1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
Optimization (optimize)
=======================
.. sectionauthor:: Travis E. Oliphant
.. currentmodule:: scipy.optimize
There are several classical optimization algorithms provided by SciPy
in the :mod:`scipy.optimize` package. An overview of the module is
available using :func:`help` (or :func:`pydoc.help`):
.. literalinclude:: examples/5-1
The first four algorithms are unconstrained minimization algorithms
(:func:`fmin`: Nelder-Mead simplex, :func:`fmin_bfgs`: BFGS,
:func:`fmin_ncg`: Newton Conjugate Gradient, and :func:`leastsq`:
Levenburg-Marquardt). The last algorithm actually finds the roots of a
general function of possibly many variables. It is included in the
optimization package because at the (non-boundary) extreme points of a
function, the gradient is equal to zero.
Nelder-Mead Simplex algorithm (:func:`fmin`)
--------------------------------------------
The simplex algorithm is probably the simplest way to minimize a
fairly well-behaved function. The simplex algorithm requires only
function evaluations and is a good choice for simple minimization
problems. However, because it does not use any gradient evaluations,
it may take longer to find the minimum. To demonstrate the
minimization function consider the problem of minimizing the
Rosenbrock function of :math:`N` variables:
.. math::
:nowrap:
\[ f\left(\mathbf{x}\right)=\sum_{i=1}^{N-1}100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i-1}\right)^{2}.\]
The minimum value of this function is 0 which is achieved when :math:`x_{i}=1.` This minimum can be found using the :obj:`fmin` routine as shown in the example below:
>>> from scipy.optimize import fmin
>>> def rosen(x):
... """The Rosenbrock function"""
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin(rosen, x0, xtol=1e-8)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 339
Function evaluations: 571
>>> print xopt
[ 1. 1. 1. 1. 1.]
Another optimization algorithm that needs only function calls to find
the minimum is Powell's method available as :func:`fmin_powell`.
Broyden-Fletcher-Goldfarb-Shanno algorithm (:func:`fmin_bfgs`)
--------------------------------------------------------------
In order to converge more quickly to the solution, this routine uses
the gradient of the objective function. If the gradient is not given
by the user, then it is estimated using first-differences. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method typically requires
fewer function calls than the simplex algorithm even when the gradient
must be estimated.
To demonstrate this algorithm, the Rosenbrock function is again used.
The gradient of the Rosenbrock function is the vector:
.. math::
:nowrap:
\begin{eqnarray*} \frac{\partial f}{\partial x_{j}} & = & \sum_{i=1}^{N}200\left(x_{i}-x_{i-1}^{2}\right)\left(\delta_{i,j}-2x_{i-1}\delta_{i-1,j}\right)-2\left(1-x_{i-1}\right)\delta_{i-1,j}.\\ & = & 200\left(x_{j}-x_{j-1}^{2}\right)-400x_{j}\left(x_{j+1}-x_{j}^{2}\right)-2\left(1-x_{j}\right).\end{eqnarray*}
This expression is valid for the interior derivatives. Special cases
are
.. math::
:nowrap:
\begin{eqnarray*} \frac{\partial f}{\partial x_{0}} & = & -400x_{0}\left(x_{1}-x_{0}^{2}\right)-2\left(1-x_{0}\right),\\ \frac{\partial f}{\partial x_{N-1}} & = & 200\left(x_{N-1}-x_{N-2}^{2}\right).\end{eqnarray*}
A Python function which computes this gradient is constructed by the
code-segment:
>>> def rosen_der(x):
... xm = x[1:-1]
... xm_m1 = x[:-2]
... xm_p1 = x[2:]
... der = zeros_like(x)
... der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
... der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
... der[-1] = 200*(x[-1]-x[-2]**2)
... return der
The calling signature for the BFGS minimization algorithm is similar
to :obj:`fmin` with the addition of the *fprime* argument. An example
usage of :obj:`fmin_bfgs` is shown in the following example which
minimizes the Rosenbrock function.
>>> from scipy.optimize import fmin_bfgs
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_bfgs(rosen, x0, fprime=rosen_der)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 53
Function evaluations: 65
Gradient evaluations: 65
>>> print xopt
[ 1. 1. 1. 1. 1.]
