1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
|
"""
An extension of scipy.stats.stats to support masked arrays
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
"""
#TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ?
#TODO : ttest_reel looks botched: what are x1,x2,v1,v2 for ?
#TODO : reimplement ksonesamp
__author__ = "Pierre GF Gerard-Marchant"
__docformat__ = "restructuredtext en"
__all__ = ['argstoarray',
'betai',
'cov', # from np.ma
'chisquare','count_tied_groups',
'describe',
'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare',
'gmean',
'hmean',
'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis',
'ks_twosamp','ks_2samp','kurtosis','kurtosistest',
'linregress',
'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign',
'normaltest',
'obrientransform',
'pearsonr','plotting_positions','pointbiserialr',
'rankdata',
'samplestd','samplevar','scoreatpercentile','sem','std',
'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr',
'stderr',
'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth',
'trimtail','trima','trimr','trimmed_mean','trimmed_std',
'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp',
'ttest_ind','ttest_rel','tvar',
'var','variation',
'winsorize',
'z','zmap','zs'
]
import numpy as np
from numpy import ndarray
import numpy.ma as ma
from numpy.ma import MaskedArray, masked, nomask
import itertools
import warnings
#import scipy.stats as stats
import stats
import scipy.special as special
import scipy.misc as misc
#import scipy.stats.futil as futil
import futil
genmissingvaldoc = """
Notes
-----
Missing values are considered pair-wise: if a value is missing in x,
the corresponding value in y is masked.
"""
#------------------------------------------------------------------------------
def _chk_asarray(a, axis):
if axis is None:
a = ma.ravel(a)
outaxis = 0
else:
a = ma.asanyarray(a)
outaxis = axis
return a, outaxis
def _chk2_asarray(a, b, axis):
if axis is None:
a = ma.ravel(a)
b = ma.ravel(b)
outaxis = 0
else:
a = ma.asanyarray(a)
b = ma.asanyarray(b)
outaxis = axis
return a, b, outaxis
def _chk_size(a,b):
a = ma.asanyarray(a)
b = ma.asanyarray(b)
(na, nb) = (a.size, b.size)
if na != nb:
raise ValueError("The size of the input array should match!"\
" (%s <> %s)" % (na,nb))
return (a,b,na)
def argstoarray(*args):
"""Constructs a 2D array from a sequence of sequences. Sequences are filled
with missing values to match the length of the longest sequence.
Returns
-------
output : MaskedArray
a (mxn) masked array, where m is the number of arguments and n the
length of the longest argument.
"""
if len(args) == 1 and not isinstance(args[0], ndarray):
output = ma.asarray(args[0])
if output.ndim != 2:
raise ValueError("The input should be 2D")
else:
n = len(args)
m = max([len(k) for k in args])
output = ma.array(np.empty((n,m), dtype=float), mask=True)
for (k,v) in enumerate(args):
output[k,:len(v)] = v
output[np.logical_not(np.isfinite(output._data))] = masked
return output
#####--------------------------------------------------------------------------
#---- --- Ranking ---
#####--------------------------------------------------------------------------
def find_repeats(arr):
"""Find repeats in arr and return a tuple (repeats, repeat_count).
Masked values are discarded.
Parameters
----------
arr : sequence
Input array. The array is flattened if it is not 1D.
Returns
-------
repeats : ndarray
Array of repeated values.
counts : ndarray
Array of counts.
"""
marr = ma.compressed(arr)
if not marr.size:
return (np.array(0), np.array(0))
(v1, v2, n) = futil.dfreps(ma.array(ma.compressed(arr), copy=True))
return (v1[:n], v2[:n])
def count_tied_groups(x, use_missing=False):
"""Counts the number of tied values in x, and returns a dictionary
(nb of ties: nb of groups).
Parameters
----------
x : sequence
Sequence of data on which to counts the ties
use_missing : boolean
Whether to consider missing values as tied.
Example
-------
>>>z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>>count_tied_groups(z)
>>>{2:1, 3:2}
>>># The ties were 0 (3x), 2 (3x) and 3 (2x)
>>>z = ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>>count_tied_groups(z)
>>>{2:2, 3:1}
>>># The ties were 0 (2x), 2 (3x) and 3 (2x)
>>>z[[1,-1]] = masked
>>>count_tied_groups(z)
>>>{2:2, 3:1}
>>># The ties were 2 (3x), 3 (2x) and masked (2x)
"""
nmasked = ma.getmask(x).sum()
# We need the copy as find_repeats will overwrite the initial data
data = ma.compressed(x).copy()
(ties, counts) = find_repeats(data)
nties = {}
if len(ties):
nties = dict(zip(np.unique(counts), itertools.repeat(1)))
nties.update(dict(zip(*find_repeats(counts))))
if nmasked and use_missing:
try:
nties[nmasked] += 1
except KeyError:
nties[nmasked] = 1
return nties
def rankdata(data, axis=None, use_missing=False):
"""Returns the rank (also known as order statistics) of each data point
along the given axis.
If some values are tied, their rank is averaged.
If some values are masked, their rank is set to 0 if use_missing is False,
or set to the average rank of the unmasked values if use_missing is True.
Parameters
----------
data : sequence
Input data. The data is transformed to a masked array
axis : {None,int} optional
Axis along which to perform the ranking.
If None, the array is first flattened. An exception is raised if
the axis is specified for arrays with a dimension larger than 2
use_missing : {boolean} optional
Whether the masked values have a rank of 0 (False) or equal to the
average rank of the unmasked values (True).
"""
#
def _rank1d(data, use_missing=False):
n = data.count()
rk = np.empty(data.size, dtype=float)
idx = data.argsort()
rk[idx[:n]] = np.arange(1,n+1)
#
if use_missing:
rk[idx[n:]] = (n+1)/2.
