File: mstats_basic.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1%2Bdeb6u1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze-lts
  • size: 28,572 kB
  • ctags: 36,183
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,833; ansic: 62,118; makefile: 243; sh: 17
file content (1919 lines) | stat: -rw-r--r-- 65,381 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
"""
An extension of scipy.stats.stats to support masked arrays

:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
"""
#TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ?
#TODO : ttest_reel looks botched:  what are x1,x2,v1,v2 for ?
#TODO : reimplement ksonesamp

__author__ = "Pierre GF Gerard-Marchant"
__docformat__ = "restructuredtext en"

__all__ = ['argstoarray',
           'betai',
           'cov',  # from np.ma
           'chisquare','count_tied_groups',
           'describe',
           'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare',
           'gmean',
           'hmean',
           'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis',
           'ks_twosamp','ks_2samp','kurtosis','kurtosistest',
           'linregress',
           'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign',
           'normaltest',
           'obrientransform',
           'pearsonr','plotting_positions','pointbiserialr',
           'rankdata',
           'samplestd','samplevar','scoreatpercentile','sem','std',
           'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr',
           'stderr',
           'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth',
           'trimtail','trima','trimr','trimmed_mean','trimmed_std',
           'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp',
           'ttest_ind','ttest_rel','tvar',
           'var','variation',
           'winsorize',
           'z','zmap','zs'
           ]

import numpy as np
from numpy import ndarray
import numpy.ma as ma
from numpy.ma import MaskedArray, masked, nomask

import itertools
import warnings


#import scipy.stats as stats
import stats
import scipy.special as special
import scipy.misc as misc
#import scipy.stats.futil as futil
import futil

genmissingvaldoc = """
Notes
-----
    Missing values are considered pair-wise: if a value is missing in x,
    the corresponding value in y is masked.
"""
#------------------------------------------------------------------------------
def _chk_asarray(a, axis):
    if axis is None:
        a = ma.ravel(a)
        outaxis = 0
    else:
        a = ma.asanyarray(a)
        outaxis = axis
    return a, outaxis

def _chk2_asarray(a, b, axis):
    if axis is None:
        a = ma.ravel(a)
        b = ma.ravel(b)
        outaxis = 0
    else:
        a = ma.asanyarray(a)
        b = ma.asanyarray(b)
        outaxis = axis
    return a, b, outaxis

def _chk_size(a,b):
    a = ma.asanyarray(a)
    b = ma.asanyarray(b)
    (na, nb) = (a.size, b.size)
    if na != nb:
        raise ValueError("The size of the input array should match!"\
                         " (%s <> %s)" % (na,nb))
    return (a,b,na)

def argstoarray(*args):
    """Constructs a 2D array from a sequence of sequences. Sequences are filled
    with missing values to match the length of the longest sequence.

    Returns
    -------
        output : MaskedArray
            a (mxn) masked array, where m is the number of arguments and n the
            length of the longest argument.
    """
    if len(args) == 1 and not isinstance(args[0], ndarray):
        output = ma.asarray(args[0])
        if output.ndim != 2:
            raise ValueError("The input should be 2D")
    else:
        n = len(args)
        m = max([len(k) for k in args])
        output = ma.array(np.empty((n,m), dtype=float), mask=True)
        for (k,v) in enumerate(args):
            output[k,:len(v)] = v
    output[np.logical_not(np.isfinite(output._data))] = masked
    return output



#####--------------------------------------------------------------------------
#---- --- Ranking ---
#####--------------------------------------------------------------------------

def find_repeats(arr):
    """Find repeats in arr and return a tuple (repeats, repeat_count).
    Masked values are discarded.

Parameters
----------
    arr : sequence
        Input array. The array is flattened if it is not 1D.

Returns
-------
    repeats : ndarray
        Array of repeated values.
    counts : ndarray
        Array of counts.

    """
    marr = ma.compressed(arr)
    if not marr.size:
        return (np.array(0), np.array(0))
    (v1, v2, n) = futil.dfreps(ma.array(ma.compressed(arr), copy=True))
    return (v1[:n], v2[:n])


def count_tied_groups(x, use_missing=False):
    """Counts the number of tied values in x, and returns a dictionary
    (nb of ties: nb of groups).

Parameters
----------
    x : sequence
        Sequence of data on which to counts the ties
    use_missing : boolean
        Whether to consider missing values as tied.

Example
-------
    >>>z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
    >>>count_tied_groups(z)
    >>>{2:1, 3:2}
    >>># The ties were 0 (3x), 2 (3x) and 3 (2x)
    >>>z = ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
    >>>count_tied_groups(z)
    >>>{2:2, 3:1}
    >>># The ties were 0 (2x), 2 (3x) and 3 (2x)
    >>>z[[1,-1]] = masked
    >>>count_tied_groups(z)
    >>>{2:2, 3:1}
    >>># The ties were 2 (3x), 3 (2x) and masked (2x)
    """
    nmasked = ma.getmask(x).sum()
    # We need the copy as find_repeats will overwrite the initial data
    data = ma.compressed(x).copy()
    (ties, counts) = find_repeats(data)
    nties = {}
    if len(ties):
        nties = dict(zip(np.unique(counts), itertools.repeat(1)))
        nties.update(dict(zip(*find_repeats(counts))))
    if nmasked and use_missing:
        try:
            nties[nmasked] += 1
        except KeyError:
            nties[nmasked] = 1
    return nties


def rankdata(data, axis=None, use_missing=False):
    """Returns the rank (also known as order statistics) of each data point
    along the given axis.

    If some values are tied, their rank is averaged.
    If some values are masked, their rank is set to 0 if use_missing is False,
    or set to the average rank of the unmasked values if use_missing is True.

    Parameters
    ----------
        data : sequence
            Input data. The data is transformed to a masked array
        axis : {None,int} optional
            Axis along which to perform the ranking.
            If None, the array is first flattened. An exception is raised if
            the axis is specified for arrays with a dimension larger than 2
        use_missing : {boolean} optional
            Whether the masked values have a rank of 0 (False) or equal to the
            average rank of the unmasked values (True).
    """
    #
    def _rank1d(data, use_missing=False):
        n = data.count()
        rk = np.empty(data.size, dtype=float)
        idx = data.argsort()
        rk[idx[:n]] = np.arange(1,n+1)
        #
        if use_missing:
            rk[idx[n:]] = (n+1)/2.
        else:
            rk[idx[n:]] = 0
        #
        repeats = find_repeats(data.copy())
        for r in repeats[0]:
            condition = (data==r).filled(False)
            rk[condition] = rk[condition].mean()
        return rk
    #
    data = ma.array(data, copy=False)
    if axis is None:
        if data.ndim > 1:
            return _rank1d(data.ravel(), use_missing).reshape(data.shape)
        else:
            return _rank1d(data, use_missing)
    else:
        return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray)


