1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
|
# Author: Travis Oliphant
# 1999 -- 2002
import types
import sigtools
from scipy import special, linalg
from scipy.fftpack import fft, ifft, ifftshift, fft2, ifft2, fftn, ifftn
from numpy import polyadd, polymul, polydiv, polysub, \
roots, poly, polyval, polyder, cast, asarray, isscalar, atleast_1d, \
ones, sin, linspace, real, extract, real_if_close, zeros, array, arange, \
where, sqrt, rank, newaxis, argmax, product, cos, pi, exp, \
ravel, size, less_equal, sum, r_, iscomplexobj, take, \
argsort, allclose, expand_dims, unique, prod, sort, reshape, \
transpose, dot, any, mean, cosh, arccosh, \
arccos, concatenate, flipud
import numpy as np
from scipy.misc import factorial
_modedict = {'valid':0, 'same':1, 'full':2}
_boundarydict = {'fill':0, 'pad':0, 'wrap':2, 'circular':2, 'symm':1,
'symmetric':1, 'reflect':4}
def _valfrommode(mode):
try:
val = _modedict[mode]
except KeyError:
if mode not in [0,1,2]:
raise ValueError, "Acceptable mode flags are 'valid' (0)," \
"'same' (1), or 'full' (2)."
val = mode
return val
def _bvalfromboundary(boundary):
try:
val = _boundarydict[boundary] << 2
except KeyError:
if val not in [0,1,2] :
raise ValueError, "Acceptable boundary flags are 'fill', 'wrap'" \
" (or 'circular'), \n and 'symm' (or 'symmetric')."
val = boundary << 2
return val
def correlate(in1, in2, mode='full'):
"""Cross-correlate two N-dimensional arrays.
Description:
Cross-correlate in1 and in2 with the output size determined by mode.
Inputs:
in1 -- an N-dimensional array.
in2 -- an array with the same number of dimensions as in1.
mode -- a flag indicating the size of the output
'valid' (0): The output consists only of those elements that
do not rely on the zero-padding.
'same' (1): The output is the same size as the largest input
centered with respect to the 'full' output.
'full' (2): The output is the full discrete linear
cross-correlation of the inputs. (Default)
Outputs: (out,)
out -- an N-dimensional array containing a subset of the discrete linear
cross-correlation of in1 with in2.
"""
# Code is faster if kernel is smallest array.
volume = asarray(in1)
kernel = asarray(in2)
if rank(volume) == rank(kernel) == 0:
return volume*kernel
if (product(kernel.shape,axis=0) > product(volume.shape,axis=0)):
temp = kernel
kernel = volume
volume = temp
del temp
val = _valfrommode(mode)
return sigtools._correlateND(volume, kernel, val)
def _centered(arr, newsize):
# Return the center newsize portion of the array.
newsize = asarray(newsize)
currsize = array(arr.shape)
startind = (currsize - newsize) / 2
endind = startind + newsize
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]
def fftconvolve(in1, in2, mode="full"):
"""Convolve two N-dimensional arrays using FFT. See convolve.
"""
s1 = array(in1.shape)
s2 = array(in2.shape)
complex_result = (np.issubdtype(in1.dtype, np.complex) or
np.issubdtype(in2.dtype, np.complex))
size = s1+s2-1
IN1 = fftn(in1,size)
IN1 *= fftn(in2,size)
ret = ifftn(IN1)
del IN1
if not complex_result:
ret = ret.real
if mode == "full":
return ret
elif mode == "same":
if product(s1,axis=0) > product(s2,axis=0):
osize = s1
else:
osize = s2
return _centered(ret,osize)
elif mode == "valid":
return _centered(ret,abs(s2-s1)+1)
def convolve(in1, in2, mode='full'):
"""Convolve two N-dimensional arrays.
Description:
Convolve in1 and in2 with output size determined by mode.
Inputs:
in1 -- an N-dimensional array.
in2 -- an array with the same number of dimensions as in1.
mode -- a flag indicating the size of the output
'valid' (0): The output consists only of those elements that
are computed by scaling the larger array with all
the values of the smaller array.
'same' (1): The output is the same size as the largest input
centered with respect to the 'full' output.
'full' (2): The output is the full discrete linear convolution
of the inputs. (Default)
Outputs: (out,)
out -- an N-dimensional array containing a subset of the discrete linear
convolution of in1 with in2.
"""
volume = asarray(in1)
kernel = asarray(in2)
if rank(volume) == rank(kernel) == 0:
return volume*kernel
if (product(kernel.shape,axis=0) > product(volume.shape,axis=0)):
temp = kernel
kernel = volume
volume = temp
del temp
slice_obj = [slice(None,None,-1)]*len(kernel.shape)
val = _valfrommode(mode)
return sigtools._correlateND(volume,kernel[slice_obj],val)
def order_filter(a, domain, rank):
"""Perform an order filter on an N-dimensional array.
Description:
Perform an order filter on the array in. The domain argument acts as a
mask centered over each pixel. The non-zero elements of domain are
used to select elements surrounding each input pixel which are placed
in a list. The list is sorted, and the output for that pixel is the
element corresponding to rank in the sorted list.