else:
rk[idx[n:]] = 0
#
repeats = find_repeats(data.copy())
for r in repeats[0]:
condition = (data==r).filled(False)
rk[condition] = rk[condition].mean()
return rk
#
data = ma.array(data, copy=False)
if axis is None:
if data.ndim > 1:
return _rank1d(data.ravel(), use_missing).reshape(data.shape)
else:
return _rank1d(data, use_missing)
else:
return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray)
#####--------------------------------------------------------------------------
#---- --- Central tendency ---
#####--------------------------------------------------------------------------
def gmean(a, axis=0):
a, axis = _chk_asarray(a, axis)
log_a = ma.log(a)
return ma.exp(log_a.mean(axis=axis))
gmean.__doc__ = stats.gmean.__doc__
def hmean(a, axis=0):
a, axis = _chk_asarray(a, axis)
if isinstance(a, MaskedArray):
size = a.count(axis)
else:
size = a.shape[axis]
return size / (1.0/a).sum(axis)
hmean.__doc__ = stats.hmean.__doc__
def mode(a, axis=0):
def _mode1D(a):
(rep,cnt) = find_repeats(a)
if not cnt.ndim:
return (0, 0)
elif cnt.size:
return (rep[cnt.argmax()], cnt.max())
return (a[0], 1)
#
if axis is None:
output = _mode1D(ma.ravel(a))
output = (ma.array(output[0]), ma.array(output[1]))
else:
output = ma.apply_along_axis(_mode1D, axis, a)
newshape = list(a.shape)
newshape[axis] = 1
slices = [slice(None)] * output.ndim
slices[axis] = 0
modes = output[tuple(slices)].reshape(newshape)
slices[axis] = 1
counts = output[tuple(slices)].reshape(newshape)
output = (modes, counts)
return output
mode.__doc__ = stats.mode.__doc__
#####--------------------------------------------------------------------------
#---- --- Probabilities ---
#####--------------------------------------------------------------------------
def betai(a, b, x):
x = np.asanyarray(x)
x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0
return special.betainc(a, b, x)
betai.__doc__ = stats.betai.__doc__
#####--------------------------------------------------------------------------
#---- --- Correlation ---
#####--------------------------------------------------------------------------
def msign(x):
"""Returns the sign of x, or 0 if x is masked."""
return ma.filled(np.sign(x), 0)
cov = ma.cov
corrcoef = ma.corrcoef
def pearsonr(x,y):
"""Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
"""
(x, y, n) = _chk_size(x, y)
(x, y) = (x.ravel(), y.ravel())
# Get the common mask and the total nb of unmasked elements
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
n -= m.sum()
df = n-2
if df < 0:
return (masked, masked)
#
(mx, my) = (x.mean(), y.mean())
(xm, ym) = (x-mx, y-my)
#
r_num = n*(ma.add.reduce(xm*ym))
r_den = n*ma.sqrt(ma.dot(xm,xm)*ma.dot(ym,ym))
r = (r_num / r_den)
# Presumably, if r > 1, then it is only some small artifact of floating
# point arithmetic.
r = min(r, 1.0)
r = max(r, -1.0)
df = n-2
#
t = ma.sqrt(df/((1.0-r)*(1.0+r))) * r
if t is masked:
prob = 0.
else:
prob = betai(0.5*df,0.5,df/(df+t*t))
return (r,prob)
def spearmanr(x, y, use_ties=True):
"""Calculates a Spearman rank-order correlation coefficient and the p-value
to test for non-correlation.
The Spearman correlation is a nonparametric measure of the linear
relationship between two datasets. Unlike the Pearson correlation, the
Spearman correlation does not assume that both datasets are normally
distributed. Like other correlation coefficients, this one varies
between -1 and +1 with 0 implying no correlation. Correlations of -1 or
+1 imply an exact linear relationship. Positive correlations imply that
as x increases, so does y. Negative correlations imply that as x
increases, y decreases.
Missing values are discarded pair-wise: if a value is missing in x, the
corresponding value in y is masked.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
The lengths of both arrays must be > 2.
use_ties : {True, False} optional
Whether the correction for ties should be computed.
Returns
-------
(Spearman correlation coefficient,
2-tailed p-value)
References
----------
[CRCProbStat2000] section 14.7
"""
(x, y, n) = _chk_size(x, y)
(x, y) = (x.ravel(), y.ravel())
#
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
n -= m.sum()
if m is not nomask:
x = ma.array(x, mask=m, copy=True)
y = ma.array(y, mask=m, copy=True)
df = n-2
if df < 0:
raise ValueError("The input must have at least 3 entries!")
# Gets the ranks and rank differences
rankx = rankdata(x)
ranky = rankdata(y)
dsq = np.add.reduce((rankx-ranky)**2)
# Tie correction
if use_ties:
xties = count_tied_groups(x)
yties = count_tied_groups(y)
corr_x = np.sum(v*k*(k**2-1) for (k,v) in xties.iteritems())/12.
corr_y = np.sum(v*k*(k**2-1) for (k,v) in yties.iteritems())/12.
else:
corr_x = corr_y = 0
denom = n*(n**2 - 1)/6.
if corr_x != 0 or corr_y != 0:
rho = denom - dsq - corr_x - corr_y
rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y))
else:
rho = 1. - dsq/denom
#
t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho
if t is masked:
prob = 0.
else:
prob = betai(0.5*df,0.5,df/(df+t*t))
return rho, prob
def kendalltau(x, y, use_ties=True, use_missing=False):
"""Computes Kendall's rank correlation tau on two variables *x* and *y*.
Parameters
----------
xdata: sequence
First data list (for example, time).
ydata: sequence
Second data list.
use_ties: {True, False} optional
Whether ties correction should be performed.
use_missing: {False, True} optional
Whether missing data should be allocated a rank of 0 (False) or the
average rank (True)
Returns
-------
tau : float
Kendall tau
prob : float
Approximate 2-side p-value.
"""
(x, y, n) = _chk_size(x, y)
(x, y) = (x.flatten(), y.flatten())
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
x = ma.array(x, mask=m, copy=True)
y = ma.array(y, mask=m, copy=True)
n -= m.sum()
#
if n < 2:
return (np.nan, np.nan)
#
rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0)
ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0)
idx = rx.argsort()
(rx, ry) = (rx[idx], ry[idx])
C = np.sum([((ry[i+1:]>ry[i]) * (rx[i+1:]>rx[i])).filled(0).sum()
for i in range(len(ry)-1)], dtype=float)
D = np.sum([((ry[i+1:]<ry[i])*(rx[i+1:]>rx[i])).filled(0).sum()
for i in range(len(ry)-1)], dtype=float)
if use_ties:
xties = count_tied_groups(x)
yties = count_tied_groups(y)
corr_x = np.sum([v*k*(k-1) for (k,v) in xties.iteritems()], dtype=float)
corr_y = np.sum([v*k*(k-1) for (k,v) in yties.iteritems()], dtype=float)
denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.)
else:
denom = n*(n-1)/2.
tau = (C-D) / denom
#
var_s = n*(n-1)*(2*n+5)
if use_ties:
var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in xties.iteritems())
var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in yties.iteritems())
v1 = np.sum([v*k*(k-1) for (k, v) in xties.iteritems()], dtype=float) *\
np.sum([v*k*(k-1) for (k, v) in yties.iteritems()], dtype=float)
v1 /= 2.*n*(n-1)
if n > 2:
v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in xties.iteritems()],
dtype=float) * \
np.sum([v*k*(k-1)*(k-2) for (k,v) in yties.iteritems()],
dtype=float)
v2 /= 9.*n*(n-1)*(n-2)
else:
v2 = 0
else:
v1 = v2 = 0
var_s /= 18.
var_s += (v1 + v2)
z = (C-D)/np.sqrt(var_s)
prob = special.erfc(abs(z)/np.sqrt(2))
return (tau, prob)
def kendalltau_seasonal(x):
"""Computes a multivariate extension Kendall's rank correlation tau, designed
for seasonal data.
