File: tnc.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (272 lines) | stat: -rw-r--r-- 10,163 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# TNC Python interface
# @(#) $Jeannot: tnc.py,v 1.11 2005/01/28 18:27:31 js Exp $

# Copyright (c) 2004-2005, Jean-Sebastien Roy (js@jeannot.org)

# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:

# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""
TNC: A python interface to the TNC non-linear optimizer

TNC is a non-linear optimizer. To use it, you must provide a function to
minimize. The function must take one argument: the list of coordinates where to
evaluate the function; and it must return either a tuple, whose first element is the
value of the function, and whose second argument is the gradient of the function
(as a list of values); or None, to abort the minimization.
"""
from scipy.optimize import moduleTNC
from numpy import asarray, inf, array

MSG_NONE = 0 # No messages
MSG_ITER = 1 # One line per iteration
MSG_INFO = 2 # Informational messages
MSG_VERS = 4 # Version info
MSG_EXIT = 8 # Exit reasons
MSG_ALL = MSG_ITER + MSG_INFO + MSG_VERS + MSG_EXIT

MSGS = {
        MSG_NONE : "No messages",
        MSG_ITER : "One line per iteration",
        MSG_INFO : "Informational messages",
        MSG_VERS : "Version info",
        MSG_EXIT : "Exit reasons",
        MSG_ALL  : "All messages"
}

INFEASIBLE   = -1 # Infeasible (low > up)
LOCALMINIMUM =  0 # Local minima reach (|pg| ~= 0)
FCONVERGED   =  1 # Converged (|f_n-f_(n-1)| ~= 0)
XCONVERGED   =  2 # Converged (|x_n-x_(n-1)| ~= 0)
MAXFUN       =  3 # Max. number of function evaluations reach
LSFAIL       =  4 # Linear search failed
CONSTANT     =  5 # All lower bounds are equal to the upper bounds
NOPROGRESS   =  6 # Unable to progress
USERABORT    =  7 # User requested end of minimization

RCSTRINGS = {
        INFEASIBLE   : "Infeasible (low > up)",
        LOCALMINIMUM : "Local minima reach (|pg| ~= 0)",
        FCONVERGED   : "Converged (|f_n-f_(n-1)| ~= 0)",
        XCONVERGED   : "Converged (|x_n-x_(n-1)| ~= 0)",
        MAXFUN       : "Max. number of function evaluations reach",
        LSFAIL       : "Linear search failed",
        CONSTANT     : "All lower bounds are equal to the upper bounds",
        NOPROGRESS   : "Unable to progress",
        USERABORT    : "User requested end of minimization"
}

# Changes to interface made by Travis Oliphant, Apr. 2004 for inclusion in
#  SciPy

import optimize
approx_fprime = optimize.approx_fprime

def fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0,
             bounds=None, epsilon=1e-8, scale=None, offset=None,
             messages=MSG_ALL, maxCGit=-1, maxfun=None, eta=-1,
             stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1,
             rescale=-1):
    """Minimize a function with variables subject to bounds, using
    gradient information.