Inputs:
in -- an N-dimensional input array.
domain -- a mask array with the same number of dimensions as in. Each
dimension should have an odd number of elements.
rank -- an non-negative integer which selects the element from the
sorted list (0 corresponds to the largest element, 1 is the
next largest element, etc.)
Output: (out,)
out -- the results of the order filter in an array with the same
shape as in.
"""
domain = asarray(domain)
size = domain.shape
for k in range(len(size)):
if (size[k] % 2) != 1:
raise ValueError, "Each dimension of domain argument " \
"should have an odd number of elements."
return sigtools._order_filterND(a, domain, rank)
def medfilt(volume,kernel_size=None):
"""Perform a median filter on an N-dimensional array.
Description:
Apply a median filter to the input array using a local window-size
given by kernel_size.
Inputs:
in -- An N-dimensional input array.
kernel_size -- A scalar or an N-length list giving the size of the
median filter window in each dimension. Elements of
kernel_size should be odd. If kernel_size is a scalar,
then this scalar is used as the size in each dimension.
Outputs: (out,)
out -- An array the same size as input containing the median filtered
result.
"""
volume = asarray(volume)
if kernel_size is None:
kernel_size = [3] * len(volume.shape)
kernel_size = asarray(kernel_size)
if len(kernel_size.shape) == 0:
kernel_size = [kernel_size.item()] * len(volume.shape)
kernel_size = asarray(kernel_size)
for k in range(len(volume.shape)):
if (kernel_size[k] % 2) != 1:
raise ValueError, "Each element of kernel_size should be odd."
domain = ones(kernel_size)
numels = product(kernel_size,axis=0)
order = int(numels/2)
return sigtools._order_filterND(volume,domain,order)
def wiener(im,mysize=None,noise=None):
"""Perform a Wiener filter on an N-dimensional array.
Description:
Apply a Wiener filter to the N-dimensional array in.
Inputs:
in -- an N-dimensional array.
kernel_size -- A scalar or an N-length list giving the size of the
median filter window in each dimension. Elements of
kernel_size should be odd. If kernel_size is a scalar,
then this scalar is used as the size in each dimension.
noise -- The noise-power to use. If None, then noise is estimated as
the average of the local variance of the input.
Outputs: (out,)
out -- Wiener filtered result with the same shape as in.
"""
im = asarray(im)
if mysize is None:
mysize = [3] * len(im.shape)
mysize = asarray(mysize);
# Estimate the local mean
lMean = correlate(im,ones(mysize),1) / product(mysize,axis=0)
# Estimate the local variance
lVar = correlate(im**2,ones(mysize),1) / product(mysize,axis=0) - lMean**2
# Estimate the noise power if needed.
if noise==None:
noise = mean(ravel(lVar),axis=0)
res = (im - lMean)
res *= (1-noise / lVar)
res += lMean
out = where(lVar < noise, lMean, res)
return out
def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
"""Convolve two 2-dimensional arrays.
Description:
Convolve in1 and in2 with output size determined by mode and boundary
conditions determined by boundary and fillvalue.
Inputs:
in1 -- a 2-dimensional array.
in2 -- a 2-dimensional array.
mode -- a flag indicating the size of the output
'valid' (0): The output consists only of those elements that
do not rely on the zero-padding.
'same' (1): The output is the same size as the input centered
with respect to the 'full' output.
'full' (2): The output is the full discrete linear convolution
of the inputs. (*Default*)
boundary -- a flag indicating how to handle boundaries
'fill' : pad input arrays with fillvalue. (*Default*)
'wrap' : circular boundary conditions.
'symm' : symmetrical boundary conditions.
fillvalue -- value to fill pad input arrays with (*Default* = 0)
Outputs: (out,)
out -- a 2-dimensional array containing a subset of the discrete linear
convolution of in1 with in2.
"""
val = _valfrommode(mode)
bval = _bvalfromboundary(boundary)
return sigtools._convolve2d(in1,in2,1,val,bval,fillvalue)
def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
"""Cross-correlate two 2-dimensional arrays.
Description:
Cross correlate in1 and in2 with output size determined by mode
and boundary conditions determined by boundary and fillvalue.
Inputs:
in1 -- a 2-dimensional array.
in2 -- a 2-dimensional array.
mode -- a flag indicating the size of the output
'valid' (0): The output consists only of those elements that
do not rely on the zero-padding.
'same' (1): The output is the same size as the input centered
with respect to the 'full' output.
'full' (2): The output is the full discrete linear convolution
of the inputs. (*Default*)
boundary -- a flag indicating how to handle boundaries
'fill' : pad input arrays with fillvalue. (*Default*)
'wrap' : circular boundary conditions.
'symm' : symmetrical boundary conditions.
fillvalue -- value to fill pad input arrays with (*Default* = 0)
Outputs: (out,)
out -- a 2-dimensional array containing a subset of the discrete linear
cross-correlation of in1 with in2.
"""
val = _valfrommode(mode)
bval = _bvalfromboundary(boundary)
return sigtools._convolve2d(in1, in2, 0,val,bval,fillvalue)
def medfilt2d(input, kernel_size=3):
"""Median filter two 2-dimensional arrays.