Parameters
----------
x: 2D array
Array of seasonal data, with seasons in columns.
"""
x = ma.array(x, subok=True, copy=False, ndmin=2)
(n,m) = x.shape
n_p = x.count(0)
#
S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n))
S_tot = S_szn.sum()
#
n_tot = x.count()
ties = count_tied_groups(x.compressed())
corr_ties = np.sum(v*k*(k-1) for (k,v) in ties.iteritems())
denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2.
#
R = rankdata(x, axis=0, use_missing=True)
K = ma.empty((m,m), dtype=int)
covmat = ma.empty((m,m), dtype=float)
# cov_jj = ma.empty(m, dtype=float)
denom_szn = ma.empty(m, dtype=float)
for j in range(m):
ties_j = count_tied_groups(x[:,j].compressed())
corr_j = np.sum(v*k*(k-1) for (k,v) in ties_j.iteritems())
cmb = n_p[j]*(n_p[j]-1)
for k in range(j,m,1):
K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum()
for i in range(n))
covmat[j,k] = (K[j,k] +4*(R[:,j]*R[:,k]).sum() - \
n*(n_p[j]+1)*(n_p[k]+1))/3.
K[k,j] = K[j,k]
covmat[k,j] = covmat[j,k]
# cov_jj[j] = (nn_p*(2*n_p[j]+5))
# cov_jj[j] -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in ties_j.iteritems())
# cov_jj[j] /= 18.
denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2.
var_szn = covmat.diagonal()
#
z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn)
z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum())
z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum())
#
prob_szn = special.erfc(abs(z_szn)/np.sqrt(2))
prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2))
prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2))
#
chi2_tot = (z_szn*z_szn).sum()
chi2_trd = m * z_szn.mean()**2
output = {'seasonal tau': S_szn/denom_szn,
'global tau': S_tot/denom_tot,
'global tau (alt)': S_tot/denom_szn.sum(),
'seasonal p-value': prob_szn,
'global p-value (indep)': prob_tot_ind,
'global p-value (dep)': prob_tot_dep,
'chi2 total': chi2_tot,
'chi2 trend': chi2_trd,
}
return output
def pointbiserialr(x, y):
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data ..........
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
#
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
#
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
#
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = betai(0.5*df, 0.5, df/(df+t*t))
return rpb, prob
if stats.pointbiserialr.__doc__:
pointbiserialr.__doc__ = stats.pointbiserialr.__doc__ + genmissingvaldoc
def linregress(*args):
if len(args) == 1: # more than 1D array?
args = ma.array(args[0], copy=True)
if len(args) == 2:
x = args[0]
y = args[1]
else:
x = args[:,0]
y = args[:,1]
else:
x = ma.array(args[0]).flatten()
y = ma.array(args[1]).flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
x = ma.array(x,mask=m)
y = ma.array(y,mask=m)
n = len(x)
(xmean, ymean) = (x.mean(), y.mean())
(xm, ym) = (x-xmean, y-ymean)
(Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
Sxy = ma.add.reduce(xm*ym)
r_den = ma.sqrt(Sxx*Syy)
if r_den == 0.0:
r = 0.0
else:
r = Sxy / r_den
if (r > 1.0):
r = 1.0 # from numerical error
#z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
df = n-2
t = r * ma.sqrt(df/(1.0-r*r))
prob = betai(0.5*df,0.5,df/(df+t*t))
slope = Sxy / Sxx
intercept = ymean - slope*xmean
sterrest = ma.sqrt(1.-r*r) * y.std()
return slope, intercept, r, prob, sterrest, Syy/Sxx
if stats.linregress.__doc__:
linregress.__doc__ = stats.linregress.__doc__ + genmissingvaldoc
def theilslopes(y, x=None, alpha=0.05):
"""Computes the Theil slope over the dataset (x,y), as the median of all slopes
between paired values.
Parameters
----------
y : sequence
Dependent variable.
x : {None, sequence} optional
Independent variable. If None, use arange(len(y)) instead.
alpha : float
Confidence degree.
Returns
-------
medslope : float
Theil slope
medintercept : float
Intercept of the Theil line, as median(y)-medslope*median(x)
lo_slope : float
Lower bound of the confidence interval on medslope
up_slope : float
Upper bound of the confidence interval on medslope
"""
y = ma.asarray(y).flatten()
y[-1] = masked
n = len(y)
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).flatten()
if len(x) != n:
raise ValueError, "Incompatible lengths ! (%s<>%s)" % (n,len(x))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
ny = y.count()
#
slopes = ma.hstack([(y[i+1:]-y[i])/(x[i+1:]-x[i]) for i in range(n-1)])
slopes.sort()
medslope = ma.median(slopes)
medinter = ma.median(y) - medslope*ma.median(x)
#
if alpha > 0.5:
alpha = 1.-alpha
z = stats.distributions.norm.ppf(alpha/2.)
#
(xties, yties) = (count_tied_groups(x), count_tied_groups(y))
nt = ny*(ny-1)/2.
sigsq = (ny*(ny-1)*(2*ny+5)/18.)
sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in xties.iteritems())
sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in yties.iteritems())
sigma = np.sqrt(sigsq)
Ru = min(np.round((nt - z*sigma)/2. + 1), len(slopes)-1)
Rl = max(np.round((nt + z*sigma)/2.), 0)
delta = slopes[[Rl,Ru]]
return medslope, medinter, delta[0], delta[1]
def sen_seasonal_slopes(x):
x = ma.array(x, subok=True, copy=False, ndmin=2)
(n,_) = x.shape
# Get list of slopes per season
szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
for i in range(n)])
szn_medslopes = ma.median(szn_slopes, axis=0)
medslope = ma.median(szn_slopes, axis=None)
return szn_medslopes, medslope
#####--------------------------------------------------------------------------
#---- --- Inferential statistics ---
#####--------------------------------------------------------------------------
def ttest_onesamp(a, popmean):
a = ma.asarray(a)
x = a.mean(axis=None)
v = a.var(axis=None,ddof=1)
n = a.count(axis=None)
df = n-1
svar = ((n-1)*v) / float(df)
t = (x-popmean)/ma.sqrt(svar*(1.0/n))
prob = betai(0.5*df,0.5,df/(df+t*t))
return t,prob
ttest_onesamp.__doc__ = stats.ttest_1samp.__doc__
ttest_1samp = ttest_onesamp
def ttest_ind(a, b, axis=0):
a, b, axis = _chk2_asarray(a, b, axis)
(x1, x2) = (a.mean(axis), b.mean(axis))
(v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
(n1, n2) = (a.count(axis), b.count(axis))
df = n1+n2-2
svar = ((n1-1)*v1+(n2-1)*v2) / float(df)
svar == 0
t = (x1-x2)/ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # N-D COMPUTATION HERE!!!!!!
