File: test_signaltools.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (267 lines) | stat: -rw-r--r-- 11,065 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#this program corresponds to special.py
from decimal import Decimal

from numpy.testing import *

import scipy.signal as signal
from scipy.signal import lfilter


from numpy import array, arange
import numpy as np

# Use this to test for object arrays filtering - numpy 1.2
# assert_array_almost_equal does not handle object arrays
def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
    from numpy.core import around, number, float_
    from numpy.lib import issubdtype
    from numpy.testing.utils import assert_array_compare
    def compare(x, y):
        z = abs(x-y)
        if not issubdtype(z.dtype, number):
            z = z.astype(float_) # handle object arrays
        return around(z, decimal) <= 10.0**(-decimal)
    assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
                         header='Arrays are not almost equal')

class TestConvolve(TestCase):
    def test_basic(self):
        a = [3,4,5,6,5,4]
        b = [1,2,3]
        c = signal.convolve(a,b)
        assert_array_equal(c,array([3,10,22,28,32,32,23,12]))

class TestFFTConvolve(TestCase):
    def test_real(self):
        x = array([1,2,3])
        assert_array_almost_equal(signal.fftconvolve(x,x), [1,4,10,12,9.])

    def test_complex(self):
        x = array([1+1j,2+2j,3+3j])
        assert_array_almost_equal(signal.fftconvolve(x,x),
                                  [0+2.0j, 0+8j, 0+20j, 0+24j, 0+18j])

class TestMedFilt(TestCase):
    def test_basic(self):
        f = [[50, 50, 50, 50, 50, 92, 18, 27, 65, 46],
             [50, 50, 50, 50, 50,  0, 72, 77, 68, 66],
             [50, 50, 50, 50, 50, 46, 47, 19, 64, 77],
             [50, 50, 50, 50, 50, 42, 15, 29, 95, 35],
             [50, 50, 50, 50, 50, 46, 34,  9, 21, 66],
             [70, 97, 28, 68, 78, 77, 61, 58, 71, 42],
             [64, 53, 44, 29, 68, 32, 19, 68, 24, 84],
             [ 3, 33, 53, 67,  1, 78, 74, 55, 12, 83],
             [ 7, 11, 46, 70, 60, 47, 24, 43, 61, 26],
             [32, 61, 88,  7, 39,  4, 92, 64, 45, 61]]

        d = signal.medfilt(f, [7, 3])
        e = signal.medfilt2d(np.array(f, np.float), [7, 3])
        assert_array_equal(d, [[ 0, 50, 50, 50, 42, 15, 15, 18, 27,  0],
                               [ 0, 50, 50, 50, 50, 42, 19, 21, 29,  0],
                               [50, 50, 50, 50, 50, 47, 34, 34, 46, 35],
                               [50, 50, 50, 50, 50, 50, 42, 47, 64, 42],
                               [50, 50, 50, 50, 50, 50, 46, 55, 64, 35],
                               [33, 50, 50, 50, 50, 47, 46, 43, 55, 26],
                               [32, 50, 50, 50, 50, 47, 46, 45, 55, 26],
                               [ 7, 46, 50, 50, 47, 46, 46, 43, 45, 21],
                               [ 0, 32, 33, 39, 32, 32, 43, 43, 43,  0],
                               [ 0,  7, 11,  7,  4,  4, 19, 19, 24,  0]])
        assert_array_equal(d, e)

class TestWiener(TestCase):
    def test_basic(self):
        g = array([[5,6,4,3],[3,5,6,2],[2,3,5,6],[1,6,9,7]],'d')
        correct = array([[2.16374269,3.2222222222, 2.8888888889, 1.6666666667],[2.666666667, 4.33333333333, 4.44444444444, 2.8888888888],[2.222222222, 4.4444444444, 5.4444444444, 4.801066874837],[1.33333333333, 3.92735042735, 6.0712560386, 5.0404040404]])
        h = signal.wiener(g)
        assert_array_almost_equal(h,correct,decimal=6)

class TestCSpline1DEval(TestCase):
    def test_basic(self):
        y=array([1,2,3,4,3,2,1,2,3.0])
        x=arange(len(y))
        dx=x[1]-x[0]
        cj = signal.cspline1d(y)

        x2=arange(len(y)*10.0)/10.0
        y2=signal.cspline1d_eval(cj, x2, dx=dx,x0=x[0])