Description:
Apply a median filter to the input array using a local window-size
given by kernel_size (must be odd).
Inputs:
in -- An 2 dimensional input array.
kernel_size -- A scalar or an length-2 list giving the size of the
median filter window in each dimension. Elements of
kernel_size should be odd. If kernel_size is a scalar,
then this scalar is used as the size in each dimension.
Outputs: (out,)
out -- An array the same size as input containing the median filtered
result.
"""
image = asarray(input)
if kernel_size is None:
kernel_size = [3] * 2
kernel_size = asarray(kernel_size)
if len(kernel_size.shape) == 0:
kernel_size = [kernel_size.item()] * 2
kernel_size = asarray(kernel_size)
for size in kernel_size:
if (size % 2) != 1:
raise ValueError, "Each element of kernel_size should be odd."
return sigtools._medfilt2d(image, kernel_size)
def remez(numtaps, bands, desired, weight=None, Hz=1, type='bandpass',
maxiter=25, grid_density=16):
"""Calculate the minimax optimal filter using Remez exchange algorithm.
Description:
Calculate the filter-coefficients for the finite impulse response
(FIR) filter whose transfer function minimizes the maximum error
between the desired gain and the realized gain in the specified bands
using the remez exchange algorithm.
Inputs:
numtaps -- The desired number of taps in the filter.
bands -- A montonic sequence containing the band edges. All elements
must be non-negative and less than 1/2 the sampling frequency
as given by Hz.
desired -- A sequency half the size of bands containing the desired gain
in each of the specified bands
weight -- A relative weighting to give to each band region.
type --- The type of filter:
'bandpass' : flat response in bands.
'differentiator' : frequency proportional response in bands.
Outputs: (out,)
out -- A rank-1 array containing the coefficients of the optimal
(in a minimax sense) filter.
"""
# Convert type
try:
tnum = {'bandpass':1, 'differentiator':2}[type]
except KeyError:
raise ValueError, "Type must be 'bandpass', or 'differentiator'"
# Convert weight
if weight is None:
weight = [1] * len(desired)
bands = asarray(bands).copy()
return sigtools._remez(numtaps, bands, desired, weight, tnum, Hz,
maxiter, grid_density)
def lfilter(b, a, x, axis=-1, zi=None):
"""Filter data along one-dimension with an IIR or FIR filter.
Description
Filter a data sequence, x, using a digital filter. This works for many
fundamental data types (including Object type). The filter is a direct
form II transposed implementation of the standard difference equation
(see "Algorithm").
Inputs:
b -- The numerator coefficient vector in a 1-D sequence.
a -- The denominator coefficient vector in a 1-D sequence. If a[0]
is not 1, then both a and b are normalized by a[0].
x -- An N-dimensional input array.
axis -- The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis (*Default* = -1)
zi -- Initial conditions for the filter delays. It is a vector
(or array of vectors for an N-dimensional input) of length
max(len(a),len(b)). If zi=None or is not given then initial
rest is assumed. SEE signal.lfiltic for more information.
Outputs: (y, {zf})
y -- The output of the digital filter.
zf -- If zi is None, this is not returned, otherwise, zf holds the
final filter delay values.
Algorithm:
The filter function is implemented as a direct II transposed structure.
This means that the filter implements
a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[nb]*x[n-nb]
- a[1]*y[n-1] - ... - a[na]*y[n-na]
using the following difference equations:
y[m] = b[0]*x[m] + z[0,m-1]
z[0,m] = b[1]*x[m] + z[1,m-1] - a[1]*y[m]
...
z[n-3,m] = b[n-2]*x[m] + z[n-2,m-1] - a[n-2]*y[m]
z[n-2,m] = b[n-1]*x[m] - a[n-1]*y[m]
where m is the output sample number and n=max(len(a),len(b)) is the
model order.
The rational transfer function describing this filter in the
z-transform domain is
-1 -nb
b[0] + b[1]z + ... + b[nb] z
Y(z) = ---------------------------------- X(z)
-1 -na
a[0] + a[1]z + ... + a[na] z
"""
if isscalar(a):
a = [a]
if zi is None:
return sigtools._linear_filter(b, a, x, axis)
else:
return sigtools._linear_filter(b, a, x, axis, zi)
def lfiltic(b,a,y,x=None):
"""Given a linear filter (b,a) and initial conditions on the output y
and the input x, return the inital conditions on the state vector zi
which is used by lfilter to generate the output given the input.
If M=len(b)-1 and N=len(a)-1. Then, the initial conditions are given
in the vectors x and y as
x = {x[-1],x[-2],...,x[-M]}
y = {y[-1],y[-2],...,y[-N]}
If x is not given, its inital conditions are assumed zero.
If either vector is too short, then zeros are added
to achieve the proper length.
The output vector zi contains
zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]} where K=max(M,N).
"""
N = size(a)-1
M = size(b)-1
K = max(M,N)
y = asarray(y)
zi = zeros(K,y.dtype.char)
if x is None:
x = zeros(M,y.dtype.char)
else:
x = asarray(x)
L = size(x)
if L < M:
x = r_[x,zeros(M-L)]
L = size(y)
if L < N:
y = r_[y,zeros(N-L)]
for m in range(M):
zi[m] = sum(b[m+1:]*x[:M-m],axis=0)
for m in range(N):
zi[m] -= sum(a[m+1:]*y[:N-m],axis=0)
return zi
def deconvolve(signal, divisor):
"""Deconvolves divisor out of signal.