t = ma.filled(t, 1) # replace NaN t-values with 1.0
probs = betai(0.5*df,0.5,float(df)/(df+t*t)).reshape(t.shape)
return t, probs.squeeze()
ttest_ind.__doc__ = stats.ttest_ind.__doc__
def ttest_rel(a,b,axis=None):
a, b, axis = _chk2_asarray(a, b, axis)
if len(a)!=len(b):
raise ValueError, 'unequal length arrays'
(x1, x2) = (a.mean(axis), b.mean(axis))
(v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
n = a.count(axis)
df = (n-1.0)
d = (a-b).astype('d')
denom = ma.sqrt((n*ma.add.reduce(d*d,axis) - ma.add.reduce(d,axis)**2) /df)
#zerodivproblem = denom == 0
t = ma.add.reduce(d, axis) / denom
t = ma.filled(t, 1)
probs = betai(0.5*df,0.5,df/(df+t*t)).reshape(t.shape).squeeze()
return t, probs
ttest_rel.__doc__ = stats.ttest_rel.__doc__
def chisquare(f_obs, f_exp=None):
f_obs = ma.asarray(f_obs)
if f_exp is None:
f_exp = ma.array([f_obs.mean(axis=0)] * len(f_obs))
f_exp = f_exp.astype(float)
chisq = ma.add.reduce((f_obs-f_exp)**2 / f_exp)
return chisq, stats.chisqprob(chisq, f_obs.count(0)-1)
chisquare.__doc__ = stats.chisquare.__doc__
def mannwhitneyu(x,y, use_continuity=True):
"""Computes the Mann-Whitney on samples x and y.
Missing values in x and/or y are discarded.
Parameters
----------
x : sequence
y : sequence
use_continuity : {True, False} optional
Whether a continuity correction (1/2.) should be taken into account.
Returns
-------
u : float
The Mann-Whitney statistics
prob : float
Approximate p-value assuming a normal distribution.
"""
x = ma.asarray(x).compressed().view(ndarray)
y = ma.asarray(y).compressed().view(ndarray)
ranks = rankdata(np.concatenate([x,y]))
(nx, ny) = (len(x), len(y))
nt = nx + ny
U = ranks[:nx].sum() - nx*(nx+1)/2.
U = max(U, nx*ny - U)
u = nx*ny - U
#
mu = (nx*ny)/2.
sigsq = (nt**3 - nt)/12.
ties = count_tied_groups(ranks)
sigsq -= np.sum(v*(k**3-k) for (k,v) in ties.iteritems())/12.
sigsq *= nx*ny/float(nt*(nt-1))
#
if use_continuity:
z = (U - 1/2. - mu) / ma.sqrt(sigsq)
else:
z = (U - mu) / ma.sqrt(sigsq)
prob = special.erfc(abs(z)/np.sqrt(2))
return (u, prob)
def kruskalwallis(*args):
output = argstoarray(*args)
ranks = ma.masked_equal(rankdata(output, use_missing=False), 0)
sumrk = ranks.sum(-1)
ngrp = ranks.count(-1)
ntot = ranks.count()
# ssbg = (sumrk**2/ranks.count(-1)).sum() - ranks.sum()**2/ntotal
# H = ssbg / (ntotal*(ntotal+1)/12.)
H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1)
# Tie correction
ties = count_tied_groups(ranks)
T = 1. - np.sum(v*(k**3-k) for (k,v) in ties.iteritems())/float(ntot**3-ntot)
if T == 0:
raise ValueError, 'All numbers are identical in kruskal'
H /= T
#
df = len(output) - 1
prob = stats.chisqprob(H,df)
return (H, prob)
kruskal = kruskalwallis
kruskalwallis.__doc__ = stats.kruskal.__doc__
_kolmog2 = special.kolmogorov
def _kolmog1(x,n):
if x <= 0:
return 0
if x >= 1:
return 1
j = np.arange(np.floor(n*(1-x))+1)
return 1 - x * np.sum(np.exp(np.log(misc.comb(n,j))
+ (n-j) * np.log(1-x-j/float(n))
+ (j-1) * np.log(x+j/float(n))))
def ks_twosamp(data1, data2, alternative="two_sided"):
"""Computes the Kolmogorov-Smirnov test on two samples.
Missing values are discarded.
Parameters
----------
data1 : sequence
First data set
data2 : sequence
Second data set
alternative : {'two_sided', 'less', 'greater'} optional
Indicates the alternative hypothesis.
Returns
-------
d : float
Value of the Kolmogorov Smirnov test
p : float
Corresponding p-value.
"""
(data1, data2) = (ma.asarray(data1), ma.asarray(data2))
(n1, n2) = (data1.count(), data2.count())
n = (n1*n2/float(n1+n2))
mix = ma.concatenate((data1.compressed(), data2.compressed()))
mixsort = mix.argsort(kind='mergesort')
csum = np.where(mixsort<n1, 1./n1, -1./n2).cumsum()
# Check for ties
if len(np.unique(mix)) < (n1+n2):
csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]]
#
alternative = str(alternative).lower()[0]
if alternative == 't':
d = ma.abs(csum).max()
prob = _kolmog2(np.sqrt(n)*d)
elif alternative == 'l':
d = -csum.min()
prob = np.exp(-2*n*d**2)
elif alternative == 'g':
d = csum.max()
prob = np.exp(-2*n*d**2)
else:
raise ValueError("Invalid value for the alternative hypothesis: "\
"should be in 'two_sided', 'less' or 'greater'")
return (d, prob)
ks_2samp = ks_twosamp
def ks_twosamp_old(data1, data2):
""" Computes the Kolmogorov-Smirnov statistic on 2 samples.
Returns: KS D-value, p-value
#"""
(data1, data2) = [ma.asarray(d).compressed() for d in (data1,data2)]
return stats.ks_2samp(data1,data2)
#####--------------------------------------------------------------------------
#---- --- Trimming ---
#####--------------------------------------------------------------------------
def threshold(a, threshmin=None, threshmax=None, newval=0):
"""Clip array to a given value.
Similar to numpy.clip(), except that values less than threshmin or
greater than threshmax are replaced by newval, instead of by
threshmin and threshmax respectively.