#####--------------------------------------------------------------------------
#---- --- Central tendency ---
#####--------------------------------------------------------------------------

def gmean(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    log_a = ma.log(a)
    return ma.exp(log_a.mean(axis=axis))
gmean.__doc__ = stats.gmean.__doc__


def hmean(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    if isinstance(a, MaskedArray):
        size = a.count(axis)
    else:
        size = a.shape[axis]
    return size / (1.0/a).sum(axis)
hmean.__doc__ = stats.hmean.__doc__


def mode(a, axis=0):
    def _mode1D(a):
        (rep,cnt) = find_repeats(a)
        if not cnt.ndim:
            return (0, 0)
        elif cnt.size:
            return (rep[cnt.argmax()], cnt.max())
        return (a[0], 1)
    #
    if axis is None:
        output = _mode1D(ma.ravel(a))
        output = (ma.array(output[0]), ma.array(output[1]))
    else:
        output = ma.apply_along_axis(_mode1D, axis, a)
        newshape = list(a.shape)
        newshape[axis] = 1
        slices = [slice(None)] * output.ndim
        slices[axis] = 0
        modes = output[tuple(slices)].reshape(newshape)
        slices[axis] = 1
        counts = output[tuple(slices)].reshape(newshape)
        output = (modes, counts)
    return output
mode.__doc__ = stats.mode.__doc__


#####--------------------------------------------------------------------------
#---- --- Probabilities ---
#####--------------------------------------------------------------------------

def betai(a, b, x):
    x = np.asanyarray(x)
    x = ma.where(x < 1.0, x, 1.0)  # if x > 1 then return 1.0
    return special.betainc(a, b, x)
betai.__doc__ = stats.betai.__doc__


#####--------------------------------------------------------------------------
#---- --- Correlation ---
#####--------------------------------------------------------------------------

def msign(x):
    """Returns the sign of x, or 0 if x is masked."""
    return ma.filled(np.sign(x), 0)

cov = ma.cov

corrcoef = ma.corrcoef


def pearsonr(x,y):
    """Calculates a Pearson correlation coefficient and the p-value for testing
    non-correlation.

    The Pearson correlation coefficient measures the linear relationship
    between two datasets. Strictly speaking, Pearson's correlation requires
    that each dataset be normally distributed. Like other correlation
    coefficients, this one varies between -1 and +1 with 0 implying no
    correlation. Correlations of -1 or +1 imply an exact linear
    relationship. Positive correlations imply that as x increases, so does
    y. Negative correlations imply that as x increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Pearson correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    x : 1D array
    y : 1D array the same length as x

    Returns
    -------
    (Pearson's correlation coefficient,
     2-tailed p-value)

    References
    ----------
    http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
    """
    (x, y, n) = _chk_size(x, y)
    (x, y) = (x.ravel(), y.ravel())
    # Get the common mask and the total nb of unmasked elements
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    n -= m.sum()
    df = n-2
    if df < 0:
        return (masked, masked)
    #
    (mx, my) = (x.mean(), y.mean())
    (xm, ym) = (x-mx, y-my)
    #
    r_num = n*(ma.add.reduce(xm*ym))
    r_den = n*ma.sqrt(ma.dot(xm,xm)*ma.dot(ym,ym))
    r = (r_num / r_den)
    # Presumably, if r > 1, then it is only some small artifact of floating
    # point arithmetic.
    r = min(r, 1.0)
    r = max(r, -1.0)
    df = n-2
    #
    t = ma.sqrt(df/((1.0-r)*(1.0+r))) * r
    if t is masked:
        prob = 0.
    else:
        prob = betai(0.5*df,0.5,df/(df+t*t))
    return (r,prob)


def spearmanr(x, y, use_ties=True):
    """Calculates a Spearman rank-order correlation coefficient and the p-value
    to test for non-correlation.

    The Spearman correlation is a nonparametric measure of the linear
    relationship between two datasets. Unlike the Pearson correlation, the
    Spearman correlation does not assume that both datasets are normally
    distributed. Like other correlation coefficients, this one varies
    between -1 and +1 with 0 implying no correlation. Correlations of -1 or
    +1 imply an exact linear relationship. Positive correlations imply that
    as x increases, so does y. Negative correlations imply that as x
    increases, y decreases.

    Missing values are discarded pair-wise: if a value is missing in x, the
    corresponding value in y is masked.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Spearman correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

Parameters
----------
    x : 1D array
    y : 1D array the same length as x
        The lengths of both arrays must be > 2.
    use_ties : {True, False} optional
        Whether the correction for ties should be computed.

Returns
-------
    (Spearman correlation coefficient,
     2-tailed p-value)

    References
    ----------
    [CRCProbStat2000] section 14.7
    """
    (x, y, n) = _chk_size(x, y)
    (x, y) = (x.ravel(), y.ravel())
    #
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    n -= m.sum()
    if m is not nomask:
        x = ma.array(x, mask=m, copy=True)
        y = ma.array(y, mask=m, copy=True)
    df = n-2
    if df < 0:
        raise ValueError("The input must have at least 3 entries!")
    # Gets the ranks and rank differences
    rankx = rankdata(x)
    ranky = rankdata(y)
    dsq = np.add.reduce((rankx-ranky)**2)
    # Tie correction
    if use_ties:
        xties = count_tied_groups(x)
        yties = count_tied_groups(y)
        corr_x = np.sum(v*k*(k**2-1) for (k,v) in xties.iteritems())/12.
        corr_y = np.sum(v*k*(k**2-1) for (k,v) in yties.iteritems())/12.
    else:
        corr_x = corr_y = 0
    denom = n*(n**2 - 1)/6.
    if corr_x != 0 or corr_y != 0:
        rho = denom - dsq - corr_x - corr_y
        rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y))
    else:
        rho = 1. - dsq/denom
    #
    t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho
    if t is masked:
        prob = 0.
    else:
        prob = betai(0.5*df,0.5,df/(df+t*t))
    return rho, prob


def kendalltau(x, y, use_ties=True, use_missing=False):
    """Computes Kendall's rank correlation tau on two variables *x* and *y*.

    Parameters
    ----------
    xdata: sequence
        First data list (for example, time).
    ydata: sequence
        Second data list.
    use_ties: {True, False} optional
        Whether ties correction should be performed.
    use_missing: {False, True} optional
        Whether missing data should be allocated a rank of 0 (False) or the
        average rank (True)

    Returns
    -------
        tau : float
            Kendall tau
        prob : float
            Approximate 2-side p-value.
    """
    (x, y, n) = _chk_size(x, y)
    (x, y) = (x.flatten(), y.flatten())
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        x = ma.array(x, mask=m, copy=True)
        y = ma.array(y, mask=m, copy=True)
        n -= m.sum()
    #
    if n < 2:
        return (np.nan, np.nan)
    #
    rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0)
    ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0)
    idx = rx.argsort()
    (rx, ry) = (rx[idx], ry[idx])
    C = np.sum([((ry[i+1:]>ry[i]) * (rx[i+1:]>rx[i])).filled(0).sum()
                for i in range(len(ry)-1)], dtype=float)
    D = np.sum([((ry[i+1:]<ry[i])*(rx[i+1:]>rx[i])).filled(0).sum()
                for i in range(len(ry)-1)], dtype=float)
    if use_ties:
        xties = count_tied_groups(x)
        yties = count_tied_groups(y)
        corr_x = np.sum([v*k*(k-1) for (k,v) in xties.iteritems()], dtype=float)
        corr_y = np.sum([v*k*(k-1) for (k,v) in yties.iteritems()], dtype=float)
        denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.)
    else:
        denom = n*(n-1)/2.
    tau = (C-D) / denom
    #
    var_s = n*(n-1)*(2*n+5)
    if use_ties:
        var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in xties.iteritems())
        var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in yties.iteritems())
        v1 = np.sum([v*k*(k-1) for (k, v) in xties.iteritems()], dtype=float) *\
             np.sum([v*k*(k-1) for (k, v) in yties.iteritems()], dtype=float)
        v1 /= 2.*n*(n-1)
        if n > 2:
            v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in xties.iteritems()],
                        dtype=float) * \
                 np.sum([v*k*(k-1)*(k-2) for (k,v) in yties.iteritems()],
                        dtype=float)
            v2 /= 9.*n*(n-1)*(n-2)
        else:
            v2 = 0
    else:
        v1 = v2 = 0
    var_s /= 18.
    var_s += (v1 + v2)
    z = (C-D)/np.sqrt(var_s)
    prob = special.erfc(abs(z)/np.sqrt(2))
    return (tau, prob)


def kendalltau_seasonal(x):
    """Computes a multivariate extension Kendall's rank correlation tau, designed
    for seasonal data.