"""
num = atleast_1d(signal)
den = atleast_1d(divisor)
N = len(num)
D = len(den)
if D > N:
quot = [];
rem = num;
else:
input = ones(N-D+1, float)
input[1:] = 0
quot = lfilter(num, den, input)
rem = num - convolve(den, quot, mode='full')
return quot, rem
def boxcar(M,sym=1):
"""The M-point boxcar window.
"""
return ones(M, float)
def triang(M,sym=1):
"""The M-point triangular window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M + 1
n = arange(1,int((M+1)/2)+1)
if M % 2 == 0:
w = (2*n-1.0)/M
w = r_[w, w[::-1]]
else:
w = 2*n/(M+1.0)
w = r_[w, w[-2::-1]]
if not sym and not odd:
w = w[:-1]
return w
def parzen(M,sym=1):
"""The M-point Parzen window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(-(M-1)/2.0,(M-1)/2.0+0.5,1.0)
na = extract(n < -(M-1)/4.0, n)
nb = extract(abs(n) <= (M-1)/4.0, n)
wa = 2*(1-abs(na)/(M/2.0))**3.0
wb = 1-6*(abs(nb)/(M/2.0))**2.0 + 6*(abs(nb)/(M/2.0))**3.0
w = r_[wa,wb,wa[::-1]]
if not sym and not odd:
w = w[:-1]
return w
def bohman(M,sym=1):
"""The M-point Bohman window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
fac = abs(linspace(-1,1,M)[1:-1])
w = (1 - fac)* cos(pi*fac) + 1.0/pi*sin(pi*fac)
w = r_[0,w,0]
if not sym and not odd:
w = w[:-1]
return w
def blackman(M,sym=1):
"""The M-point Blackman window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)
w = 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
if not sym and not odd:
w = w[:-1]
return w
def nuttall(M,sym=1):
"""A minimum 4-term Blackman-Harris window according to Nuttall.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
a = [0.3635819, 0.4891775, 0.1365995, 0.0106411]
n = arange(0,M)
fac = n*2*pi/(M-1.0)
w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac)
if not sym and not odd:
w = w[:-1]
return w
def blackmanharris(M,sym=1):
"""The M-point minimum 4-term Blackman-Harris window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
a = [0.35875, 0.48829, 0.14128, 0.01168];
n = arange(0,M)
fac = n*2*pi/(M-1.0)
w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac)
if not sym and not odd:
w = w[:-1]
return w
def flattop(M,sym=1):
"""The M-point Flat top window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
a = [0.2156, 0.4160, 0.2781, 0.0836, 0.0069]
n = arange(0,M)
fac = n*2*pi/(M-1.0)
w = a[0] - a[1]*cos(fac) + a[2]*cos(2*fac) - a[3]*cos(3*fac) + \
a[4]*cos(4*fac)
if not sym and not odd:
w = w[:-1]
return w
def bartlett(M,sym=1):
"""The M-point Bartlett window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)
w = where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))
if not sym and not odd:
w = w[:-1]
return w
def hanning(M,sym=1):
"""The M-point Hanning window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)
w = 0.5-0.5*cos(2.0*pi*n/(M-1))
if not sym and not odd:
w = w[:-1]
return w
hann = hanning
def barthann(M,sym=1):
"""Return the M-point modified Bartlett-Hann window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)
fac = abs(n/(M-1.0)-0.5)
w = 0.62 - 0.48*fac + 0.38*cos(2*pi*fac)
if not sym and not odd:
w = w[:-1]
return w
def hamming(M,sym=1):
"""The M-point Hamming window.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)
w = 0.54-0.46*cos(2.0*pi*n/(M-1))
if not sym and not odd:
w = w[:-1]
return w
def kaiser(M,beta,sym=1):
"""Return a Kaiser window of length M with shape parameter beta.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)
alpha = (M-1)/2.0
w = special.i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/special.i0(beta)
if not sym and not odd:
w = w[:-1]
return w
def gaussian(M,std,sym=1):
"""Return a Gaussian window of length M with standard-deviation std.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M + 1
n = arange(0,M)-(M-1.0)/2.0
sig2 = 2*std*std
w = exp(-n**2 / sig2)
if not sym and not odd:
w = w[:-1]
return w
def general_gaussian(M,p,sig,sym=1):
"""Return a window with a generalized Gaussian shape.
exp(-0.5*(x/sig)**(2*p))
half power point is at (2*log(2)))**(1/(2*p))*sig
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
n = arange(0,M)-(M-1.0)/2.0
w = exp(-0.5*(n/sig)**(2*p))
if not sym and not odd:
w = w[:-1]
return w
# contributed by Kumar Appaiah.
def chebwin(M, at, sym=1):
"""Dolph-Chebyshev window.
INPUTS:
M : int
Window size
at : float
Attenuation (in dB)
sym : bool
Generates symmetric window if True.