Parameters
----------
a : ndarray
Input data
threshmin : {None, float} optional
Lower threshold. If None, set to the minimum value.
threshmax : {None, float} optional
Upper threshold. If None, set to the maximum value.
newval : {0, float} optional
Value outside the thresholds.
Returns
-------
a, with values less (greater) than threshmin (threshmax) replaced with newval.
"""
a = ma.array(a, copy=True)
mask = np.zeros(a.shape, dtype=bool)
if threshmin is not None:
mask |= (a < threshmin).filled(False)
if threshmax is not None:
mask |= (a > threshmax).filled(False)
a[mask] = newval
return a
def trima(a, limits=None, inclusive=(True,True)):
"""Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.
Parameters
----------
a : sequence
Input array.
limits : {None, tuple} optional
Tuple of (lower limit, upper limit) in absolute values.
Values of the input array lower (greater) than the lower (upper) limit
will be masked. A limit is None indicates an open interval.
inclusive : {(True,True) tuple} optional
Tuple of (lower flag, upper flag), indicating whether values exactly
equal to the lower (upper) limit are allowed.
"""
a = ma.asarray(a)
a.unshare_mask()
if limits is None:
return a
(lower_lim, upper_lim) = limits
(lower_in, upper_in) = inclusive
condition = False
if lower_lim is not None:
if lower_in:
condition |= (a < lower_lim)
else:
condition |= (a <= lower_lim)
if upper_lim is not None:
if upper_in:
condition |= (a > upper_lim)
else:
condition |= (a >= upper_lim)
a[condition.filled(True)] = masked
return a
def trimr(a, limits=None, inclusive=(True, True), axis=None):
"""Trims an array by masking some proportion of the data on each end.
Returns a masked version of the input array.
Parameters
----------
a : sequence
Input array.
limits : {None, tuple} optional
Tuple of the percentages to cut on each side of the array, with respect
to the number of unmasked data, as floats between 0. and 1.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the
total number of unmasked data after trimming is n*(1.-sum(limits))
The value of one limit can be set to None to indicate an open interval.
inclusive : {(True,True) tuple} optional
Tuple of flags indicating whether the number of data being masked on the
left (right) end should be truncated (True) or rounded (False) to integers.
axis : {None,int} optional
Axis along which to trim. If None, the whole array is trimmed, but its
shape is maintained.
"""
def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
n = a.count()
idx = a.argsort()
if low_limit:
if low_inclusive:
lowidx = int(low_limit*n)
else:
lowidx = np.round(low_limit*n)
a[idx[:lowidx]] = masked
if up_limit is not None:
if up_inclusive:
upidx = n - int(n*up_limit)
else:
upidx = n- np.round(n*up_limit)
a[idx[upidx:]] = masked
return a
#
a = ma.asarray(a)
a.unshare_mask()
if limits is None:
return a
# Check the limits
(lolim, uplim) = limits
errmsg = "The proportion to cut from the %s should be between 0. and 1."
if lolim is not None:
if lolim > 1. or lolim < 0:
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
if uplim is not None:
if uplim > 1. or uplim < 0:
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
#
(loinc, upinc) = inclusive
#
if axis is None:
shp = a.shape
return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
else:
return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc)
trimdoc = """
Parameters
----------
a : sequence
Input array
limits : {None, tuple} optional
If relative == False, tuple (lower limit, upper limit) in absolute values.
Values of the input array lower (greater) than the lower (upper) limit are
masked.
If relative == True, tuple (lower percentage, upper percentage) to cut
on each side of the array, with respect to the number of unmasked data.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the
total number of unmasked data after trimming is n*(1.-sum(limits))
In each case, the value of one limit can be set to None to indicate an
open interval.
If limits is None, no trimming is performed
inclusive : {(True, True) tuple} optional
If relative==False, tuple indicating whether values exactly equal to the
absolute limits are allowed.
If relative==True, tuple indicating whether the number of data being masked
on each side should be rounded (True) or truncated (False).
relative : {False, True} optional
Whether to consider the limits as absolute values (False) or proportions
to cut (True).
axis : {None, integer}, optional
Axis along which to trim.
"""
def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None):
"""Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.
%s
Examples
--------
>>>z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
>>>trim(z,(3,8))
[--,--, 3, 4, 5, 6, 7, 8,--,--]
>>>trim(z,(0.1,0.2),relative=True)
[--, 2, 3, 4, 5, 6, 7, 8,--,--]
"""
if relative:
return trimr(a, limits=limits, inclusive=inclusive, axis=axis)
else:
return trima(a, limits=limits, inclusive=inclusive)
if trim.__doc__:
trim.__doc__ = trim.__doc__ % trimdoc
def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None):
"""Trims the data by masking the int(proportiontocut*n) smallest and
int(proportiontocut*n) largest values of data along the given axis, where n
is the number of unmasked values before trimming.
Parameters
----------
data : ndarray
Data to trim.
proportiontocut : {0.2, float} optional
Percentage of trimming (as a float between 0 and 1).
If n is the number of unmasked values before trimming, the number of
values after trimming is:
(1-2*proportiontocut)*n.
inclusive : {(True, True) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).
axis : {None, integer}, optional
Axis along which to perform the trimming.
If None, the input array is first flattened.
"""
return trimr(data, limits=(proportiontocut,proportiontocut),
inclusive=inclusive, axis=axis)
#..............................................................................
def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True),
axis=None):
"""Trims the data by masking int(trim*n) values from ONE tail of the
data along the given axis, where n is the number of unmasked values.
Parameters
----------
data : {ndarray}
Data to trim.
proportiontocut : {0.2, float} optional
Percentage of trimming. If n is the number of unmasked values
before trimming, the number of values after trimming is
(1-proportiontocut)*n.
tail : {'left','right'} optional
If left (right), the ``proportiontocut`` lowest (greatest) values will
be masked.
inclusive : {(True, True) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).
axis : {None, integer}, optional
Axis along which to perform the trimming.
If None, the input array is first flattened.
"""
tail = str(tail).lower()[0]
if tail == 'l':
limits = (proportiontocut,None)
elif tail == 'r':
limits = (None, proportiontocut)
else:
raise TypeError("The tail argument should be in ('left','right')")
return trimr(data, limits=limits, axis=axis, inclusive=inclusive)
trim1 = trimtail
def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
axis=None):
"""Returns the trimmed mean of the data along the given axis.
%s
""" % trimdoc
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
if relative:
return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis)
else:
return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis)
def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
axis=None, ddof=0):
"""Returns the trimmed variance of the data along the given axis.
%s
ddof : {0,integer}, optional
Means Delta Degrees of Freedom. The denominator used during computations
is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
biased estimate of the variance.
