 = func(*((p1,)+args))
        for iter in range(maxiter):
            if q1 == q0:
                if p1 != p0:
                    print "Tolerance of %s reached" % (p1-p0)
                return (p1+p0)/2.0
            else:
                p = p1 - q1*(p1-p0)/(q1-q0)
            if abs(p-p1) < tol:
                return p
            p0 = p1
            q0 = q1
            p1 = p
            q1 = func(*((p1,)+args))
    raise RuntimeError, "Failed to converge after %d iterations, value is %s" % (maxiter,p)


# Steffensen's Method using Aitken's Del^2 convergence acceleration.
def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500):
    """Find the point where func(x) == x

    Given a function of one or more variables and a starting point, find a
    fixed-point of the function: i.e. where func(x)=x.

    Uses Steffensen's Method using Aitken's Del^2 convergence acceleration.
    See Burden, Faires, "Numerical Analysis", 5th edition, pg. 80

    Example
    -------
    >>> from numpy import sqrt, array
    >>> from scipy.optimize import fixed_point
    >>> def func(x, c1, c2):
            return sqrt(c1/(x+c2))
    >>> c1 = array([10,12.])
    >>> c2 = array([3, 5.])
    >>> fixed_point(func, [1.2, 1.3], args=(c1,c2))
    array([ 1.4920333 ,  1.37228132])

    See also:

      fmin, fmin_powell, fmin_cg,
             fmin_bfgs, fmin_ncg -- multivariate local optimizers
      leastsq -- nonlinear least squares minimizer

      fmin_l_bfgs_b, fmin_tnc,
             fmin_cobyla -- constrained multivariate optimizers

      anneal, brute -- global optimizers

      fminbound, brent, golden, bracket -- local scalar minimizers

      fsolve -- n-dimenstional root-finding

      brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding

    """
    if not isscalar(x0):
        x0 = asarray(x0)
        p0 = x0
        for iter in range(maxiter):
            p1 = func(p0, *args)
            p2 = func(p1, *args)
            d = p2 - 2.0 * p1 + p0
            p = where(d == 0, p2, p0 - (p1 - p0)*(p1-p0) / d)
            relerr = where(p0 == 0, p, (p-p0)/p0)
            if all(relerr < xtol):
                return p
            p0 = p
    else:
        p0 = x0
        for iter in range(maxiter):
            p1 = func(p0, *args)
            p2 = func(p1, *args)
            d = p2 - 2.0 * p1 + p0
            if d == 0.0:
                return p2
            else:
                p = p0 - (p1 - p0)*(p1-p0) / d
            if p0 == 0:
                relerr = p
            else:
                relerr = (p-p0)/p0
            if relerr < xtol:
                return p
            p0 = p
    raise RuntimeError, "Failed to converge after %d iterations, value is %s" % (maxiter,p)


def bisection(func, a, b, args=(), xtol=1e-10, maxiter=400):
    """Bisection root-finding method.  Given a function and an interval with
    func(a) * func(b) < 0, find the root between a and b.

    See also:

      fmin, fmin_powell, fmin_cg,
             fmin_bfgs, fmin_ncg -- multivariate local optimizers
      leastsq -- nonlinear least squares minimizer

      fmin_l_bfgs_b, fmin_tnc,
             fmin_cobyla -- constrained multivariate optimizers

      anneal, brute -- global optimizers

      fminbound, brent, golden, bracket -- local scalar minimizers

      fsolve -- n-dimenstional root-finding

      brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding

      fixed_point -- scalar and vector fixed-point finder

    """
    i = 1
    eva = func(a,*args)
    evb = func(b,*args)
    assert (eva*evb < 0), "Must start with interval with func(a) * func(b) <0"
    while i<=maxiter:
        dist = (b-a)/2.0
        p = a + dist
        if dist < xtol:
            return p
        ev = func(p,*args)
        if ev == 0:
            return p
        i += 1
        if ev*eva > 0:
            a = p
            eva = ev
        else:
            b = p
    print "Warning: Method failed after %d iterations." % maxiter
    return p