"""
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
# compute the parameter beta
order = M - 1.0
beta = cosh(1.0/order * arccosh(10**(abs(at)/20.)))
k = r_[0:M]*1.0
x = beta*cos(pi*k/M)
#find the window's DFT coefficients
# Use analytic definition of Chebyshev polynomial instead of expansion
# from scipy.special. Using the expansion in scipy.special leads to errors.
p = zeros(x.shape)
p[x > 1] = cosh(order * arccosh(x[x > 1]))
p[x < -1] = (1 - 2*(order%2)) * cosh(order * arccosh(-x[x < -1]))
p[np.abs(x) <=1 ] = cos(order * arccos(x[np.abs(x) <= 1]))
# Appropriate IDFT and filling up
# depending on even/odd M
if M % 2:
w = real(fft(p))
n = (M + 1) / 2
w = w[:n] / w[0]
w = concatenate((w[n - 1:0:-1], w))
else:
p = p * exp(1.j*pi / M * r_[0:M])
w = real(fft(p))
n = M / 2 + 1
w = w / w[1]
w = concatenate((w[n - 1:0:-1], w[1:n]))
if not sym and not odd:
w = w[:-1]
return w
def slepian(M,width,sym=1):
"""Return the M-point slepian window.
"""
if (M*width > 27.38):
raise ValueError, "Cannot reliably obtain slepian sequences for"\
" M*width > 27.38."
if M < 1:
return array([])
if M == 1:
return ones(1,'d')
odd = M % 2
if not sym and not odd:
M = M+1
twoF = width/2.0
alpha = (M-1)/2.0
m = arange(0,M)-alpha
n = m[:,newaxis]
k = m[newaxis,:]
AF = twoF*special.sinc(twoF*(n-k))
[lam,vec] = linalg.eig(AF)
ind = argmax(abs(lam),axis=-1)
w = abs(vec[:,ind])
w = w / max(w)
if not sym and not odd:
w = w[:-1]
return w
def hilbert(x, N=None):
"""Compute the analytic signal.
The transformation is done along the first axis.
Parameters
----------
x : array-like
Signal data
N : int, optional
Number of Fourier components. Default: ``x.shape[0]``
Returns
-------
xa : ndarray, shape (N,) + x.shape[1:]
Analytic signal of `x`
Notes
-----
The analytic signal `x_a(t)` of `x(t)` is::
x_a = F^{-1}(F(x) 2U) = x + i y
where ``F`` is the Fourier transform, ``U`` the unit step function,
and ``y`` the Hilbert transform of ``x``. [1]
References
----------
.. [1] Wikipedia, "Analytic signal".
http://en.wikipedia.org/wiki/Analytic_signal
"""
x = asarray(x)
if N is None:
N = len(x)
if N <=0:
raise ValueError, "N must be positive."
if iscomplexobj(x):
print "Warning: imaginary part of x ignored."
x = real(x)
Xf = fft(x,N,axis=0)
h = zeros(N)
if N % 2 == 0:
h[0] = h[N/2] = 1
h[1:N/2] = 2
else:
h[0] = 1
h[1:(N+1)/2] = 2
if len(x.shape) > 1:
h = h[:, newaxis]
x = ifft(Xf*h)
return x
def hilbert2(x,N=None):
"""Compute the '2-D' analytic signal of `x` of length `N`.
See also
--------
hilbert
"""
x = asarray(x)
x = asarray(x)
if N is None:
N = x.shape
if len(N) < 2:
if N <=0:
raise ValueError, "N must be positive."
N = (N,N)
if iscomplexobj(x):
print "Warning: imaginary part of x ignored."
x = real(x)
print N
Xf = fft2(x,N,axes=(0,1))
h1 = zeros(N[0],'d')
h2 = zeros(N[1],'d')
for p in range(2):
h = eval("h%d"%(p+1))
N1 = N[p]
if N1 % 2 == 0:
h[0] = h[N1/2] = 1
h[1:N1/2] = 2
else:
h[0] = 1
h[1:(N1+1)/2] = 2
exec("h%d = h" % (p+1), globals(), locals())
h = h1[:,newaxis] * h2[newaxis,:]
k = len(x.shape)
while k > 2:
h = h[:, newaxis]
k -= 1
x = ifft2(Xf*h,axes=(0,1))
return x
def cmplx_sort(p):
"sort roots based on magnitude."
p = asarray(p)
if iscomplexobj(p):
indx = argsort(abs(p))
else:
indx = argsort(p)
return take(p,indx,0), indx
def unique_roots(p,tol=1e-3,rtype='min'):
"""Determine the unique roots and their multiplicities in two lists
Inputs:
p -- The list of roots
tol --- The tolerance for two roots to be considered equal.