""" % trimdoc
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
if relative:
out = trimr(a,limits=limits, inclusive=inclusive,axis=axis)
else:
out = trima(a,limits=limits,inclusive=inclusive)
return out.var(axis=axis, ddof=ddof)
def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
axis=None, ddof=0):
"""Returns the trimmed standard deviation of the data along the given axis.
%s
ddof : {0,integer}, optional
Means Delta Degrees of Freedom. The denominator used during computations
is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
biased estimate of the variance.
""" % trimdoc
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
if relative:
out = trimr(a,limits=limits,inclusive=inclusive,axis=axis)
else:
out = trima(a,limits=limits,inclusive=inclusive)
return out.std(axis=axis,ddof=ddof)
def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None):
"""Returns the standard error of the trimmed mean of the data along the given
axis.
Parameters
----------
a : sequence
Input array
limits : {(0.1,0.1), tuple of float} optional
tuple (lower percentage, upper percentage) to cut on each side of the
array, with respect to the number of unmasked data.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the
total number of unmasked data after trimming is n*(1.-sum(limits))
In each case, the value of one limit can be set to None to indicate an
open interval.
If limits is None, no trimming is performed
inclusive : {(True, True) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).
axis : {None, integer}, optional
Axis along which to trim.
"""
#........................
def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
"Returns the standard error of the trimmed mean for a 1D input data."
n = a.count()
idx = a.argsort()
if low_limit:
if low_inclusive:
lowidx = int(low_limit*n)
else:
lowidx = np.round(low_limit*n)
a[idx[:lowidx]] = masked
if up_limit is not None:
if up_inclusive:
upidx = n - int(n*up_limit)
else:
upidx = n- np.round(n*up_limit)
a[idx[upidx:]] = masked
nsize = a.count()
a[idx[:lowidx]] = a[idx[lowidx]]
a[idx[upidx:]] = a[idx[upidx-1]]
winstd = a.std(ddof=1)
return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a)))
#........................
a = ma.array(a, copy=True, subok=True)
a.unshare_mask()
if limits is None:
return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis))
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
# Check the limits
(lolim, uplim) = limits
errmsg = "The proportion to cut from the %s should be between 0. and 1."
if lolim is not None:
if lolim > 1. or lolim < 0:
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
if uplim is not None:
if uplim > 1. or uplim < 0:
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
#
(loinc, upinc) = inclusive
if (axis is None):
shp = a.shape
return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc)
else:
assert a.ndim <= 2, "Array should be 2D at most !"
return ma.apply_along_axis(_trimmed_stde_1D, axis, a,
lolim,uplim,loinc,upinc)
def tmean(a, limits=None, inclusive=(True,True)):
return trima(a, limits=limits, inclusive=inclusive).mean()
tmean.__doc__ = stats.tmean.__doc__
def tvar(a, limits=None, inclusive=(True,True)):
return trima(a, limits=limits, inclusive=inclusive).var()
tvar.__doc__ = stats.tvar.__doc__
def tmin(a, lowerlimit=None, axis=0, inclusive=True):
a, axis = _chk_asarray(a, axis)
am = trima(a, (lowerlimit, None), (inclusive, False))
return ma.minimum.reduce(am, axis)
tmin.__doc__ = stats.tmin.__doc__
def tmax(a, upperlimit, axis=0, inclusive=True):
a, axis = _chk_asarray(a, axis)
am = trima(a, (None, upperlimit), (False, inclusive))
return ma.maximum.reduce(am, axis)
tmax.__doc__ = stats.tmax.__doc__
def tsem(a, limits=None, inclusive=(True,True)):
a = ma.asarray(a).ravel()
if limits is None:
n = float(a.count())
return a.std()/ma.sqrt(n)
am = trima(a.ravel(), limits, inclusive)
sd = np.sqrt(am.var())
return sd / am.count()
tsem.__doc__ = stats.tsem.__doc__
def winsorize(a, limits=None, inclusive=(True,True), inplace=False, axis=None):
"""Returns a Winsorized version of the input array.
The (limits[0])th lowest values are set to the (limits[0])th percentile,
and the (limits[1])th highest values are set to the (limits[1])th
percentile.
Masked values are skipped.
Parameters
----------
a : sequence
Input array.
limits : {None, tuple of float} optional
Tuple of the percentages to cut on each side of the array, with respect
to the number of unmasked data, as floats between 0. and 1.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the
total number of unmasked data after trimming is n*(1.-sum(limits))
The value of one limit can be set to None to indicate an open interval.
inclusive : {(True, True) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).
inplace : {False, True} optional
Whether to winsorize in place (True) or to use a copy (False)
axis : {None, int} optional
Axis along which to trim. If None, the whole array is trimmed, but its
shape is maintained.
"""
def _winsorize1D(a, low_limit, up_limit, low_include, up_include):
n = a.count()
idx = a.argsort()
if low_limit:
if low_include:
lowidx = int(low_limit*n)
else:
lowidx = np.round(low_limit*n)
a[idx[:lowidx]] = a[idx[lowidx]]
if up_limit is not None:
if up_include:
upidx = n - int(n*up_limit)
else:
upidx = n- np.round(n*up_limit)
a[idx[upidx:]] = a[idx[upidx-1]]
return a
# We gonna modify a: better make a copy
a = ma.array(a, copy=np.logical_not(inplace))
#
if limits is None:
return a
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
# Check the limits
(lolim, uplim) = limits
errmsg = "The proportion to cut from the %s should be between 0. and 1."
if lolim is not None:
if lolim > 1. or lolim < 0:
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
if uplim is not None:
if uplim > 1. or uplim < 0:
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
#
(loinc, upinc) = inclusive
#
if axis is None:
shp = a.shape
return _winsorize1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
else:
return ma.apply_along_axis(_winsorize1D, axis,a,lolim,uplim,loinc,upinc)
#####--------------------------------------------------------------------------
#---- --- Moments ---
#####--------------------------------------------------------------------------
def moment(a, moment=1, axis=0):
a, axis = _chk_asarray(a, axis)
if moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
mn = ma.expand_dims(a.mean(axis=axis), axis)
s = ma.power((a-mn), moment)
return s.mean(axis=axis)
moment.__doc__ = stats.moment.__doc__
def variation(a, axis=0):
a, axis = _chk_asarray(a, axis)
return a.std(axis)/a.mean(axis)
variation.__doc__ = stats.variation.__doc__
def skew(a, axis=0, bias=True):
a, axis = _chk_asarray(a,axis)
n = a.count(axis)
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
vals = ma.where(m2 == 0, 0, m3 / m2**1.5)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
np.place(vals, can_correct, nval)
return vals
skew.__doc__ = stats.skew.__doc__
def kurtosis(a, axis=0, fisher=True, bias=True):
a, axis = _chk_asarray(a, axis)
n = a.count(axis)
m2 = moment(a,2,axis)
m4 = moment(a,4,axis)
vals = ma.where(m2 == 0, 0, m4/ m2**2.0)
if not bias:
can_correct = (n > 3) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
np.place(vals, can_correct, nval+3.0)
if fisher:
return vals - 3
else:
return vals
kurtosis.__doc__ = stats.kurtosis.__doc__
def describe(a, axis=0):
"""Computes several descriptive statistics of the passed array.