Parameters
----------
    x: 2D array
        Array of seasonal data, with seasons in columns.
    """
    x = ma.array(x, subok=True, copy=False, ndmin=2)
    (n,m) = x.shape
    n_p = x.count(0)
    #
    S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n))
    S_tot = S_szn.sum()
    #
    n_tot = x.count()
    ties = count_tied_groups(x.compressed())
    corr_ties =  np.sum(v*k*(k-1) for (k,v) in ties.iteritems())
    denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2.
    #
    R = rankdata(x, axis=0, use_missing=True)
    K = ma.empty((m,m), dtype=int)
    covmat = ma.empty((m,m), dtype=float)
#    cov_jj = ma.empty(m, dtype=float)
    denom_szn = ma.empty(m, dtype=float)
    for j in range(m):
        ties_j = count_tied_groups(x[:,j].compressed())
        corr_j = np.sum(v*k*(k-1) for (k,v) in ties_j.iteritems())
        cmb = n_p[j]*(n_p[j]-1)
        for k in range(j,m,1):
            K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum()
                               for i in range(n))
            covmat[j,k] = (K[j,k] +4*(R[:,j]*R[:,k]).sum() - \
                           n*(n_p[j]+1)*(n_p[k]+1))/3.
            K[k,j] = K[j,k]
            covmat[k,j] = covmat[j,k]
#        cov_jj[j] = (nn_p*(2*n_p[j]+5))
#        cov_jj[j] -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in ties_j.iteritems())
#        cov_jj[j] /= 18.
        denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2.
    var_szn = covmat.diagonal()
    #
    z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn)
    z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum())
    z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum())
    #
    prob_szn = special.erfc(abs(z_szn)/np.sqrt(2))
    prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2))
    prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2))
    #
    chi2_tot = (z_szn*z_szn).sum()
    chi2_trd = m * z_szn.mean()**2
    output = {'seasonal tau': S_szn/denom_szn,
              'global tau': S_tot/denom_tot,
              'global tau (alt)': S_tot/denom_szn.sum(),
              'seasonal p-value': prob_szn,
              'global p-value (indep)': prob_tot_ind,
              'global p-value (dep)': prob_tot_dep,
              'chi2 total': chi2_tot,
              'chi2 trend': chi2_trd,
              }
    return output


def pointbiserialr(x, y):
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data ..........
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]
    #
    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()
    #
    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
    #
    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = betai(0.5*df, 0.5, df/(df+t*t))
    return rpb, prob

if stats.pointbiserialr.__doc__:
    pointbiserialr.__doc__ = stats.pointbiserialr.__doc__ + genmissingvaldoc


def linregress(*args):
    if len(args) == 1:  # more than 1D array?
        args = ma.array(args[0], copy=True)
        if len(args) == 2:
            x = args[0]
            y = args[1]
        else:
            x = args[:,0]
            y = args[:,1]
    else:
        x = ma.array(args[0]).flatten()
        y = ma.array(args[1]).flatten()
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        x = ma.array(x,mask=m)
        y = ma.array(y,mask=m)
    n = len(x)
    (xmean, ymean) = (x.mean(), y.mean())
    (xm, ym) = (x-xmean, y-ymean)
    (Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
    Sxy = ma.add.reduce(xm*ym)
    r_den = ma.sqrt(Sxx*Syy)
    if r_den == 0.0:
        r = 0.0
    else:
        r = Sxy / r_den
        if (r > 1.0):
            r = 1.0 # from numerical error
    #z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
    df = n-2
    t = r * ma.sqrt(df/(1.0-r*r))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    slope = Sxy / Sxx
    intercept = ymean - slope*xmean
    sterrest = ma.sqrt(1.-r*r) * y.std()
    return slope, intercept, r, prob, sterrest, Syy/Sxx

if stats.linregress.__doc__:
    linregress.__doc__ = stats.linregress.__doc__ + genmissingvaldoc


def theilslopes(y, x=None, alpha=0.05):
    """Computes the Theil slope over the dataset (x,y), as the median of all slopes
    between paired values.

    Parameters
    ----------
        y : sequence
            Dependent variable.
        x : {None, sequence} optional
            Independent variable. If None, use arange(len(y)) instead.
        alpha : float
            Confidence degree.

    Returns
    -------
        medslope : float
            Theil slope
        medintercept : float
            Intercept of the Theil line, as median(y)-medslope*median(x)
        lo_slope : float
            Lower bound of the confidence interval on medslope
        up_slope : float
            Upper bound of the confidence interval on medslope

    """
    y = ma.asarray(y).flatten()
    y[-1] = masked
    n = len(y)
    if x is None:
        x = ma.arange(len(y), dtype=float)
    else:
        x = ma.asarray(x).flatten()
        if len(x) != n:
            raise ValueError, "Incompatible lengths ! (%s<>%s)" % (n,len(x))
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    y._mask = x._mask = m
    ny = y.count()
    #
    slopes = ma.hstack([(y[i+1:]-y[i])/(x[i+1:]-x[i]) for i in range(n-1)])
    slopes.sort()
    medslope = ma.median(slopes)
    medinter = ma.median(y) - medslope*ma.median(x)
    #
    if alpha > 0.5:
        alpha = 1.-alpha
    z = stats.distributions.norm.ppf(alpha/2.)
    #
    (xties, yties) = (count_tied_groups(x), count_tied_groups(y))
    nt = ny*(ny-1)/2.
    sigsq = (ny*(ny-1)*(2*ny+5)/18.)
    sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in xties.iteritems())
    sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in yties.iteritems())
    sigma = np.sqrt(sigsq)

    Ru = min(np.round((nt - z*sigma)/2. + 1), len(slopes)-1)
    Rl = max(np.round((nt + z*sigma)/2.), 0)
    delta = slopes[[Rl,Ru]]
    return medslope, medinter, delta[0], delta[1]


def sen_seasonal_slopes(x):
    x = ma.array(x, subok=True, copy=False, ndmin=2)
    (n,_) = x.shape
    # Get list of slopes per season
    szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
                            for i in range(n)])
    szn_medslopes = ma.median(szn_slopes, axis=0)
    medslope = ma.median(szn_slopes, axis=None)
    return szn_medslopes, medslope