rtype --- How to determine the returned root from the close
ones: 'max': pick the maximum
'min': pick the minimum
'avg': average roots
Outputs: (pout, mult)
pout -- The list of sorted roots
mult -- The multiplicity of each root
"""
if rtype in ['max','maximum']:
comproot = np.maximum
elif rtype in ['min','minimum']:
comproot = np.minimum
elif rtype in ['avg','mean']:
comproot = np.mean
p = asarray(p)*1.0
tol = abs(tol)
p, indx = cmplx_sort(p)
pout = []
mult = []
indx = -1
curp = p[0] + 5*tol
sameroots = []
for k in range(len(p)):
tr = p[k]
if abs(tr-curp) < tol:
sameroots.append(tr)
curp = comproot(sameroots)
pout[indx] = curp
mult[indx] += 1
else:
pout.append(tr)
curp = tr
sameroots = [tr]
indx += 1
mult.append(1)
return array(pout), array(mult)
def invres(r,p,k,tol=1e-3,rtype='avg'):
"""Compute b(s) and a(s) from partial fraction expansion: r,p,k
If M = len(b) and N = len(a)
b(s) b[0] x**(M-1) + b[1] x**(M-2) + ... + b[M-1]
H(s) = ------ = ----------------------------------------------
a(s) a[0] x**(N-1) + a[1] x**(N-2) + ... + a[N-1]
r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])
If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like
r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n
See Also
--------
residue, poly, polyval, unique_roots
"""
extra = k
p, indx = cmplx_sort(p)
r = take(r,indx,0)
pout, mult = unique_roots(p,tol=tol,rtype=rtype)
p = []
for k in range(len(pout)):
p.extend([pout[k]]*mult[k])
a = atleast_1d(poly(p))
if len(extra) > 0:
b = polymul(extra,a)
else:
b = [0]
indx = 0
for k in range(len(pout)):
temp = []
for l in range(len(pout)):
if l != k:
temp.extend([pout[l]]*mult[l])
for m in range(mult[k]):
t2 = temp[:]
t2.extend([pout[k]]*(mult[k]-m-1))
b = polyadd(b,r[indx]*poly(t2))
indx += 1
b = real_if_close(b)
while allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1):
b = b[1:]
return b, a
def residue(b,a,tol=1e-3,rtype='avg'):
"""Compute partial-fraction expansion of b(s) / a(s).
If M = len(b) and N = len(a)
b(s) b[0] s**(M-1) + b[1] s**(M-2) + ... + b[M-1]
H(s) = ------ = ----------------------------------------------
a(s) a[0] s**(N-1) + a[1] s**(N-2) + ... + a[N-1]
r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])
If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like
r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n
Returns
-------
r : ndarray
Residues
p : ndarray
Poles
k : ndarray
Coefficients of the direct polynomial term.
See Also
--------
invres, poly, polyval, unique_roots
"""
b,a = map(asarray,(b,a))
rscale = a[0]
k,b = polydiv(b,a)
p = roots(a)
r = p*0.0
pout, mult = unique_roots(p,tol=tol,rtype=rtype)
p = []
for n in range(len(pout)):
p.extend([pout[n]]*mult[n])
p = asarray(p)
# Compute the residue from the general formula
indx = 0
for n in range(len(pout)):
bn = b.copy()
pn = []
for l in range(len(pout)):
if l != n:
pn.extend([pout[l]]*mult[l])
an = atleast_1d(poly(pn))
# bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is
# multiplicity of pole at po[n]
sig = mult[n]
for m in range(sig,0,-1):
if sig > m:
# compute next derivative of bn(s) / an(s)
term1 = polymul(polyder(bn,1),an)
term2 = polymul(bn,polyder(an,1))
bn = polysub(term1,term2)
an = polymul(an,an)
r[indx+m-1] = polyval(bn,pout[n]) / polyval(an,pout[n]) \
/ factorial(sig-m)
indx += sig
return r/rscale, p, k
def residuez(b,a,tol=1e-3,rtype='avg'):
"""Compute partial-fraction expansion of b(z) / a(z).
If M = len(b) and N = len(a)
b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
H(z) = ------ = ----------------------------------------------
a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)
r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))
If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like
r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n
See also: invresz, poly, polyval, unique_roots
"""
b,a = map(asarray,(b,a))
gain = a[0]
brev, arev = b[::-1],a[::-1]
krev,brev = polydiv(brev,arev)
if krev == []:
k = []
else:
k = krev[::-1]
b = brev[::-1]
p = roots(a)
r = p*0.0
pout, mult = unique_roots(p,tol=tol,rtype=rtype)
p = []
for n in range(len(pout)):
p.extend([pout[n]]*mult[n])
p = asarray(p)
# Compute the residue from the general formula (for discrete-time)
# the polynomial is in z**(-1) and the multiplication is by terms
# like this (1-p[i] z**(-1))**mult[i]. After differentiation,
# we must divide by (-p[i])**(m-k) as well as (m-k)!
indx = 0
for n in range(len(pout)):
bn = brev.copy()
pn = []
for l in range(len(pout)):
if l != n:
pn.extend([pout[l]]*mult[l])
an = atleast_1d(poly(pn))[::-1]