Parameters
----------
a : array
axis : int or None
Returns
-------
(size of the data (discarding missing values),
(min, max),
arithmetic mean,
unbiased variance,
biased skewness,
biased kurtosis)
"""
a, axis = _chk_asarray(a, axis)
n = a.count(axis)
mm = (ma.minimum.reduce(a), ma.maximum.reduce(a))
m = a.mean(axis)
v = a.var(axis)
sk = skew(a, axis)
kurt = kurtosis(a, axis)
return n, mm, m, v, sk, kurt
#.............................................................................
def stde_median(data, axis=None):
"""Returns the McKean-Schrader estimate of the standard error of the sample
median along the given axis. masked values are discarded.
Parameters
----------
data : ndarray
Data to trim.
axis : {None,int} optional
Axis along which to perform the trimming.
If None, the input array is first flattened.
"""
def _stdemed_1D(data):
data = np.sort(data.compressed())
n = len(data)
z = 2.5758293035489004
k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
return ((data[n-k] - data[k-1])/(2.*z))
#
data = ma.array(data, copy=False, subok=True)
if (axis is None):
return _stdemed_1D(data)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return ma.apply_along_axis(_stdemed_1D, axis, data)
#####--------------------------------------------------------------------------
#---- --- Normality Tests ---
#####--------------------------------------------------------------------------
def skewtest(a, axis=0):
a, axis = _chk_asarray(a, axis)
if axis is None:
a = a.ravel()
axis = 0
b2 = skew(a,axis)
n = a.count(axis)
if np.min(n) < 8:
warnings.warn(
"skewtest only valid for n>=8 ... continuing anyway, n=%i" %
np.min(n))
y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)) )
beta2 = ( 3.0*(n*n+27*n-70)*(n+1)*(n+3) ) / ( (n-2.0)*(n+5)*(n+7)*(n+9) )
W2 = -1 + ma.sqrt(2*(beta2-1))
delta = 1/ma.sqrt(0.5*ma.log(W2))
alpha = ma.sqrt(2.0/(W2-1))
y = ma.where(y==0, 1, y)
Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1))
return Z, (1.0 - stats.zprob(Z))*2
skewtest.__doc__ = stats.skewtest.__doc__
def kurtosistest(a, axis=0):
a, axis = _chk_asarray(a, axis)
n = a.count(axis=axis).astype(float)
if np.min(n) < 20:
warnings.warn(
"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
np.min(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) /(n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
x = (b2-E)/ma.sqrt(varb2)
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5))/
(n*(n-2)*(n-3)))
A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 - 2./(9.0*A)
denom = 1 + x*ma.sqrt(2/(A-4.0))
denom[denom < 0] = masked
term2 = ma.power((1-2.0/A)/denom,1/3.0)
Z = ( term1 - term2 ) / np.sqrt(2/(9.0*A))
return Z, (1.0-stats.zprob(Z))*2
kurtosistest.__doc__ = stats.kurtosistest.__doc__
def normaltest(a, axis=0):
a, axis = _chk_asarray(a, axis)
s,_ = skewtest(a,axis)
k,_ = kurtosistest(a,axis)
k2 = s*s + k*k
return k2, stats.chisqprob(k2,2)
normaltest.__doc__ = stats.normaltest.__doc__
# Martinez-Iglewicz test
# K-S test
#####--------------------------------------------------------------------------
#---- --- Percentiles ---
#####--------------------------------------------------------------------------
def mquantiles(data, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None,
limit=()):
"""Computes empirical quantiles for a *1xN* data array.
Samples quantile are defined by:
*Q(p) = (1-g).x[i] +g.x[i+1]*
where *x[j]* is the jth order statistic,
with *i = (floor(n*p+m))*, *m=alpha+p*(1-alpha-beta)* and *g = n*p + m - i)*.
Typical values of (alpha,beta) are:
- (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4)
- (.5,.5) : *p(k) = (k+1/2.)/n* : piecewise linear function (R, type 5)
- (0,0) : *p(k) = k/(n+1)* : (R type 6)
- (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])].
That's R default (R type 7)
- (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of x. (R type 8)
- (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom.
The resulting quantile estimates are approximately unbiased
if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
Parameters
----------
x : sequence
Input data, as a sequence or array of dimension at most 2.
prob : sequence
List of quantiles to compute.
alpha : {0.4, float} optional
Plotting positions parameter.
beta : {0.4, float} optional
Plotting positions parameter.
axis : {None, int} optional
Axis along which to perform the trimming.
If None, the input array is first flattened.
limit : tuple
Tuple of (lower, upper) values. Values of a outside this closed interval
are ignored.
"""
def _quantiles1D(data,m,p):
x = np.sort(data.compressed())
n = len(x)
if n == 0:
return ma.array(np.empty(len(p), dtype=float), mask=True)
elif n == 1:
return ma.array(np.resize(x, p.shape), mask=nomask)
aleph = (n*p + m)
k = np.floor(aleph.clip(1, n-1)).astype(int)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
# Initialization & checks ---------
data = ma.array(data, copy=False)
if limit:
condition = (limit[0]<data) & (data<limit[1])
data[condition.filled(True)] = masked
p = np.array(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
return ma.apply_along_axis(_quantiles1D, axis, data, m, p)
def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4):
"""Calculate the score at the given 'per' percentile of the
sequence a. For example, the score at per=50 is the median.
This function is a shortcut to mquantile
"""
if (per < 0) or (per > 100.):
raise ValueError("The percentile should be between 0. and 100. !"\
" (got %s)" % per)
return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap,
limit=limit, axis=0).squeeze()
def plotting_positions(data, alpha=0.4, beta=0.4):
"""Returns the plotting positions (or empirical percentile points) for the
data.
Plotting positions are defined as (i-alpha)/(n-alpha-beta), where:
- i is the rank order statistics
- n is the number of unmasked values along the given axis
- alpha and beta are two parameters.
Typical values for alpha and beta are:
- (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4)
- (.5,.5) : *p(k) = (k-1/2.)/n* : piecewise linear function (R, type 5)
- (0,0) : *p(k) = k/(n+1)* : Weibull (R type 6)
- (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])].