        # make sure interpolated values are on knot points
        assert_array_almost_equal(y2[::10], y, decimal=5)

class TestOrderFilt(TestCase):
    def test_basic(self):
        assert_array_equal(signal.order_filter([1,2,3],[1,0,1],1),
                           [2,3,2])

class TestChebWin:
    def test_cheb_odd(self):
        cheb_odd_true = array([0.200938, 0.107729, 0.134941, 0.165348,
                               0.198891, 0.235450, 0.274846, 0.316836,
                               0.361119, 0.407338, 0.455079, 0.503883,
                               0.553248, 0.602637, 0.651489, 0.699227,
                               0.745266, 0.789028, 0.829947, 0.867485,
                               0.901138, 0.930448, 0.955010, 0.974482,
                               0.988591, 0.997138, 1.000000, 0.997138,
                               0.988591, 0.974482, 0.955010, 0.930448,
                               0.901138, 0.867485, 0.829947, 0.789028,
                               0.745266, 0.699227, 0.651489, 0.602637,
                               0.553248, 0.503883, 0.455079, 0.407338,
                               0.361119, 0.316836, 0.274846, 0.235450,
                               0.198891, 0.165348, 0.134941, 0.107729,
                               0.200938])

        cheb_odd = signal.chebwin(53, at=-40)
        assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)

    def test_cheb_even(self):
        cheb_even_true = array([0.203894, 0.107279, 0.133904,
                                0.163608, 0.196338, 0.231986,
                                0.270385, 0.311313, 0.354493,
                                0.399594, 0.446233, 0.493983,
                                0.542378, 0.590916, 0.639071,
                                0.686302, 0.732055, 0.775783,
                                0.816944, 0.855021, 0.889525,
                                0.920006, 0.946060, 0.967339,
                                0.983557, 0.994494, 1.000000,
                                1.000000, 0.994494, 0.983557,
                                0.967339, 0.946060, 0.920006,
                                0.889525, 0.855021, 0.816944,
                                0.775783, 0.732055, 0.686302,
                                0.639071, 0.590916, 0.542378,
                                0.493983, 0.446233, 0.399594,
                                0.354493, 0.311313, 0.270385,
                                0.231986, 0.196338, 0.163608,
                                0.133904, 0.107279, 0.203894])

        cheb_even = signal.chebwin(54, at=-40)
        assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)

class _TestLinearFilter(TestCase):
    dt = None
    def test_rank1(self):
        x = np.linspace(0, 5, 6).astype(self.dt)
        b = np.array([1, -1]).astype(self.dt)
        a = np.array([0.5, -0.5]).astype(self.dt)

        # Test simple IIR
        y_r = np.array([0, 2, 4, 6, 8, 10.]).astype(self.dt)
        assert_array_almost_equal(lfilter(b, a, x), y_r)

        # Test simple FIR
        b = np.array([1, 1]).astype(self.dt)
        a = np.array([1]).astype(self.dt)
        y_r = np.array([0, 1, 3, 5, 7, 9.]).astype(self.dt)
        assert_array_almost_equal(lfilter(b, a, x), y_r)

        # Test IIR with initial conditions
        b = np.array([1, 1]).astype(self.dt)
        a = np.array([1]).astype(self.dt)
        zi = np.array([1]).astype(self.dt)
        y_r = np.array([1, 1, 3, 5, 7, 9.]).astype(self.dt)
        zf_r = np.array([5]).astype(self.dt)
        y, zf = lfilter(b, a, x, zi=zi)
        assert_array_almost_equal(y, y_r)
        assert_array_almost_equal(zf, zf_r)