    :Parameters:
        func : callable func(x, *args)
            Function to minimize.  Should return f and g, where f is
            the value of the function and g its gradient (a list of
            floats).  If the function returns None, the minimization
            is aborted.
        x0 : list of floats
            Initial estimate of minimum.
        fprime : callable fprime(x, *args)
            Gradient of func. If None, then func must return the
            function value and the gradient (f,g = func(x, *args)).
        args : tuple
            Arguments to pass to function.
        approx_grad : bool
            If true, approximate the gradient numerically.
        bounds : list
            (min, max) pairs for each element in x, defining the
            bounds on that parameter. Use None or +/-inf for one of
            min or max when there is no bound in that direction.
        scale : list of floats
            Scaling factors to apply to each variable.  If None, the
            factors are up-low for interval bounded variables and
            1+|x] fo the others.  Defaults to None
        offset : float
            Value to substract from each variable.  If None, the
            offsets are (up+low)/2 for interval bounded variables
            and x for the others.
        messages :
            Bit mask used to select messages display during
            minimization values defined in the MSGS dict.  Defaults to
            MGS_ALL.
        maxCGit : int
            Maximum number of hessian*vector evaluations per main
            iteration.  If maxCGit == 0, the direction chosen is
            -gradient if maxCGit < 0, maxCGit is set to
            max(1,min(50,n/2)).  Defaults to -1.
        maxfun : int
            Maximum number of function evaluation.  if None, maxfun is
            set to max(100, 10*len(x0)).  Defaults to None.
        eta : float
            Severity of the line search. if < 0 or > 1, set to 0.25.
            Defaults to -1.
        stepmx : float
            Maximum step for the line search.  May be increased during
            call.  If too small, it will be set to 10.0.  Defaults to 0.
        accuracy : float
            Relative precision for finite difference calculations.  If
            <= machine_precision, set to sqrt(machine_precision).
            Defaults to 0.
        fmin : float
            Minimum function value estimate.  Defaults to 0.
        ftol : float
            Precision goal for the value of f in the stoping criterion.
            If ftol < 0.0, ftol is set to 0.0 defaults to -1.
        xtol : float
            Precision goal for the value of x in the stopping
            criterion (after applying x scaling factors).  If xtol <
            0.0, xtol is set to sqrt(machine_precision).  Defaults to
            -1.
        pgtol : float
            Precision goal for the value of the projected gradient in
            the stopping criterion (after applying x scaling factors).
            If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy).
            Setting it to 0.0 is not recommended.  Defaults to -1.
        rescale : float
            Scaling factor (in log10) used to trigger f value
            rescaling.  If 0, rescale at each iteration.  If a large
            value, never rescale.  If < 0, rescale is set to 1.3.

    :Returns:
        x : list of floats
            The solution.
        nfeval : int
            The number of function evaluations.
        rc :
            Return code as defined in the RCSTRINGS dict.

    :SeeAlso:
      - scikits.openopt, which offers a unified syntax to call this and other solvers

      - fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg :
         multivariate local optimizers

      - leastsq : nonlinear least squares minimizer

      - fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained
        multivariate optimizers

      - anneal, brute : global optimizers

      - fminbound, brent, golden, bracket : local scalar minimizers

      - fsolve : n-dimenstional root-finding

      - brentq, brenth, ridder, bisect, newton : one-dimensional root-finding

      - fixed_point : scalar fixed-point finder

"""
    x0 = asarray(x0, dtype=float).tolist()
    n = len(x0)

    if bounds is None:
        bounds = [(None,None)] * n
    if len(bounds) != n:
        raise ValueError('length of x0 != length of bounds')

    if approx_grad:
        def func_and_grad(x):
            x = asarray(x)
            f = func(x, *args)
            g = approx_fprime(x, func, epsilon, *args)
            return f, list(g)
    elif fprime is None:
        def func_and_grad(x):
            x = asarray(x)
            f, g = func(x, *args)
            return f, list(g)
    else:
        def func_and_grad(x):
            x = asarray(x)
            f = func(x, *args)
            g = fprime(x, *args)
            return f, list(g)

    """
    low, up   : the bounds (lists of floats)
                if low is None, the lower bounds are removed.
                if up is None, the upper bounds are removed.
                low and up defaults to None
    """
    low = [0]*n
    up = [0]*n
    for i in range(n):
        if bounds[i] is None: l, u = -inf, inf
        else:
            l,u = bounds[i]
            if l is None:
                low[i] = -inf
            else:
                low[i] = l
            if u is None:
                up[i] = inf
            else:
                up[i] = u

    if scale is None:
        scale = []

    if offset is None:
        offset = []

    if maxfun is None:
        maxfun = max(100, 10*len(x0))

    rc, nf, x = moduleTNC.minimize(func_and_grad, x0, low, up, scale, offset,
            messages, maxCGit, maxfun, eta, stepmx, accuracy,
            fmin, ftol, xtol, pgtol, rescale)
    return array(x), nf, rc

if __name__ == '__main__':
    # Examples for TNC

    def example():
        print "Example"
        # A function to minimize
        def function(x):
            f = pow(x[0],2.0)+pow(abs(x[1]),3.0)
            g = [0,0]
            g[0] = 2.0*x[0]
            g[1] = 3.0*pow(abs(x[1]),2.0)
            if x[1]<0:
                g[1] = -g[1]
            return f, g

        # Optimizer call
        x, nf, rc = fmin_tnc(function, [-7, 3], bounds=([-10, 1], [10, 10]))

        print "After", nf, "function evaluations, TNC returned:", RCSTRINGS[rc]
        print "x =", x
        print "exact value = [0, 1]"
        print

    example()