That's R default (R type 7)
- (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of x. (R type 8)
- (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom.
The resulting quantile estimates are approximately unbiased
if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
Parameters
----------
x : sequence
Input data, as a sequence or array of dimension at most 2.
prob : sequence
List of quantiles to compute.
alpha : {0.4, float} optional
Plotting positions parameter.
beta : {0.4, float} optional
Plotting positions parameter.
"""
data = ma.array(data, copy=False).reshape(1,-1)
n = data.count()
plpos = np.empty(data.size, dtype=float)
plpos[n:] = 0
plpos[data.argsort()[:n]] = (np.arange(1,n+1) - alpha)/(n+1-alpha-beta)
return ma.array(plpos, mask=data._mask)
meppf = plotting_positions
#####--------------------------------------------------------------------------
#---- --- Variability ---
#####--------------------------------------------------------------------------
def obrientransform(*args):
"""
Computes a transform on input data (any number of columns). Used to
test for homogeneity of variance prior to running one-way stats. Each
array in *args is one level of a factor. If an F_oneway() run on the
transformed data and found significant, variances are unequal. From
Maxwell and Delaney, p.112.
Returns: transformed data for use in an ANOVA
"""
data = argstoarray(*args).T
v = data.var(axis=0,ddof=1)
m = data.mean(0)
n = data.count(0).astype(float)
# result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2))
data -= m
data **= 2
data *= (n-1.5)*n
data -= 0.5*v*(n-1)
data /= (n-1.)*(n-2.)
if not ma.allclose(v,data.mean(0)):
raise ValueError("Lack of convergence in obrientransform.")
return data
def signaltonoise(data, axis=0):
"""Calculates the signal-to-noise ratio, as the ratio of the mean over
standard deviation along the given axis.
Parameters
----------
data : sequence
Input data
axis : {0, int} optional
Axis along which to compute. If None, the computation is performed
on a flat version of the array.
"""
data = ma.array(data, copy=False)
m = data.mean(axis)
sd = data.std(axis, ddof=0)
return m/sd
def samplevar(data, axis=0):
"""Returns a biased estimate of the variance of the data, as the average
of the squared deviations from the mean.
Parameters
----------
data : sequence
Input data
axis : {0, int} optional
Axis along which to compute. If None, the computation is performed
on a flat version of the array.
"""
return ma.asarray(data).var(axis=axis,ddof=0)
def samplestd(data, axis=0):
"""Returns a biased estimate of the standard deviation of the data, as the
square root of the average squared deviations from the mean.
Parameters
----------
data : sequence
Input data
axis : {0,int} optional
Axis along which to compute. If None, the computation is performed
on a flat version of the array.
Notes
-----
samplestd(a) is equivalent to a.std(ddof=0)
"""
return ma.asarray(data).std(axis=axis,ddof=0)
def var(a,axis=None):
return ma.asarray(a).var(axis=axis,ddof=1)
var.__doc__ = stats.var.__doc__
def std(a,axis=None):
return ma.asarray(a).std(axis=axis,ddof=1)
std.__doc__ = stats.std.__doc__
def stderr(a, axis=0):
a, axis = _chk_asarray(a, axis)
return a.std(axis=axis, ddof=1) / ma.sqrt(a.count(axis=axis))
stderr.__doc__ = stats.stderr.__doc__
def sem(a, axis=0):
a, axis = _chk_asarray(a, axis)
n = a.count(axis=axis)
s = a.std(axis=axis,ddof=0) / ma.sqrt(n-1)
return s
sem.__doc__ = stats.sem.__doc__
def z(a, score):
a = ma.asarray(a)
z = (score-a.mean(None)) / a.std(axis=None, ddof=1)
return z
z.__doc__ = stats.z.__doc__
def zs(a):
a = ma.asarray(a)
mu = a.mean(axis=0)
sigma = a.std(axis=0,ddof=0)
return (a-mu)/sigma
zs.__doc__ = stats.zs.__doc__
def zmap(scores, compare, axis=0):
(scores, compare) = (ma.asarray(scores), ma.asarray(compare))
mns = compare.mean(axis=axis)
sstd = compare.std(axis=0, ddof=0)
return (scores - mns) / sstd
zmap.__doc__ = stats.zmap.__doc__
#####--------------------------------------------------------------------------
#---- --- ANOVA ---
#####--------------------------------------------------------------------------
def f_oneway(*args):
"""
Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups. From Heiman, pp.394-7.
Usage: f_oneway (*args) where *args is 2 or more arrays, one per
treatment group
Returns: f-value, probability
"""
# Construct a single array of arguments: each row is a group
data = argstoarray(*args)
ngroups = len(data)
ntot = data.count()
sstot = (data**2).sum() - (data.sum())**2/float(ntot)
ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum()
sswg = sstot-ssbg
dfbg = ngroups-1
dfwg = ntot - ngroups
msb = ssbg/float(dfbg)
msw = sswg/float(dfwg)
f = msb/msw
prob = stats.fprob(dfbg,dfwg,f)
return f, prob
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
"""Calculation of Wilks lambda F-statistic for multivarite data, per
Maxwell & Delaney p.657.
"""
ER = ma.array(ER, copy=False, ndmin=2)
EF = ma.array(EF, copy=False, ndmin=2)
if ma.getmask(ER).any() or ma.getmask(EF).any():
raise NotImplementedError("Not implemented when the inputs "\
"have missing data")
lmbda = np.linalg.det(EF) / np.linalg.det(ER)
q = ma.sqrt( ((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 -5) )
q = ma.filled(q, 1)
n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
return n_um / d_en
def friedmanchisquare(*args):
"""Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
This function calculates the Friedman Chi-square test for repeated measures
and returns the result, along with the associated probability value.
Each input is considered a given group. Ideally, the number of treatments
among each group should be equal. If this is not the case, only the first
n treatments are taken into account, where n is the number of treatments
of the smallest group.
If a group has some missing values, the corresponding treatments are masked
in the other groups.
The test statistic is corrected for ties.
Masked values in one group are propagated to the other groups.
Returns: chi-square statistic, associated p-value
"""
data = argstoarray(*args).astype(float)
k = len(data)
if k < 3:
raise ValueError("Less than 3 groups (%i): " % k +\
"the Friedman test is NOT appropriate.")
ranked = ma.masked_values(rankdata(data, axis=0), 0)
if ranked._mask is not nomask:
ranked = ma.mask_cols(ranked)
ranked = ranked.compressed().reshape(k,-1).view(ndarray)
else:
ranked = ranked._data
(k,n) = ranked.shape
# Ties correction
repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object)
ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int)
tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k))
#
ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2)
chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction
return chisq, stats.chisqprob(chisq,k-1)
#-############################################################################-#
|