#####--------------------------------------------------------------------------
#---- --- Inferential statistics ---
#####--------------------------------------------------------------------------

def ttest_onesamp(a, popmean):
    a = ma.asarray(a)
    x = a.mean(axis=None)
    v = a.var(axis=None,ddof=1)
    n = a.count(axis=None)
    df = n-1
    svar = ((n-1)*v) / float(df)
    t = (x-popmean)/ma.sqrt(svar*(1.0/n))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    return t,prob
ttest_onesamp.__doc__ = stats.ttest_1samp.__doc__
ttest_1samp = ttest_onesamp


def ttest_ind(a, b, axis=0):
    a, b, axis = _chk2_asarray(a, b, axis)
    (x1, x2) = (a.mean(axis), b.mean(axis))
    (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
    (n1, n2) = (a.count(axis), b.count(axis))
    df = n1+n2-2
    svar = ((n1-1)*v1+(n2-1)*v2) / float(df)
    svar == 0
    t = (x1-x2)/ma.sqrt(svar*(1.0/n1 + 1.0/n2))  # N-D COMPUTATION HERE!!!!!!
    t = ma.filled(t, 1)           # replace NaN t-values with 1.0
    probs = betai(0.5*df,0.5,float(df)/(df+t*t)).reshape(t.shape)
    return t, probs.squeeze()
ttest_ind.__doc__ = stats.ttest_ind.__doc__


def ttest_rel(a,b,axis=None):
    a, b, axis = _chk2_asarray(a, b, axis)
    if len(a)!=len(b):
        raise ValueError, 'unequal length arrays'
    (x1, x2) = (a.mean(axis), b.mean(axis))
    (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
    n = a.count(axis)
    df = (n-1.0)
    d = (a-b).astype('d')
    denom = ma.sqrt((n*ma.add.reduce(d*d,axis) - ma.add.reduce(d,axis)**2) /df)
    #zerodivproblem = denom == 0
    t = ma.add.reduce(d, axis) / denom
    t = ma.filled(t, 1)
    probs = betai(0.5*df,0.5,df/(df+t*t)).reshape(t.shape).squeeze()
    return t, probs
ttest_rel.__doc__ = stats.ttest_rel.__doc__


def chisquare(f_obs, f_exp=None):
    f_obs = ma.asarray(f_obs)
    if f_exp is None:
        f_exp = ma.array([f_obs.mean(axis=0)] * len(f_obs))
    f_exp = f_exp.astype(float)
    chisq = ma.add.reduce((f_obs-f_exp)**2 / f_exp)
    return chisq, stats.chisqprob(chisq, f_obs.count(0)-1)
chisquare.__doc__ = stats.chisquare.__doc__


def mannwhitneyu(x,y, use_continuity=True):
    """Computes the Mann-Whitney on samples x and y.
    Missing values in x and/or y are discarded.

    Parameters
    ----------
        x : sequence
        y : sequence
        use_continuity : {True, False} optional
            Whether a continuity correction (1/2.) should be taken into account.

    Returns
    -------
        u : float
            The Mann-Whitney statistics
        prob : float
            Approximate p-value assuming a normal distribution.

    """
    x = ma.asarray(x).compressed().view(ndarray)
    y = ma.asarray(y).compressed().view(ndarray)
    ranks = rankdata(np.concatenate([x,y]))
    (nx, ny) = (len(x), len(y))
    nt = nx + ny
    U = ranks[:nx].sum() - nx*(nx+1)/2.
    U = max(U, nx*ny - U)
    u = nx*ny - U
    #
    mu = (nx*ny)/2.
    sigsq = (nt**3 - nt)/12.
    ties = count_tied_groups(ranks)
    sigsq -= np.sum(v*(k**3-k) for (k,v) in ties.iteritems())/12.
    sigsq *= nx*ny/float(nt*(nt-1))
    #
    if use_continuity:
        z = (U - 1/2. - mu) / ma.sqrt(sigsq)
    else:
        z = (U - mu) / ma.sqrt(sigsq)
    prob = special.erfc(abs(z)/np.sqrt(2))
    return (u, prob)


def kruskalwallis(*args):
    output = argstoarray(*args)
    ranks = ma.masked_equal(rankdata(output, use_missing=False), 0)
    sumrk = ranks.sum(-1)
    ngrp = ranks.count(-1)
    ntot = ranks.count()
#    ssbg = (sumrk**2/ranks.count(-1)).sum() - ranks.sum()**2/ntotal
#    H = ssbg / (ntotal*(ntotal+1)/12.)
    H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1)
    # Tie correction
    ties = count_tied_groups(ranks)
    T = 1. - np.sum(v*(k**3-k) for (k,v) in ties.iteritems())/float(ntot**3-ntot)
    if T == 0:
        raise ValueError, 'All numbers are identical in kruskal'
    H /= T
    #
    df = len(output) - 1
    prob = stats.chisqprob(H,df)
    return (H, prob)
kruskal = kruskalwallis
kruskalwallis.__doc__ = stats.kruskal.__doc__


_kolmog2 = special.kolmogorov
def _kolmog1(x,n):
    if x <= 0:
        return 0
    if x >= 1:
        return 1
    j = np.arange(np.floor(n*(1-x))+1)
    return 1 - x * np.sum(np.exp(np.log(misc.comb(n,j))
                                       + (n-j) * np.log(1-x-j/float(n))
                                       + (j-1) * np.log(x+j/float(n))))


def ks_twosamp(data1, data2, alternative="two_sided"):
    """Computes the Kolmogorov-Smirnov test on two samples.
    Missing values are discarded.

    Parameters
    ----------
        data1 : sequence
            First data set
        data2 : sequence
            Second data set
        alternative : {'two_sided', 'less', 'greater'} optional
            Indicates the alternative hypothesis.

    Returns
    -------
        d : float
            Value of the Kolmogorov Smirnov test
        p : float
            Corresponding p-value.

    """
    (data1, data2) = (ma.asarray(data1), ma.asarray(data2))
    (n1, n2) = (data1.count(), data2.count())
    n = (n1*n2/float(n1+n2))
    mix = ma.concatenate((data1.compressed(), data2.compressed()))
    mixsort = mix.argsort(kind='mergesort')
    csum = np.where(mixsort<n1, 1./n1, -1./n2).cumsum()
    # Check for ties
    if len(np.unique(mix)) < (n1+n2):
        csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]]
    #
    alternative = str(alternative).lower()[0]
    if alternative == 't':
        d = ma.abs(csum).max()
        prob = _kolmog2(np.sqrt(n)*d)
    elif alternative == 'l':
        d = -csum.min()
        prob = np.exp(-2*n*d**2)
    elif alternative == 'g':
        d = csum.max()
        prob = np.exp(-2*n*d**2)
    else:
        raise ValueError("Invalid value for the alternative hypothesis: "\
                         "should be in 'two_sided', 'less' or 'greater'")
    return (d, prob)
ks_2samp = ks_twosamp


def ks_twosamp_old(data1, data2):
    """ Computes the Kolmogorov-Smirnov statistic on 2 samples.
    Returns: KS D-value, p-value
    #"""
    (data1, data2) = [ma.asarray(d).compressed() for d in (data1,data2)]
    return stats.ks_2samp(data1,data2)


#####--------------------------------------------------------------------------
#---- --- Trimming ---
#####--------------------------------------------------------------------------

def threshold(a, threshmin=None, threshmax=None, newval=0):
    """Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or
greater than threshmax are replaced by newval, instead of by
threshmin and threshmax respectively.

