1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
#this program corresponds to special.py
from decimal import Decimal
from numpy.testing import *
import scipy.signal as signal
from scipy.signal import lfilter
from numpy import array, arange
import numpy as np
# Use this to test for object arrays filtering - numpy 1.2
# assert_array_almost_equal does not handle object arrays
def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
from numpy.core import around, number, float_
from numpy.lib import issubdtype
from numpy.testing.utils import assert_array_compare
def compare(x, y):
z = abs(x-y)
if not issubdtype(z.dtype, number):
z = z.astype(float_) # handle object arrays
return around(z, decimal) <= 10.0**(-decimal)
assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
header='Arrays are not almost equal')
class TestConvolve(TestCase):
def test_basic(self):
a = [3,4,5,6,5,4]
b = [1,2,3]
c = signal.convolve(a,b)
assert_array_equal(c,array([3,10,22,28,32,32,23,12]))
class TestFFTConvolve(TestCase):
def test_real(self):
x = array([1,2,3])
assert_array_almost_equal(signal.fftconvolve(x,x), [1,4,10,12,9.])
def test_complex(self):
x = array([1+1j,2+2j,3+3j])
assert_array_almost_equal(signal.fftconvolve(x,x),
[0+2.0j, 0+8j, 0+20j, 0+24j, 0+18j])
class TestMedFilt(TestCase):
def test_basic(self):
f = [[50, 50, 50, 50, 50, 92, 18, 27, 65, 46],
[50, 50, 50, 50, 50, 0, 72, 77, 68, 66],
[50, 50, 50, 50, 50, 46, 47, 19, 64, 77],
[50, 50, 50, 50, 50, 42, 15, 29, 95, 35],
[50, 50, 50, 50, 50, 46, 34, 9, 21, 66],
[70, 97, 28, 68, 78, 77, 61, 58, 71, 42],
[64, 53, 44, 29, 68, 32, 19, 68, 24, 84],
[ 3, 33, 53, 67, 1, 78, 74, 55, 12, 83],
[ 7, 11, 46, 70, 60, 47, 24, 43, 61, 26],
[32, 61, 88, 7, 39, 4, 92, 64, 45, 61]]
d = signal.medfilt(f, [7, 3])
e = signal.medfilt2d(np.array(f, np.float), [7, 3])
assert_array_equal(d, [[ 0, 50, 50, 50, 42, 15, 15, 18, 27, 0],
[ 0, 50, 50, 50, 50, 42, 19, 21, 29, 0],
[50, 50, 50, 50, 50, 47, 34, 34, 46, 35],
[50, 50, 50, 50, 50, 50, 42, 47, 64, 42],
[50, 50, 50, 50, 50, 50, 46, 55, 64, 35],
[33, 50, 50, 50, 50, 47, 46, 43, 55, 26],
[32, 50, 50, 50, 50, 47, 46, 45, 55, 26],
[ 7, 46, 50, 50, 47, 46, 46, 43, 45, 21],
[ 0, 32, 33, 39, 32, 32, 43, 43, 43, 0],
[ 0, 7, 11, 7, 4, 4, 19, 19, 24, 0]])
assert_array_equal(d, e)
class TestWiener(TestCase):
def test_basic(self):
g = array([[5,6,4,3],[3,5,6,2],[2,3,5,6],[1,6,9,7]],'d')
correct = array([[2.16374269,3.2222222222, 2.8888888889, 1.6666666667],[2.666666667, 4.33333333333, 4.44444444444, 2.8888888888],[2.222222222, 4.4444444444, 5.4444444444, 4.801066874837],[1.33333333333, 3.92735042735, 6.0712560386, 5.0404040404]])
h = signal.wiener(g)
assert_array_almost_equal(h,correct,decimal=6)
class TestCSpline1DEval(TestCase):
def test_basic(self):
y=array([1,2,3,4,3,2,1,2,3.0])
x=arange(len(y))
dx=x[1]-x[0]
cj = signal.cspline1d(y)
x2=arange(len(y)*10.0)/10.0
y2=signal.cspline1d_eval(cj, x2, dx=dx,x0=x[0])
# make sure interpolated values are on knot points
assert_array_almost_equal(y2[::10], y, decimal=5)
class TestOrderFilt(TestCase):
def test_basic(self):
assert_array_equal(signal.order_filter([1,2,3],[1,0,1],1),
[2,3,2])
class TestChebWin:
def test_cheb_odd(self):
cheb_odd_true = array([0.200938, 0.107729, 0.134941, 0.165348,
0.198891, 0.235450, 0.274846, 0.316836,
0.361119, 0.407338, 0.455079, 0.503883,
0.553248, 0.602637, 0.651489, 0.699227,
0.745266, 0.789028, 0.829947, 0.867485,
0.901138, 0.930448, 0.955010, 0.974482,
0.988591, 0.997138, 1.000000, 0.997138,
0.988591, 0.974482, 0.955010, 0.930448,
0.901138, 0.867485, 0.829947, 0.789028,
0.745266, 0.699227, 0.651489, 0.602637,
0.553248, 0.503883, 0.455079, 0.407338,
0.361119, 0.316836, 0.274846, 0.235450,
0.198891, 0.165348, 0.134941, 0.107729,
0.200938])
cheb_odd = signal.chebwin(53, at=-40)
assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)
def test_cheb_even(self):
cheb_even_true = array([0.203894, 0.107279, 0.133904,
0.163608, 0.196338, 0.231986,
0.270385, 0.311313, 0.354493,
0.399594, 0.446233, 0.493983,
0.542378, 0.590916, 0.639071,
0.686302, 0.732055, 0.775783,
0.816944, 0.855021, 0.889525,
0.920006, 0.946060, 0.967339,
0.983557, 0.994494, 1.000000,
1.000000, 0.994494, 0.983557,