# bn(z) / an(z) is (1-po[n] z**(-1))**Nn * b(z) / a(z) where Nn is
# multiplicity of pole at po[n] and b(z) and a(z) are polynomials.
sig = mult[n]
for m in range(sig,0,-1):
if sig > m:
# compute next derivative of bn(s) / an(s)
term1 = polymul(polyder(bn,1),an)
term2 = polymul(bn,polyder(an,1))
bn = polysub(term1,term2)
an = polymul(an,an)
r[indx+m-1] = polyval(bn,1.0/pout[n]) / polyval(an,1.0/pout[n]) \
/ factorial(sig-m) / (-pout[n])**(sig-m)
indx += sig
return r/gain, p, k
def invresz(r,p,k,tol=1e-3,rtype='avg'):
"""Compute b(z) and a(z) from partial fraction expansion: r,p,k
If M = len(b) and N = len(a)
b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
H(z) = ------ = ----------------------------------------------
a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)
r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))
If there are any repeated roots (closer than tol), then the partial
fraction expansion has terms like
r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n
See also: residuez, poly, polyval, unique_roots
"""
extra = asarray(k)
p, indx = cmplx_sort(p)
r = take(r,indx,0)
pout, mult = unique_roots(p,tol=tol,rtype=rtype)
p = []
for k in range(len(pout)):
p.extend([pout[k]]*mult[k])
a = atleast_1d(poly(p))
if len(extra) > 0:
b = polymul(extra,a)
else:
b = [0]
indx = 0
brev = asarray(b)[::-1]
for k in range(len(pout)):
temp = []
# Construct polynomial which does not include any of this root
for l in range(len(pout)):
if l != k:
temp.extend([pout[l]]*mult[l])
for m in range(mult[k]):
t2 = temp[:]
t2.extend([pout[k]]*(mult[k]-m-1))
brev = polyadd(brev,(r[indx]*poly(t2))[::-1])
indx += 1
b = real_if_close(brev[::-1])
return b, a
def get_window(window,Nx,fftbins=1):
"""Return a window of length Nx and type window.
If fftbins is 1, create a "periodic" window ready to use with ifftshift
and be multiplied by the result of an fft (SEE ALSO fftfreq).
Window types: boxcar, triang, blackman, hamming, hanning, bartlett,
parzen, bohman, blackmanharris, nuttall, barthann,
kaiser (needs beta), gaussian (needs std),
general_gaussian (needs power, width),
slepian (needs width)
If the window requires no parameters, then it can be a string.
If the window requires parameters, the window argument should be a tuple
with the first argument the string name of the window, and the next
arguments the needed parameters.
If window is a floating point number, it is interpreted as the beta
parameter of the kaiser window.
"""
sym = not fftbins
try:
beta = float(window)
except (TypeError, ValueError):
args = ()
if isinstance(window, types.TupleType):
winstr = window[0]
if len(window) > 1:
args = window[1:]
elif isinstance(window, types.StringType):
if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss',
'general gaussian', 'general_gaussian',
'general gauss', 'general_gauss', 'ggs']:
raise ValueError, "That window needs a parameter -- pass a tuple"
else:
winstr = window
if winstr in ['blackman', 'black', 'blk']:
winfunc = blackman
elif winstr in ['triangle', 'triang', 'tri']:
winfunc = triang
elif winstr in ['hamming', 'hamm', 'ham']:
winfunc = hamming
elif winstr in ['bartlett', 'bart', 'brt']:
winfunc = bartlett
elif winstr in ['hanning', 'hann', 'han']:
winfunc = hanning
elif winstr in ['blackmanharris', 'blackharr','bkh']:
winfunc = blackmanharris
elif winstr in ['parzen', 'parz', 'par']:
winfunc = parzen
elif winstr in ['bohman', 'bman', 'bmn']:
winfunc = bohman
elif winstr in ['nuttall', 'nutl', 'nut']:
winfunc = nuttall
elif winstr in ['barthann', 'brthan', 'bth']:
winfunc = barthann
elif winstr in ['flattop', 'flat', 'flt']:
winfunc = flattop
elif winstr in ['kaiser', 'ksr']:
winfunc = kaiser
elif winstr in ['gaussian', 'gauss', 'gss']:
winfunc = gaussian
elif winstr in ['general gaussian', 'general_gaussian',
'general gauss', 'general_gauss', 'ggs']:
winfunc = general_gaussian
elif winstr in ['boxcar', 'box', 'ones']:
winfunc = boxcar
elif winstr in ['slepian', 'slep', 'optimal', 'dss']:
winfunc = slepian
else:
raise ValueError, "Unknown window type."
params = (Nx,)+args + (sym,)
else:
winfunc = kaiser
params = (Nx,beta,sym)
return winfunc(*params)
def resample(x,num,t=None,axis=0,window=None):
"""Resample to num samples using Fourier method along the given axis.
The resampled signal starts at the same value of x but is sampled
with a spacing of len(x) / num * (spacing of x). Because a
Fourier method is used, the signal is assumed periodic.
Window controls a Fourier-domain window that tapers the Fourier
spectrum before zero-padding to aleviate ringing in the resampled
values for sampled signals you didn't intend to be interpreted as
band-limited.
If window is a string then use the named window. If window is a
float, then it represents a value of beta for a kaiser window. If
window is a tuple, then the first component is a string
representing the window, and the next arguments are parameters for
that window.
Possible windows are:
'blackman' ('black', 'blk')
'hamming' ('hamm', 'ham')
'bartlett' ('bart', 'brt')
'hanning' ('hann', 'han')
'kaiser' ('ksr') # requires parameter (beta)
'gaussian' ('gauss', 'gss') # requires parameter (std.)