Parameters
----------
    a : ndarray
        Input data
    threshmin : {None, float} optional
        Lower threshold. If None, set to the minimum value.
    threshmax : {None, float} optional
        Upper threshold. If None, set to the maximum value.
    newval : {0, float} optional
        Value outside the thresholds.

Returns
-------
    a, with values less (greater) than threshmin (threshmax) replaced with newval.

"""
    a = ma.array(a, copy=True)
    mask = np.zeros(a.shape, dtype=bool)
    if threshmin is not None:
        mask |= (a < threshmin).filled(False)
    if threshmax is not None:
        mask |= (a > threshmax).filled(False)
    a[mask] = newval
    return a


def trima(a, limits=None, inclusive=(True,True)):
    """Trims an array by masking the data outside some given limits.
    Returns a masked version of the input array.

    Parameters
    ----------
    a : sequence
        Input array.
    limits : {None, tuple} optional
        Tuple of (lower limit, upper limit) in absolute values.
        Values of the input array lower (greater) than the lower (upper) limit
        will be masked. A limit is None indicates an open interval.
    inclusive : {(True,True) tuple} optional
        Tuple of (lower flag, upper flag), indicating whether values exactly
        equal to the lower (upper) limit are allowed.

    """
    a = ma.asarray(a)
    a.unshare_mask()
    if limits is None:
        return a
    (lower_lim, upper_lim) = limits
    (lower_in, upper_in) = inclusive
    condition = False
    if lower_lim is not None:
        if lower_in:
            condition |= (a < lower_lim)
        else:
            condition |= (a <= lower_lim)
    if upper_lim is not None:
        if upper_in:
            condition |= (a > upper_lim)
        else:
            condition |= (a >= upper_lim)
    a[condition.filled(True)] = masked
    return a


def trimr(a, limits=None, inclusive=(True, True), axis=None):
    """Trims an array by masking some proportion of the data on each end.
    Returns a masked version of the input array.

    Parameters
    ----------
    a : sequence
        Input array.
    limits : {None, tuple} optional
        Tuple of the percentages to cut on each side of the array, with respect
        to the number of unmasked data, as floats between 0. and 1.
        Noting n the number of unmasked data before trimming, the (n*limits[0])th
        smallest data and the (n*limits[1])th largest data are masked, and the
        total number of unmasked data after trimming is n*(1.-sum(limits))
        The value of one limit can be set to None to indicate an open interval.
    inclusive : {(True,True) tuple} optional
        Tuple of flags indicating whether the number of data being masked on the
        left (right) end should be truncated (True) or rounded (False) to integers.
    axis : {None,int} optional
        Axis along which to trim. If None, the whole array is trimmed, but its
        shape is maintained.

    """
    def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
        n = a.count()
        idx = a.argsort()
        if low_limit:
            if low_inclusive:
                lowidx = int(low_limit*n)
            else:
                lowidx = np.round(low_limit*n)
            a[idx[:lowidx]] = masked
        if up_limit is not None:
            if up_inclusive:
                upidx = n - int(n*up_limit)
            else:
                upidx = n- np.round(n*up_limit)
            a[idx[upidx:]] = masked
        return a
    #
    a = ma.asarray(a)
    a.unshare_mask()
    if limits is None:
        return a
    # Check the limits
    (lolim, uplim) = limits
    errmsg = "The proportion to cut from the %s should be between 0. and 1."
    if lolim is not None:
        if lolim > 1. or lolim < 0:
            raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
    if uplim is not None:
        if uplim > 1. or uplim < 0:
            raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
    #
    (loinc, upinc) = inclusive
    #
    if axis is None:
        shp = a.shape
        return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
    else:
        return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc)

trimdoc = """
    Parameters
    ----------
    a : sequence
        Input array
    limits : {None, tuple} optional
        If relative == False, tuple (lower limit, upper limit) in absolute values.
        Values of the input array lower (greater) than the lower (upper) limit are
        masked.
        If relative == True, tuple (lower percentage, upper percentage) to cut
        on each side of the  array, with respect to the number of unmasked data.
        Noting n the number of unmasked data before trimming, the (n*limits[0])th
        smallest data and the (n*limits[1])th largest data are masked, and the
        total number of unmasked data after trimming is n*(1.-sum(limits))
        In each case, the value of one limit can be set to None to indicate an
        open interval.
        If limits is None, no trimming is performed
    inclusive : {(True, True) tuple} optional
        If relative==False, tuple indicating whether values exactly equal to the
        absolute limits are allowed.
        If relative==True, tuple indicating whether the number of data being masked
        on each side should be rounded (True) or truncated (False).
    relative : {False, True} optional
        Whether to consider the limits as absolute values (False) or proportions
        to cut (True).
    axis : {None, integer}, optional
        Axis along which to trim.
"""


def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None):
    """Trims an array by masking the data outside some given limits.
    Returns a masked version of the input array.
   %s

    Examples
    --------
        >>>z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
        >>>trim(z,(3,8))
        [--,--, 3, 4, 5, 6, 7, 8,--,--]
        >>>trim(z,(0.1,0.2),relative=True)
        [--, 2, 3, 4, 5, 6, 7, 8,--,--]


    """
    if relative:
        return trimr(a, limits=limits, inclusive=inclusive, axis=axis)
    else:
        return trima(a, limits=limits, inclusive=inclusive)

if trim.__doc__:
    trim.__doc__ = trim.__doc__ % trimdoc


def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None):
    """Trims the data by masking the int(proportiontocut*n) smallest and
    int(proportiontocut*n) largest values of data along the given axis, where n
    is the number of unmasked values before trimming.

Parameters
----------
    data : ndarray
        Data to trim.
    proportiontocut : {0.2, float} optional
        Percentage of trimming (as a float between 0 and 1).
        If n is the number of unmasked values before trimming, the number of
        values after trimming is:
            (1-2*proportiontocut)*n.
    inclusive : {(True, True) tuple} optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).
    axis : {None, integer}, optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.

    """
    return trimr(data, limits=(proportiontocut,proportiontocut),
                 inclusive=inclusive, axis=axis)

#..............................................................................
def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True),
             axis=None):
    """Trims the data by masking int(trim*n) values from ONE tail of the
    data along the given axis, where n is the number of unmasked values.

Parameters
----------
    data : {ndarray}
        Data to trim.
    proportiontocut : {0.2, float} optional
        Percentage of trimming. If n is the number of unmasked values
        before trimming, the number of values after trimming is
        (1-proportiontocut)*n.
    tail : {'left','right'} optional
        If left (right), the ``proportiontocut`` lowest (greatest) values will
        be masked.
    inclusive : {(True, True) tuple} optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).
    axis : {None, integer}, optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.

    """
    tail = str(tail).lower()[0]
    if tail == 'l':
        limits = (proportiontocut,None)
    elif tail == 'r':
        limits = (None, proportiontocut)
    else:
        raise TypeError("The tail argument should be in ('left','right')")
    return trimr(data, limits=limits, axis=axis, inclusive=inclusive)

trim1 = trimtail

def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
                 axis=None):
    """Returns the trimmed mean of the data along the given axis.

    %s

    """ % trimdoc
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    if relative:
        return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis)
    else:
        return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis)


def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
                axis=None, ddof=0):
    """Returns the trimmed variance of the data along the given axis.

    %s
    ddof : {0,integer}, optional
        Means Delta Degrees of Freedom. The denominator used during computations
        is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
        biased estimate of the variance.