Newton-Conjugate-Gradient (:func:`fmin_ncg`)
--------------------------------------------
The method which requires the fewest function calls and is therefore
often the fastest method to minimize functions of many variables is
:obj:`fmin_ncg`. This method is a modified Newton's method and uses a
conjugate gradient algorithm to (approximately) invert the local
Hessian. Newton's method is based on fitting the function locally to
a quadratic form:
.. math::
:nowrap:
\[ f\left(\mathbf{x}\right)\approx f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right)\cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{T}\mathbf{H}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right).\]
where :math:`\mathbf{H}\left(\mathbf{x}_{0}\right)` is a matrix of second-derivatives (the Hessian). If the Hessian is
positive definite then the local minimum of this function can be found
by setting the gradient of the quadratic form to zero, resulting in
.. math::
:nowrap:
\[ \mathbf{x}_{\textrm{opt}}=\mathbf{x}_{0}-\mathbf{H}^{-1}\nabla f.\]
The inverse of the Hessian is evaluted using the conjugate-gradient
method. An example of employing this method to minimizing the
Rosenbrock function is given below. To take full advantage of the
NewtonCG method, a function which computes the Hessian must be
provided. The Hessian matrix itself does not need to be constructed,
only a vector which is the product of the Hessian with an arbitrary
vector needs to be available to the minimization routine. As a result,
the user can provide either a function to compute the Hessian matrix,
or a function to compute the product of the Hessian with an arbitrary
vector.
Full Hessian example:
^^^^^^^^^^^^^^^^^^^^^
The Hessian of the Rosenbrock function is
.. math::
:nowrap:
\begin{eqnarray*} H_{ij}=\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}} & = & 200\left(\delta_{i,j}-2x_{i-1}\delta_{i-1,j}\right)-400x_{i}\left(\delta_{i+1,j}-2x_{i}\delta_{i,j}\right)-400\delta_{i,j}\left(x_{i+1}-x_{i}^{2}\right)+2\delta_{i,j},\\ & = & \left(202+1200x_{i}^{2}-400x_{i+1}\right)\delta_{i,j}-400x_{i}\delta_{i+1,j}-400x_{i-1}\delta_{i-1,j},\end{eqnarray*}
if :math:`i,j\in\left[1,N-2\right]` with :math:`i,j\in\left[0,N-1\right]` defining the :math:`N\times N` matrix. Other non-zero entries of the matrix are
.. math::
:nowrap:
\begin{eqnarray*} \frac{\partial^{2}f}{\partial x_{0}^{2}} & = & 1200x_{0}^{2}-400x_{1}+2,\\ \frac{\partial^{2}f}{\partial x_{0}\partial x_{1}}=\frac{\partial^{2}f}{\partial x_{1}\partial x_{0}} & = & -400x_{0},\\ \frac{\partial^{2}f}{\partial x_{N-1}\partial x_{N-2}}=\frac{\partial^{2}f}{\partial x_{N-2}\partial x_{N-1}} & = & -400x_{N-2},\\ \frac{\partial^{2}f}{\partial x_{N-1}^{2}} & = & 200.\end{eqnarray*}
For example, the Hessian when :math:`N=5` is
.. math::
:nowrap:
\[ \mathbf{H}=\left[\begin{array}{ccccc} 1200x_{0}^{2}-400x_{1}+2 & -400x_{0} & 0 & 0 & 0\\ -400x_{0} & 202+1200x_{1}^{2}-400x_{2} & -400x_{1} & 0 & 0\\ 0 & -400x_{1} & 202+1200x_{2}^{2}-400x_{3} & -400x_{2} & 0\\ 0 & & -400x_{2} & 202+1200x_{3}^{2}-400x_{4} & -400x_{3}\\ 0 & 0 & 0 & -400x_{3} & 200\end{array}\right].\]
The code which computes this Hessian along with the code to minimize
the function using :obj:`fmin_ncg` is shown in the following example:
>>> from scipy.optimize import fmin_ncg
>>> def rosen_hess(x):
... x = asarray(x)
... H = diag(-400*x[:-1],1) - diag(400*x[:-1],-1)
... diagonal = zeros_like(x)
... diagonal[0] = 1200*x[0]-400*x[1]+2
... diagonal[-1] = 200
... diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
... H = H + diag(diagonal)
... return H
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, avextol=1e-8)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 23
Function evaluations: 26
Gradient evaluations: 23
Hessian evaluations: 23
>>> print xopt
[ 1. 1. 1. 1. 1.]
Hessian product example:
^^^^^^^^^^^^^^^^^^^^^^^^
For larger minimization problems, storing the entire Hessian matrix
can consume considerable time and memory. The Newton-CG algorithm only
needs the product of the Hessian times an arbitrary vector. As a
result, the user can supply code to compute this product rather than
the full Hessian by setting the *fhess_p* keyword to the desired
function. The *fhess_p* function should take the minimization vector as
the first argument and the arbitrary vector as the second
argument. Any extra arguments passed to the function to be minimized
will also be passed to this function. If possible, using Newton-CG
with the hessian product option is probably the fastest way to
minimize the function.