'general gauss' ('general', 'ggs') # requires two parameters
(power, width)
The first sample of the returned vector is the same as the first
sample of the input vector, the spacing between samples is changed
from dx to
dx * len(x) / num
If t is not None, then it represents the old sample positions, and the new
sample positions will be returned as well as the new samples.
"""
x = asarray(x)
X = fft(x,axis=axis)
Nx = x.shape[axis]
if window is not None:
W = ifftshift(get_window(window,Nx))
newshape = ones(len(x.shape))
newshape[axis] = len(W)
W=W.reshape(newshape)
X = X*W
sl = [slice(None)]*len(x.shape)
newshape = list(x.shape)
newshape[axis] = num
N = int(np.minimum(num,Nx))
Y = zeros(newshape,'D')
sl[axis] = slice(0,(N+1)/2)
Y[sl] = X[sl]
sl[axis] = slice(-(N-1)/2,None)
Y[sl] = X[sl]
y = ifft(Y,axis=axis)*(float(num)/float(Nx))
if x.dtype.char not in ['F','D']:
y = y.real
if t is None:
return y
else:
new_t = arange(0,num)*(t[1]-t[0])* Nx / float(num) + t[0]
return y, new_t
def detrend(data, axis=-1, type='linear', bp=0):
"""Remove linear trend along axis from data.
If type is 'constant' then remove mean only.
If bp is given, then it is a sequence of points at which to
break a piecewise-linear fit to the data.
"""
if type not in ['linear','l','constant','c']:
raise ValueError, "Trend type must be linear or constant"
data = asarray(data)
dtype = data.dtype.char
if dtype not in 'dfDF':
dtype = 'd'
if type in ['constant','c']:
ret = data - expand_dims(mean(data,axis),axis)
return ret
else:
dshape = data.shape
N = dshape[axis]
bp = sort(unique(r_[0,bp,N]))
if any(bp > N):
raise ValueError, "Breakpoints must be less than length " \
"of data along given axis."
Nreg = len(bp) - 1
# Restructure data so that axis is along first dimension and
# all other dimensions are collapsed into second dimension
rnk = len(dshape)
if axis < 0: axis = axis + rnk
newdims = r_[axis,0:axis,axis+1:rnk]
newdata = reshape(transpose(data, tuple(newdims)),
(N, prod(dshape, axis=0)/N))
newdata = newdata.copy() # make sure we have a copy
if newdata.dtype.char not in 'dfDF':
newdata = newdata.astype(dtype)
# Find leastsq fit and remove it for each piece
for m in range(Nreg):
Npts = bp[m+1] - bp[m]
A = ones((Npts,2),dtype)
A[:,0] = cast[dtype](arange(1,Npts+1)*1.0/Npts)
sl = slice(bp[m],bp[m+1])
coef,resids,rank,s = linalg.lstsq(A,newdata[sl])
newdata[sl] = newdata[sl] - dot(A,coef)
# Put data back in original shape.
tdshape = take(dshape,newdims,0)
ret = reshape(newdata,tuple(tdshape))
vals = range(1,rnk)
olddims = vals[:axis] + [0] + vals[axis:]
ret = transpose(ret,tuple(olddims))
return ret
def lfilter_zi(b,a):
#compute the zi state from the filter parameters. see [Gust96].
#Based on:
# [Gust96] Fredrik Gustafsson, Determining the initial states in
# forward-backward filtering, IEEE Transactions on
# Signal Processing, pp. 988--992, April 1996,
# Volume 44, Issue 4
n=max(len(a),len(b))
zin = (np.eye(n-1) - np.hstack((-a[1:n,newaxis],
np.vstack((np.eye(n-2),zeros(n-2))))))
zid= b[1:n] - a[1:n]*b[0]
zi_matrix=linalg.inv(zin)*(np.matrix(zid).transpose())
zi_return=[]
#convert the result into a regular array (not a matrix)
for i in range(len(zi_matrix)):
zi_return.append(float(zi_matrix[i][0]))
return array(zi_return)
def filtfilt(b,a,x):
# FIXME: For now only accepting 1d arrays
ntaps=max(len(a),len(b))
edge=ntaps*3
if x.ndim != 1:
raise ValueError, "Filiflit is only accepting 1 dimension arrays."
#x must be bigger than edge
if x.size < edge:
raise ValueError, "Input vector needs to be bigger than " \
"3 * max(len(a),len(b)."
if len(a) < ntaps:
a=r_[a,zeros(len(b)-len(a))]
if len(b) < ntaps:
b=r_[b,zeros(len(a)-len(b))]
zi=lfilter_zi(b,a)
#Grow the signal to have edges for stabilizing
#the filter with inverted replicas of the signal
s=r_[2*x[0]-x[edge:1:-1],x,2*x[-1]-x[-1:-edge:-1]]
#in the case of one go we only need one of the extrems
# both are needed for filtfilt
(y,zf)=lfilter(b,a,s,-1,zi*s[0])
(y,zf)=lfilter(b,a,flipud(y),-1,zi*y[-1])
return flipud(y[edge-1:-edge+1])
|