    """ % trimdoc
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    if relative:
        out = trimr(a,limits=limits, inclusive=inclusive,axis=axis)
    else:
        out = trima(a,limits=limits,inclusive=inclusive)
    return out.var(axis=axis, ddof=ddof)


def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
                axis=None, ddof=0):
    """Returns the trimmed standard deviation of the data along the given axis.

    %s
    ddof : {0,integer}, optional
        Means Delta Degrees of Freedom. The denominator used during computations
        is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
        biased estimate of the variance.

    """ % trimdoc
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    if relative:
        out = trimr(a,limits=limits,inclusive=inclusive,axis=axis)
    else:
        out = trima(a,limits=limits,inclusive=inclusive)
    return out.std(axis=axis,ddof=ddof)


def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None):
    """Returns the standard error of the trimmed mean of the data along the given
    axis.
    Parameters
    ----------
    a : sequence
        Input array
    limits : {(0.1,0.1), tuple of float} optional
        tuple (lower percentage, upper percentage) to cut  on each side of the
        array, with respect to the number of unmasked data.
        Noting n the number of unmasked data before trimming, the (n*limits[0])th
        smallest data and the (n*limits[1])th largest data are masked, and the
        total number of unmasked data after trimming is n*(1.-sum(limits))
        In each case, the value of one limit can be set to None to indicate an
        open interval.
        If limits is None, no trimming is performed
    inclusive : {(True, True) tuple} optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).
    axis : {None, integer}, optional
        Axis along which to trim.
    """
    #........................
    def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
        "Returns the standard error of the trimmed mean for a 1D input data."
        n = a.count()
        idx = a.argsort()
        if low_limit:
            if low_inclusive:
                lowidx = int(low_limit*n)
            else:
                lowidx = np.round(low_limit*n)
            a[idx[:lowidx]] = masked
        if up_limit is not None:
            if up_inclusive:
                upidx = n - int(n*up_limit)
            else:
                upidx = n- np.round(n*up_limit)
            a[idx[upidx:]] = masked
        nsize = a.count()
        a[idx[:lowidx]] = a[idx[lowidx]]
        a[idx[upidx:]] = a[idx[upidx-1]]
        winstd = a.std(ddof=1)
        return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a)))
    #........................
    a = ma.array(a, copy=True, subok=True)
    a.unshare_mask()
    if limits is None:
        return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis))
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    # Check the limits
    (lolim, uplim) = limits
    errmsg = "The proportion to cut from the %s should be between 0. and 1."
    if lolim is not None:
        if lolim > 1. or lolim < 0:
            raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
    if uplim is not None:
        if uplim > 1. or uplim < 0:
            raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
    #
    (loinc, upinc) = inclusive
    if (axis is None):
        shp = a.shape
        return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc)
    else:
        assert a.ndim <= 2, "Array should be 2D at most !"
        return ma.apply_along_axis(_trimmed_stde_1D, axis, a,
                                   lolim,uplim,loinc,upinc)


def tmean(a, limits=None, inclusive=(True,True)):
    return trima(a, limits=limits, inclusive=inclusive).mean()
tmean.__doc__ = stats.tmean.__doc__

def tvar(a, limits=None, inclusive=(True,True)):
    return trima(a, limits=limits, inclusive=inclusive).var()
tvar.__doc__ = stats.tvar.__doc__

def tmin(a, lowerlimit=None, axis=0, inclusive=True):
    a, axis = _chk_asarray(a, axis)
    am = trima(a, (lowerlimit, None), (inclusive, False))
    return ma.minimum.reduce(am, axis)
tmin.__doc__  = stats.tmin.__doc__

def tmax(a, upperlimit, axis=0, inclusive=True):
    a, axis = _chk_asarray(a, axis)
    am = trima(a, (None, upperlimit), (False, inclusive))
    return ma.maximum.reduce(am, axis)
tmax.__doc__  = stats.tmax.__doc__

def tsem(a, limits=None, inclusive=(True,True)):
    a = ma.asarray(a).ravel()
    if limits is None:
        n = float(a.count())
        return a.std()/ma.sqrt(n)
    am = trima(a.ravel(), limits, inclusive)
    sd = np.sqrt(am.var())
    return sd / am.count()
tsem.__doc__ = stats.tsem.__doc__


def winsorize(a, limits=None, inclusive=(True,True), inplace=False, axis=None):
    """Returns a Winsorized version of the input array.

    The (limits[0])th lowest values are set to the (limits[0])th percentile,
    and the (limits[1])th highest values are set to the (limits[1])th
    percentile.
    Masked values are skipped.


    Parameters
    ----------
    a : sequence
        Input array.
    limits : {None, tuple of float} optional
        Tuple of the percentages to cut on each side of the array, with respect
        to the number of unmasked data, as floats between 0. and 1.
        Noting n the number of unmasked data before trimming, the (n*limits[0])th
        smallest data and the (n*limits[1])th largest data are masked, and the
        total number of unmasked data after trimming is n*(1.-sum(limits))
        The value of one limit can be set to None to indicate an open interval.
    inclusive : {(True, True) tuple} optional
        Tuple indicating whether the number of data being masked on each side
        should be rounded (True) or truncated (False).
    inplace : {False, True} optional
        Whether to winsorize in place (True) or to use a copy (False)
    axis : {None, int} optional
        Axis along which to trim. If None, the whole array is trimmed, but its
        shape is maintained.

    """
    def _winsorize1D(a, low_limit, up_limit, low_include, up_include):
        n = a.count()
        idx = a.argsort()
        if low_limit:
            if low_include:
                lowidx = int(low_limit*n)
            else:
                lowidx = np.round(low_limit*n)
            a[idx[:lowidx]] = a[idx[lowidx]]
        if up_limit is not None:
            if up_include:
                upidx = n - int(n*up_limit)
            else:
                upidx = n- np.round(n*up_limit)
            a[idx[upidx:]] = a[idx[upidx-1]]
        return a
    # We gonna modify a: better make a copy
    a = ma.array(a, copy=np.logical_not(inplace))
    #
    if limits is None:
        return a
    if (not isinstance(limits,tuple)) and isinstance(limits,float):
        limits = (limits, limits)
    # Check the limits
    (lolim, uplim) = limits
    errmsg = "The proportion to cut from the %s should be between 0. and 1."
    if lolim is not None:
        if lolim > 1. or lolim < 0:
            raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
    if uplim is not None:
        if uplim > 1. or uplim < 0:
            raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
    #
    (loinc, upinc) = inclusive
    #
    if axis is None:
        shp = a.shape
        return _winsorize1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
    else:
        return ma.apply_along_axis(_winsorize1D, axis,a,lolim,uplim,loinc,upinc)


#####--------------------------------------------------------------------------
#---- --- Moments ---
#####--------------------------------------------------------------------------

def moment(a, moment=1, axis=0):
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        mn = ma.expand_dims(a.mean(axis=axis), axis)
        s = ma.power((a-mn), moment)
        return s.mean(axis=axis)
moment.__doc__ = stats.moment.__doc__


def variation(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    return a.std(axis)/a.mean(axis)
variation.__doc__ = stats.variation.__doc__


def skew(a, axis=0, bias=True):
    a, axis = _chk_asarray(a,axis)
    n = a.count(axis)
    m2 = moment(a, 2, axis)
    m3 = moment(a, 3, axis)
    vals = ma.where(m2 == 0, 0, m3 / m2**1.5)
    if not bias:
        can_correct = (n > 2) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m3 = np.extract(can_correct, m3)
            nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
            np.place(vals, can_correct, nval)
    return vals
skew.__doc__ = stats.skew.__doc__


def kurtosis(a, axis=0, fisher=True, bias=True):
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis)
    m2 = moment(a,2,axis)
    m4 = moment(a,4,axis)
    vals = ma.where(m2 == 0, 0, m4/ m2**2.0)
    if not bias:
        can_correct = (n > 3) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m4 = np.extract(can_correct, m4)
            nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
            np.place(vals, can_correct, nval+3.0)
    if fisher:
        return vals - 3
    else:
        return vals
kurtosis.__doc__ = stats.kurtosis.__doc__

def describe(a, axis=0):
    """Computes several descriptive statistics of the passed array.

