1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
SUBROUTINE cdfchn(which,p,q,x,df,pnonc,status,bound)
C**********************************************************************
C
C SUBROUTINE CDFCHN( WHICH, P, Q, X, DF, PNONC, STATUS, BOUND )
C Cumulative Distribution Function
C Non-central Chi-Square
C
C
C Function
C
C
C Calculates any one parameter of the non-central chi-square
C distribution given values for the others.
C
C
C Arguments
C
C
C WHICH --> Integer indicating which of the next three argument
C values is to be calculated from the others.
C Input range: 1..4
C iwhich = 1 : Calculate P and Q from X and DF
C iwhich = 2 : Calculate X from P,DF and PNONC
C iwhich = 3 : Calculate DF from P,X and PNONC
C iwhich = 3 : Calculate PNONC from P,X and DF
C INTEGER WHICH
C
C P <--> The integral from 0 to X of the non-central chi-square
C distribution.
C Input range: [0, 1-1E-16).
C DOUBLE PRECISION P
C
C Q <--> 1-P.
C Q is not used by this subroutine and is only included
C for similarity with other cdf* routines.
C DOUBLE PRECISION Q
C
C X <--> Upper limit of integration of the non-central
C chi-square distribution.
C Input range: [0, +infinity).
C Search range: [0,1E100]
C DOUBLE PRECISION X
C
C DF <--> Degrees of freedom of the non-central
C chi-square distribution.
C Input range: (0, +infinity).
C Search range: [ 1E-100, 1E100]
C DOUBLE PRECISION DF
C
C PNONC <--> Non-centrality parameter of the non-central
C chi-square distribution.
C Input range: [0, +infinity).
C Search range: [0,1E4]
C DOUBLE PRECISION PNONC
C
C STATUS <-- 0 if calculation completed correctly
C -I if input parameter number I is out of range
C 1 if answer appears to be lower than lowest
C search bound
C 2 if answer appears to be higher than greatest
C search bound
C INTEGER STATUS
C
C BOUND <-- Undefined if STATUS is 0
C
C Bound exceeded by parameter number I if STATUS
C is negative.
C
C Lower search bound if STATUS is 1.
C
C Upper search bound if STATUS is 2.
C
C
C Method
C
C
C Formula 26.4.25 of Abramowitz and Stegun, Handbook of
C Mathematical Functions (1966) is used to compute the cumulative
C distribution function.
C
C Computation of other parameters involve a seach for a value that
C produces the desired value of P. The search relies on the
C monotinicity of P with the other parameter.
C
C
C WARNING
C
C The computation time required for this routine is proportional
C to the noncentrality parameter (PNONC). Very large values of
C this parameter can consume immense computer resources. This is
C why the search range is bounded by 10,000.
C
C**********************************************************************
C .. Parameters ..
DOUBLE PRECISION tent4
PARAMETER (tent4=1.0D4)
DOUBLE PRECISION tol
PARAMETER (tol=1.0D-8)
DOUBLE PRECISION atol
PARAMETER (atol=1.0D-50)
DOUBLE PRECISION zero,one,inf
PARAMETER (zero=1.0D-100,one=1.0D0-1.0D-16,inf=1.0D100)
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION bound,df,p,pnonc,q,x
INTEGER status,which
C ..
C .. Local Scalars ..
DOUBLE PRECISION ccum,cum,fx
LOGICAL qhi,qleft
C ..
C .. External Subroutines ..
EXTERNAL cumchn,dinvr,dstinv
C ..
IF (.NOT. ((which.LT.1).OR. (which.GT.4))) GO TO 30
IF (.NOT. (which.LT.1)) GO TO 10
bound = 1.0D0
GO TO 20
10 bound = 4.0D0
20 status = -1
RETURN
30 IF (which.EQ.1) GO TO 70
IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.one))) GO TO 60
IF (.NOT. (p.LT.0.0D0)) GO TO 40
bound = 0.0D0
GO TO 50
40 bound = one
50 status = -2
RETURN
60 CONTINUE
70 IF (which.EQ.2) GO TO 90
IF (.NOT. (x.LT.0.0D0)) GO TO 80
bound = 0.0D0
status = -4
RETURN
80 CONTINUE
90 IF (which.EQ.3) GO TO 110
IF (.NOT. (df.LE.0.0D0)) GO TO 100
bound = 0.0D0
status = -5
RETURN
100 CONTINUE
110 IF (which.EQ.4) GO TO 130
IF (.NOT. (pnonc.LT.0.0D0)) GO TO 120
bound = 0.0D0
status = -6
RETURN
120 CONTINUE
130 IF ((1).EQ. (which)) THEN
CALL cumchn(x,df,pnonc,p,q)
status = 0
ELSE IF ((2).EQ. (which)) THEN
x = 5.0D0
CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,x,fx,qleft,qhi)
140 IF (.NOT. (status.EQ.1)) GO TO 150
CALL cumchn(x,df,pnonc,cum,ccum)
fx = cum - p
CALL dinvr(status,x,fx,qleft,qhi)
GO TO 140
150 IF (.NOT. (status.EQ.-1)) GO TO 180
IF (.NOT. (qleft)) GO TO 160
status = 1
bound = 0.0D0
GO TO 170
160 status = 2
bound = inf
170 CONTINUE
180 CONTINUE
ELSE IF ((3).EQ. (which)) THEN
df = 5.0D0
CALL dstinv(zero,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,df,fx,qleft,qhi)
190 IF (.NOT. (status.EQ.1)) GO TO 200
CALL cumchn(x,df,pnonc,cum,ccum)
fx = cum - p
CALL dinvr(status,df,fx,qleft,qhi)
GO TO 190
200 IF (.NOT. (status.EQ.-1)) GO TO 230
IF (.NOT. (qleft)) GO TO 210
status = 1
bound = zero
GO TO 220
210 status = 2
bound = inf
220 CONTINUE
230 CONTINUE
ELSE IF ((4).EQ. (which)) THEN
pnonc = 5.0D0
CALL dstinv(0.0D0,tent4,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,pnonc,fx,qleft,qhi)
240 IF (.NOT. (status.EQ.1)) GO TO 250
CALL cumchn(x,df,pnonc,cum,ccum)
fx = cum - p
CALL dinvr(status,pnonc,fx,qleft,qhi)
GO TO 240
250 IF (.NOT. (status.EQ.-1)) GO TO 280
IF (.NOT. (qleft)) GO TO 260
status = 1
bound = zero
GO TO 270
260 status = 2
bound = tent4
270 CONTINUE
280 END IF
RETURN
END
|