0.967339, 0.946060, 0.920006,
0.889525, 0.855021, 0.816944,
0.775783, 0.732055, 0.686302,
0.639071, 0.590916, 0.542378,
0.493983, 0.446233, 0.399594,
0.354493, 0.311313, 0.270385,
0.231986, 0.196338, 0.163608,
0.133904, 0.107279, 0.203894])
cheb_even = signal.chebwin(54, at=-40)
assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
class _TestLinearFilter(TestCase):
dt = None
def test_rank1(self):
x = np.linspace(0, 5, 6).astype(self.dt)
b = np.array([1, -1]).astype(self.dt)
a = np.array([0.5, -0.5]).astype(self.dt)
# Test simple IIR
y_r = np.array([0, 2, 4, 6, 8, 10.]).astype(self.dt)
assert_array_almost_equal(lfilter(b, a, x), y_r)
# Test simple FIR
b = np.array([1, 1]).astype(self.dt)
a = np.array([1]).astype(self.dt)
y_r = np.array([0, 1, 3, 5, 7, 9.]).astype(self.dt)
assert_array_almost_equal(lfilter(b, a, x), y_r)
# Test IIR with initial conditions
b = np.array([1, 1]).astype(self.dt)
a = np.array([1]).astype(self.dt)
zi = np.array([1]).astype(self.dt)
y_r = np.array([1, 1, 3, 5, 7, 9.]).astype(self.dt)
zf_r = np.array([5]).astype(self.dt)
y, zf = lfilter(b, a, x, zi=zi)
assert_array_almost_equal(y, y_r)
assert_array_almost_equal(zf, zf_r)
b = np.array([1, 1, 1]).astype(self.dt)
a = np.array([1]).astype(self.dt)
zi = np.array([1, 1]).astype(self.dt)
y_r = np.array([1, 2, 3, 6, 9, 12.]).astype(self.dt)
zf_r = np.array([9, 5]).astype(self.dt)
y, zf = lfilter(b, a, x, zi=zi)
assert_array_almost_equal(y, y_r)
assert_array_almost_equal(zf, zf_r)
def test_rank2(self):
shape = (4, 3)
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
x = x.astype(self.dt)
b = np.array([1, -1]).astype(self.dt)
a = np.array([0.5, 0.5]).astype(self.dt)
y_r2_a0 = np.array([[0, 2, 4], [6, 4, 2], [0, 2, 4], [6 ,4 ,2]],
dtype=self.dt)
y_r2_a1 = np.array([[0, 2, 0], [6, -4, 6], [12, -10, 12],
[18, -16, 18]], dtype=self.dt)
y = lfilter(b, a, x, axis = 0)
assert_array_almost_equal(y_r2_a0, y)
y = lfilter(b, a, x, axis = 1)
assert_array_almost_equal(y_r2_a1, y)
def test_rank2_init_cond_a1(self):
# Test initial condition handling along axis 1
shape = (4, 3)
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
x = x.astype(self.dt)
b = np.array([1, -1]).astype(self.dt)
a = np.array([0.5, 0.5]).astype(self.dt)
y_r2_a0_1 = np.array([[1, 1, 1], [7, -5, 7], [13, -11, 13],
[19, -17, 19]], dtype=self.dt)
zf_r = np.array([-5, -17, -29, -41])[:, np.newaxis].astype(self.dt)
y, zf = lfilter(b, a, x, axis = 1, zi = np.ones((4, 1)))
assert_array_almost_equal(y_r2_a0_1, y)
assert_array_almost_equal(zf, zf_r)
#@dec.skipif(True, "Skipping lfilter test with initial condition along "\
# "axis 0: it segfaults ATM")
def test_rank2_init_cond_a0(self):
# Test initial condition handling along axis 0
shape = (4, 3)
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
x = x.astype(self.dt)
b = np.array([1, -1]).astype(self.dt)
a = np.array([0.5, 0.5]).astype(self.dt)
y_r2_a0_0 = np.array([[1, 3, 5], [5, 3, 1], [1, 3, 5], [5 ,3 ,1]],
dtype=self.dt)
zf_r = np.array([[-23, -23, -23]], dtype=self.dt)
y, zf = lfilter(b, a, x, axis = 0, zi = np.ones((1, 3)))
assert_array_almost_equal(y_r2_a0_0, y)
assert_array_almost_equal(zf, zf_r)
#@dec.skipif(True, "Skipping rank > 2 test for lfilter because its segfaults ATM")
def test_rank3(self):
shape = (4, 3, 2)
x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
b = np.array([1, -1]).astype(self.dt)
a = np.array([0.5, 0.5]).astype(self.dt)
# Test last axis
y = lfilter(b, a, x)
for i in range(x.shape[0]):
for j in range(x.shape[1]):
assert_array_almost_equal(y[i, j], lfilter(b, a, x[i, j]))
def test_empty_zi(self):
"""Regression test for #880: empty array for zi crashes."""
a = np.ones(1).astype(self.dt)
b = np.ones(1).astype(self.dt)
x = np.arange(5).astype(self.dt)
zi = np.ones(0).astype(self.dt)
lfilter(b, a, x, zi=zi)
class TestLinearFilterFloat32(_TestLinearFilter):
dt = np.float32
class TestLinearFilterFloat64(_TestLinearFilter):
dt = np.float64
class TestLinearFilterComplex64(_TestLinearFilter):
dt = np.complex64
class TestLinearFilterComplex128(_TestLinearFilter):
dt = np.complex128
class TestLinearFilterDecimal(_TestLinearFilter):
dt = np.dtype(Decimal)
if __name__ == "__main__":
run_module_suite()
|