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    (size of the data (discarding missing values),
     (min, max),
     arithmetic mean,
     unbiased variance,
     biased skewness,
     biased kurtosis)
    """
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis)
    mm = (ma.minimum.reduce(a), ma.maximum.reduce(a))
    m = a.mean(axis)
    v = a.var(axis)
    sk = skew(a, axis)
    kurt = kurtosis(a, axis)
    return n, mm, m, v, sk, kurt

#.............................................................................
def stde_median(data, axis=None):
    """Returns the McKean-Schrader estimate of the standard error of the sample
median along the given axis. masked values are discarded.

    Parameters
    ----------
        data : ndarray
            Data to trim.
        axis : {None,int} optional
            Axis along which to perform the trimming.
            If None, the input array is first flattened.

    """
    def _stdemed_1D(data):
        data = np.sort(data.compressed())
        n = len(data)
        z = 2.5758293035489004
        k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
        return ((data[n-k] - data[k-1])/(2.*z))
    #
    data = ma.array(data, copy=False, subok=True)
    if (axis is None):
        return _stdemed_1D(data)
    else:
        assert data.ndim <= 2, "Array should be 2D at most !"
        return ma.apply_along_axis(_stdemed_1D, axis, data)

#####--------------------------------------------------------------------------
#---- --- Normality Tests ---
#####--------------------------------------------------------------------------

def skewtest(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    if axis is None:
        a = a.ravel()
        axis = 0
    b2 = skew(a,axis)
    n = a.count(axis)
    if np.min(n) < 8:
        warnings.warn(
            "skewtest only valid for n>=8 ... continuing anyway, n=%i" %
            np.min(n))
    y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)) )
    beta2 = ( 3.0*(n*n+27*n-70)*(n+1)*(n+3) ) / ( (n-2.0)*(n+5)*(n+7)*(n+9) )
    W2 = -1 + ma.sqrt(2*(beta2-1))
    delta = 1/ma.sqrt(0.5*ma.log(W2))
    alpha = ma.sqrt(2.0/(W2-1))
    y = ma.where(y==0, 1, y)
    Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1))
    return Z, (1.0 - stats.zprob(Z))*2
skewtest.__doc__ = stats.skewtest.__doc__

def kurtosistest(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis=axis).astype(float)
    if np.min(n) < 20:
        warnings.warn(
            "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
            np.min(n))
    b2 = kurtosis(a, axis, fisher=False)
    E = 3.0*(n-1) /(n+1)
    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
    x = (b2-E)/ma.sqrt(varb2)
    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5))/
                                                        (n*(n-2)*(n-3)))
    A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
    term1 = 1 - 2./(9.0*A)
    denom = 1 + x*ma.sqrt(2/(A-4.0))
    denom[denom < 0] = masked
    term2 = ma.power((1-2.0/A)/denom,1/3.0)
    Z = ( term1 - term2 ) / np.sqrt(2/(9.0*A))
    return Z, (1.0-stats.zprob(Z))*2
kurtosistest.__doc__ = stats.kurtosistest.__doc__


def normaltest(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    s,_ = skewtest(a,axis)
    k,_ = kurtosistest(a,axis)
    k2 = s*s + k*k
    return k2, stats.chisqprob(k2,2)
normaltest.__doc__ = stats.normaltest.__doc__

# Martinez-Iglewicz test
# K-S test


#####--------------------------------------------------------------------------
#---- --- Percentiles ---
#####--------------------------------------------------------------------------


def mquantiles(data, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None,
               limit=()):
    """Computes empirical quantiles for a *1xN* data array.
Samples quantile are defined by:
*Q(p) = (1-g).x[i] +g.x[i+1]*
where *x[j]* is the jth order statistic,
with *i = (floor(n*p+m))*, *m=alpha+p*(1-alpha-beta)* and *g = n*p + m - i)*.

Typical values of (alpha,beta) are:

    - (0,1)    : *p(k) = k/n* : linear interpolation of cdf (R, type 4)
    - (.5,.5)  : *p(k) = (k+1/2.)/n* : piecewise linear function (R, type 5)
    - (0,0)    : *p(k) = k/(n+1)* : (R type 6)
    - (1,1)    : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])].
      That's R default (R type 7)
    - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])].
      The resulting quantile estimates are approximately median-unbiased
      regardless of the distribution of x. (R type 8)
    - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom.
      The resulting quantile estimates are approximately unbiased
      if x is normally distributed (R type 9)
    - (.4,.4)  : approximately quantile unbiased (Cunnane)
    - (.35,.35): APL, used with PWM

Parameters
----------
    x : sequence
        Input data, as a sequence or array of dimension at most 2.
    prob : sequence
        List of quantiles to compute.
    alpha : {0.4, float} optional
        Plotting positions parameter.
    beta : {0.4, float} optional
        Plotting positions parameter.
    axis : {None, int} optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.
    limit : tuple
        Tuple of (lower, upper) values. Values of a outside this closed interval
        are ignored.
    """
    def _quantiles1D(data,m,p):
        x = np.sort(data.compressed())
        n = len(x)
        if n == 0:
            return ma.array(np.empty(len(p), dtype=float), mask=True)
        elif n == 1:
            return ma.array(np.resize(x, p.shape), mask=nomask)
        aleph = (n*p + m)
        k = np.floor(aleph.clip(1, n-1)).astype(int)
        gamma = (aleph-k).clip(0,1)
        return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]

    # Initialization & checks ---------
    data = ma.array(data, copy=False)
    if limit:
        condition = (limit[0]<data) & (data<limit[1])
        data[condition.filled(True)] = masked
    p = np.array(prob, copy=False, ndmin=1)
    m = alphap + p*(1.-alphap-betap)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        return _quantiles1D(data, m, p)
    else:
        assert data.ndim <= 2, "Array should be 2D at most !"
        return ma.apply_along_axis(_quantiles1D, axis, data, m, p)


def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4):
    """Calculate the score at the given 'per' percentile of the
    sequence a.  For example, the score at per=50 is the median.

    This function is a shortcut to mquantile

    """
    if (per < 0) or (per > 100.):
        raise ValueError("The percentile should be between 0. and 100. !"\
                         " (got %s)" % per)
    return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap,
                      limit=limit, axis=0).squeeze()


def plotting_positions(data, alpha=0.4, beta=0.4):
    """Returns the plotting positions (or empirical percentile points) for the
    data.
    Plotting positions are defined as (i-alpha)/(n-alpha-beta), where:
        - i is the rank order statistics
        - n is the number of unmasked values along the given axis
        - alpha and beta are two parameters.