In this case, the product of the Rosenbrock Hessian with an arbitrary
vector is not difficult to compute. If :math:`\mathbf{p}` is the arbitrary vector, then :math:`\mathbf{H}\left(\mathbf{x}\right)\mathbf{p}` has elements:
.. math::
:nowrap:
\[ \mathbf{H}\left(\mathbf{x}\right)\mathbf{p}=\left[\begin{array}{c} \left(1200x_{0}^{2}-400x_{1}+2\right)p_{0}-400x_{0}p_{1}\\ \vdots\\ -400x_{i-1}p_{i-1}+\left(202+1200x_{i}^{2}-400x_{i+1}\right)p_{i}-400x_{i}p_{i+1}\\ \vdots\\ -400x_{N-2}p_{N-2}+200p_{N-1}\end{array}\right].\]
Code which makes use of the *fhess_p* keyword to minimize the
Rosenbrock function using :obj:`fmin_ncg` follows:
>>> from scipy.optimize import fmin_ncg
>>> def rosen_hess_p(x,p):
... x = asarray(x)
... Hp = zeros_like(x)
... Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
... Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
... -400*x[1:-1]*p[2:]
... Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
... return Hp
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_p, avextol=1e-8)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 22
Function evaluations: 25
Gradient evaluations: 22
Hessian evaluations: 54
>>> print xopt
[ 1. 1. 1. 1. 1.]
Least-square fitting (:func:`leastsq`)
--------------------------------------
All of the previously-explained minimization procedures can be used to
solve a least-squares problem provided the appropriate objective
function is constructed. For example, suppose it is desired to fit a
set of data :math:`\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}`
to a known model,
:math:`\mathbf{y}=\mathbf{f}\left(\mathbf{x},\mathbf{p}\right)`
where :math:`\mathbf{p}` is a vector of parameters for the model that
need to be found. A common method for determining which parameter
vector gives the best fit to the data is to minimize the sum of squares
of the residuals. The residual is usually defined for each observed
data-point as
.. math::
:nowrap:
\[ e_{i}\left(\mathbf{p},\mathbf{y}_{i},\mathbf{x}_{i}\right)=\left\Vert \mathbf{y}_{i}-\mathbf{f}\left(\mathbf{x}_{i},\mathbf{p}\right)\right\Vert .\]
An objective function to pass to any of the previous minization
algorithms to obtain a least-squares fit is.
.. math::
:nowrap:
\[ J\left(\mathbf{p}\right)=\sum_{i=0}^{N-1}e_{i}^{2}\left(\mathbf{p}\right).\]
The :obj:`leastsq` algorithm performs this squaring and summing of the
residuals automatically. It takes as an input argument the vector
function :math:`\mathbf{e}\left(\mathbf{p}\right)` and returns the
value of :math:`\mathbf{p}` which minimizes
:math:`J\left(\mathbf{p}\right)=\mathbf{e}^{T}\mathbf{e}`
directly. The user is also encouraged to provide the Jacobian matrix
of the function (with derivatives down the columns or across the
rows). If the Jacobian is not provided, it is estimated.
An example should clarify the usage. Suppose it is believed some
measured data follow a sinusoidal pattern
.. math::
:nowrap:
\[ y_{i}=A\sin\left(2\pi kx_{i}+\theta\right)\]
where the parameters :math:`A,` :math:`k` , and :math:`\theta` are unknown. The residual vector is
.. math::
:nowrap:
\[ e_{i}=\left|y_{i}-A\sin\left(2\pi kx_{i}+\theta\right)\right|.\]
By defining a function to compute the residuals and (selecting an
appropriate starting position), the least-squares fit routine can be
used to find the best-fit parameters :math:`\hat{A},\,\hat{k},\,\hat{\theta}`.