        b = np.array([1, 1, 1]).astype(self.dt)
        a = np.array([1]).astype(self.dt)
        zi = np.array([1, 1]).astype(self.dt)
        y_r = np.array([1, 2, 3, 6, 9, 12.]).astype(self.dt)
        zf_r = np.array([9, 5]).astype(self.dt)
        y, zf = lfilter(b, a, x, zi=zi)
        assert_array_almost_equal(y, y_r)
        assert_array_almost_equal(zf, zf_r)

    def test_rank2(self):
        shape = (4, 3)
        x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
        x = x.astype(self.dt)

        b = np.array([1, -1]).astype(self.dt)
        a = np.array([0.5, 0.5]).astype(self.dt)

        y_r2_a0 = np.array([[0, 2, 4], [6, 4, 2], [0, 2, 4], [6 ,4 ,2]],
                           dtype=self.dt)

        y_r2_a1 = np.array([[0, 2, 0], [6, -4, 6], [12, -10, 12],
                            [18, -16, 18]], dtype=self.dt)

        y = lfilter(b, a, x, axis = 0)
        assert_array_almost_equal(y_r2_a0, y)

        y = lfilter(b, a, x, axis = 1)
        assert_array_almost_equal(y_r2_a1, y)

    def test_rank2_init_cond_a1(self):
        # Test initial condition handling along axis 1
        shape = (4, 3)
        x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
        x = x.astype(self.dt)

        b = np.array([1, -1]).astype(self.dt)
        a = np.array([0.5, 0.5]).astype(self.dt)

        y_r2_a0_1 = np.array([[1, 1, 1], [7, -5, 7], [13, -11, 13],
                              [19, -17, 19]], dtype=self.dt)
        zf_r = np.array([-5, -17, -29, -41])[:, np.newaxis].astype(self.dt)
        y, zf = lfilter(b, a, x, axis = 1, zi = np.ones((4, 1)))
        assert_array_almost_equal(y_r2_a0_1, y)
        assert_array_almost_equal(zf, zf_r)

    #@dec.skipif(True, "Skipping lfilter test with initial condition along "\
    #                  "axis 0: it segfaults ATM")
    def test_rank2_init_cond_a0(self):
        # Test initial condition handling along axis 0
        shape = (4, 3)
        x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
        x = x.astype(self.dt)

        b = np.array([1, -1]).astype(self.dt)
        a = np.array([0.5, 0.5]).astype(self.dt)

        y_r2_a0_0 = np.array([[1, 3, 5], [5, 3, 1], [1, 3, 5], [5 ,3 ,1]], 
                             dtype=self.dt)
        zf_r = np.array([[-23, -23, -23]], dtype=self.dt)
        y, zf = lfilter(b, a, x, axis = 0, zi = np.ones((1, 3)))
        assert_array_almost_equal(y_r2_a0_0, y)
        assert_array_almost_equal(zf, zf_r)

    #@dec.skipif(True, "Skipping rank > 2 test for lfilter because its segfaults ATM")
    def test_rank3(self):
        shape = (4, 3, 2)
        x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)

        b = np.array([1, -1]).astype(self.dt)
        a = np.array([0.5, 0.5]).astype(self.dt)

        # Test last axis
        y = lfilter(b, a, x)
        for i in range(x.shape[0]):
            for j in range(x.shape[1]):
                assert_array_almost_equal(y[i, j], lfilter(b, a, x[i, j]))

    def test_empty_zi(self):
        """Regression test for #880: empty array for zi crashes."""
        a = np.ones(1).astype(self.dt)
        b = np.ones(1).astype(self.dt)
        x = np.arange(5).astype(self.dt)
        zi = np.ones(0).astype(self.dt)
        lfilter(b, a, x, zi=zi)

class TestLinearFilterFloat32(_TestLinearFilter):
    dt = np.float32

class TestLinearFilterFloat64(_TestLinearFilter):
    dt = np.float64

class TestLinearFilterComplex64(_TestLinearFilter):
    dt = np.complex64

class TestLinearFilterComplex128(_TestLinearFilter):
    dt = np.complex128

class TestLinearFilterDecimal(_TestLinearFilter):
    dt = np.dtype(Decimal)

if __name__ == "__main__":
    run_module_suite()