    Typical values for alpha and beta are:
        - (0,1)    : *p(k) = k/n* : linear interpolation of cdf (R, type 4)
        - (.5,.5)  : *p(k) = (k-1/2.)/n* : piecewise linear function (R, type 5)
        - (0,0)    : *p(k) = k/(n+1)* : Weibull (R type 6)
        - (1,1)    : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])].
          That's R default (R type 7)
        - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])].
          The resulting quantile estimates are approximately median-unbiased
          regardless of the distribution of x. (R type 8)
        - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom.
          The resulting quantile estimates are approximately unbiased
          if x is normally distributed (R type 9)
        - (.4,.4)  : approximately quantile unbiased (Cunnane)
        - (.35,.35): APL, used with PWM

Parameters
----------
    x : sequence
        Input data, as a sequence or array of dimension at most 2.
    prob : sequence
        List of quantiles to compute.
    alpha : {0.4, float} optional
        Plotting positions parameter.
    beta : {0.4, float} optional
        Plotting positions parameter.

    """
    data = ma.array(data, copy=False).reshape(1,-1)
    n = data.count()
    plpos = np.empty(data.size, dtype=float)
    plpos[n:] = 0
    plpos[data.argsort()[:n]] = (np.arange(1,n+1) - alpha)/(n+1-alpha-beta)
    return ma.array(plpos, mask=data._mask)

meppf = plotting_positions

#####--------------------------------------------------------------------------
#---- --- Variability ---
#####--------------------------------------------------------------------------

def obrientransform(*args):
    """
Computes a transform on input data (any number of columns).  Used to
test for homogeneity of variance prior to running one-way stats.  Each
array in *args is one level of a factor.  If an F_oneway() run on the
transformed data and found significant, variances are unequal.   From
Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA
    """
    data = argstoarray(*args).T
    v = data.var(axis=0,ddof=1)
    m = data.mean(0)
    n = data.count(0).astype(float)
    # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2))
    data -= m
    data **= 2
    data *= (n-1.5)*n
    data -= 0.5*v*(n-1)
    data /= (n-1.)*(n-2.)
    if not ma.allclose(v,data.mean(0)):
        raise ValueError("Lack of convergence in obrientransform.")
    return data


def signaltonoise(data, axis=0):
    """Calculates the signal-to-noise ratio, as the ratio of the mean over
    standard deviation along the given axis.

    Parameters
    ----------
        data : sequence
            Input data
        axis : {0, int} optional
            Axis along which to compute. If None, the computation is performed
            on a flat version of the array.
"""
    data = ma.array(data, copy=False)
    m = data.mean(axis)
    sd = data.std(axis, ddof=0)
    return m/sd


def samplevar(data, axis=0):
    """Returns a biased estimate of the variance of the data, as the average
    of the squared deviations from the mean.

    Parameters
    ----------
        data : sequence
            Input data
        axis : {0, int} optional
            Axis along which to compute. If None, the computation is performed
            on a flat version of the array.
    """
    return ma.asarray(data).var(axis=axis,ddof=0)


def samplestd(data, axis=0):
    """Returns a biased estimate of the standard deviation of the data, as the
    square root of the average squared deviations from the mean.

    Parameters
    ----------
        data : sequence
            Input data
        axis : {0,int} optional
            Axis along which to compute. If None, the computation is performed
            on a flat version of the array.

    Notes
    -----
        samplestd(a) is equivalent to a.std(ddof=0)

    """
    return ma.asarray(data).std(axis=axis,ddof=0)


def var(a,axis=None):
    return ma.asarray(a).var(axis=axis,ddof=1)
var.__doc__ = stats.var.__doc__

def std(a,axis=None):
    return ma.asarray(a).std(axis=axis,ddof=1)
std.__doc__ = stats.std.__doc__

def stderr(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    return a.std(axis=axis, ddof=1) / ma.sqrt(a.count(axis=axis))
stderr.__doc__ = stats.stderr.__doc__

def sem(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis=axis)
    s = a.std(axis=axis,ddof=0) / ma.sqrt(n-1)
    return s
sem.__doc__ = stats.sem.__doc__

def z(a, score):
    a = ma.asarray(a)
    z = (score-a.mean(None)) / a.std(axis=None, ddof=1)
    return z
z.__doc__ = stats.z.__doc__

def zs(a):
    a = ma.asarray(a)
    mu = a.mean(axis=0)
    sigma = a.std(axis=0,ddof=0)
    return (a-mu)/sigma
zs.__doc__ = stats.zs.__doc__

def zmap(scores, compare, axis=0):
    (scores, compare) = (ma.asarray(scores), ma.asarray(compare))
    mns = compare.mean(axis=axis)
    sstd = compare.std(axis=0, ddof=0)
    return (scores - mns) / sstd
zmap.__doc__ = stats.zmap.__doc__


#####--------------------------------------------------------------------------
#---- --- ANOVA ---
#####--------------------------------------------------------------------------


def f_oneway(*args):
    """
Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups.  From Heiman, pp.394-7.

Usage:   f_oneway (*args)    where *args is 2 or more arrays, one per
                                  treatment group
Returns: f-value, probability
"""
    # Construct a single array of arguments: each row is a group
    data = argstoarray(*args)
    ngroups = len(data)
    ntot = data.count()
    sstot = (data**2).sum() - (data.sum())**2/float(ntot)
    ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum()
    sswg = sstot-ssbg
    dfbg = ngroups-1
    dfwg = ntot - ngroups
    msb = ssbg/float(dfbg)
    msw = sswg/float(dfwg)
    f = msb/msw
    prob = stats.fprob(dfbg,dfwg,f)
    return f, prob


def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    ER = ma.array(ER, copy=False, ndmin=2)
    EF = ma.array(EF, copy=False, ndmin=2)
    if ma.getmask(ER).any() or ma.getmask(EF).any():
        raise NotImplementedError("Not implemented when the inputs "\
                                  "have missing data")
    lmbda = np.linalg.det(EF) / np.linalg.det(ER)
    q = ma.sqrt( ((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 -5) )
    q = ma.filled(q, 1)
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en



def friedmanchisquare(*args):
    """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
    This function calculates the Friedman Chi-square test for repeated measures
    and returns the result, along with the associated probability value.

    Each input is considered a given group. Ideally, the number of treatments
    among each group should be equal. If this is not the case, only the first
    n treatments are taken into account, where n is the number of treatments
    of the smallest group.
    If a group has some missing values, the corresponding treatments are masked
    in the other groups.
    The test statistic is corrected for ties.

    Masked values in one group are propagated to the other groups.

    Returns: chi-square statistic, associated p-value
    """
    data = argstoarray(*args).astype(float)
    k = len(data)
    if k < 3:
        raise ValueError("Less than 3 groups (%i): " % k +\
                         "the Friedman test is NOT appropriate.")
    ranked = ma.masked_values(rankdata(data, axis=0), 0)
    if ranked._mask is not nomask:
        ranked = ma.mask_cols(ranked)
        ranked = ranked.compressed().reshape(k,-1).view(ndarray)
    else:
        ranked = ranked._data
    (k,n) = ranked.shape
    # Ties correction
    repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object)
    ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int)
    tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k))
    #
    ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2)
    chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction
    return chisq, stats.chisqprob(chisq,k-1)

#-############################################################################-#