This is shown in the following example:
.. plot::
>>> from numpy import *
>>> x = arange(0,6e-2,6e-2/30)
>>> A,k,theta = 10, 1.0/3e-2, pi/6
>>> y_true = A*sin(2*pi*k*x+theta)
>>> y_meas = y_true + 2*random.randn(len(x))
>>> def residuals(p, y, x):
... A,k,theta = p
... err = y-A*sin(2*pi*k*x+theta)
... return err
>>> def peval(x, p):
... return p[0]*sin(2*pi*p[1]*x+p[2])
>>> p0 = [8, 1/2.3e-2, pi/3]
>>> print array(p0)
[ 8. 43.4783 1.0472]
>>> from scipy.optimize import leastsq
>>> plsq = leastsq(residuals, p0, args=(y_meas, x))
>>> print plsq[0]
[ 10.9437 33.3605 0.5834]
>>> print array([A, k, theta])
[ 10. 33.3333 0.5236]
>>> import matplotlib.pyplot as plt
>>> plt.plot(x,peval(x,plsq[0]),x,y_meas,'o',x,y_true)
>>> plt.title('Least-squares fit to noisy data')
>>> plt.legend(['Fit', 'Noisy', 'True'])
>>> plt.show()
.. :caption: Least-square fitting to noisy data using
.. :obj:`scipy.optimize.leastsq`
Scalar function minimizers
--------------------------
Often only the minimum of a scalar function is needed (a scalar
function is one that takes a scalar as input and returns a scalar
output). In these circumstances, other optimization techniques have
been developed that can work faster.
Unconstrained minimization (:func:`brent`)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are actually two methods that can be used to minimize a scalar
function (:obj:`brent` and :func:`golden`), but :obj:`golden` is
included only for academic purposes and should rarely be used. The
brent method uses Brent's algorithm for locating a minimum. Optimally
a bracket should be given which contains the minimum desired. A
bracket is a triple :math:`\left(a,b,c\right)` such that
:math:`f\left(a\right)>f\left(b\right)<f\left(c\right)` and
:math:`a<b<c` . If this is not given, then alternatively two starting
points can be chosen and a bracket will be found from these points
using a simple marching algorithm. If these two starting points are
not provided 0 and 1 will be used (this may not be the right choice
for your function and result in an unexpected minimum being returned).
Bounded minimization (:func:`fminbound`)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Thus far all of the minimization routines described have been
unconstrained minimization routines. Very often, however, there are
constraints that can be placed on the solution space before
minimization occurs. The :obj:`fminbound` function is an example of a
constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint
allows the minimization to occur only between two fixed endpoints.
For example, to find the minimum of :math:`J_{1}\left(x\right)` near :math:`x=5` , :obj:`fminbound` can be called using the interval :math:`\left[4,7\right]` as a constraint. The result is :math:`x_{\textrm{min}}=5.3314` :
>>> from scipy.special import j1
>>> from scipy.optimize import fminbound
>>> xmin = fminbound(j1, 4, 7)
>>> print xmin
5.33144184241
Root finding
------------
Sets of equations
^^^^^^^^^^^^^^^^^
To find the roots of a polynomial, the command :obj:`roots
<scipy.roots>` is useful. To find a root of a set of non-linear
equations, the command :obj:`fsolve` is needed. For example, the
following example finds the roots of the single-variable
transcendental equation
.. math::
:nowrap:
\[ x+2\cos\left(x\right)=0,\]
and the set of non-linear equations
.. math::
:nowrap:
\begin{eqnarray*} x_{0}\cos\left(x_{1}\right) & = & 4,\\ x_{0}x_{1}-x_{1} & = & 5.\end{eqnarray*}
The results are :math:`x=-1.0299` and :math:`x_{0}=6.5041,\, x_{1}=0.9084` .
>>> def func(x):
... return x + 2*cos(x)
>>> def func2(x):
... out = [x[0]*cos(x[1]) - 4]
... out.append(x[1]*x[0] - x[1] - 5)
... return out
>>> from scipy.optimize import fsolve
>>> x0 = fsolve(func, 0.3)
>>> print x0
-1.02986652932
>>> x02 = fsolve(func2, [1, 1])
>>> print x02
[ 6.50409711 0.90841421]
Scalar function root finding
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If one has a single-variable equation, there are four different root
finder algorithms that can be tried. Each of these root finding
algorithms requires the endpoints of an interval where a root is
suspected (because the function changes signs). In general
:obj:`brentq` is the best choice, but the other methods may be useful
in certain circumstances or for academic purposes.
Fixed-point solving
^^^^^^^^^^^^^^^^^^^
A problem closely related to finding the zeros of a function is the
problem of finding a fixed-point of a function. A fixed point of a
function is the point at which evaluation of the function returns the
point: :math:`g\left(x\right)=x.` Clearly the fixed point of :math:`g`
is the root of :math:`f\left(x\right)=g\left(x\right)-x.`
Equivalently, the root of :math:`f` is the fixed_point of
:math:`g\left(x\right)=f\left(x\right)+x.` The routine
:obj:`fixed_point` provides a simple iterative method using Aitkens
sequence acceleration to estimate the fixed point of :math:`g` given a
starting point.
|