File: basic.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (396 lines) | stat: -rw-r--r-- 12,726 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
## Automatically adapted for scipy Oct 21, 2005 by

"""
Discrete Fourier Transforms - basic.py
"""
# Created by Pearu Peterson, August,September 2002

__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
           'fft2','ifft2', 'rfftfreq']

from numpy import asarray, zeros, swapaxes, integer, array
import numpy
import _fftpack as fftpack

import atexit
atexit.register(fftpack.destroy_zfft_cache)
atexit.register(fftpack.destroy_zfftnd_cache)
atexit.register(fftpack.destroy_drfft_cache)
del atexit

def istype(arr, typeclass):
    return issubclass(arr.dtype.type, typeclass)

def _fix_shape(x, n, axis):
    """ Internal auxiliary function for _raw_fft, _raw_fftnd."""
    s = list(x.shape)
    if s[axis] > n:
        index = [slice(None)]*len(s)
        index[axis] = slice(0,n)
        x = x[index]
    else:
        index = [slice(None)]*len(s)
        index[axis] = slice(0,s[axis])
        s[axis] = n
        z = zeros(s,x.dtype.char)
        z[index] = x
        x = z
    return x


def _raw_fft(x, n, axis, direction, overwrite_x, work_function):
    """ Internal auxiliary function for fft, ifft, rfft, irfft."""
    if n is None:
        n = x.shape[axis]
    elif n != x.shape[axis]:
        x = _fix_shape(x,n,axis)
        overwrite_x = 1
    if axis == -1 or axis == len(x.shape)-1:
        r = work_function(x,n,direction,overwrite_x=overwrite_x)
    else:
        x = swapaxes(x, axis, -1)
        r = work_function(x,n,direction,overwrite_x=overwrite_x)
        r = swapaxes(r, axis, -1)
    return r


def fft(x, n=None, axis=-1, overwrite_x=0):
    """
    Return discrete Fourier transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array-like
        array to fourier transform.
    n : int, optional
        Length of the Fourier transform. If n<x.shape[axis],
        x is truncated. If n>x.shape[axis], x is zero-padded.
        (Default n=x.shape[axis]).
    axis : int, optional
        Axis along which the fft's are computed. (default=-1)
    overwrite_x : bool, optional
        If True the contents of x can be destroyed. (default=False)

    Returns
    -------
    z : complex ndarray
        with the elements:
            [y(0),y(1),..,y(n/2-1),y(-n/2),...,y(-1)]        if n is even
            [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)]  if n is odd
        where
            y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
        Note that y(-j) = y(n-j).

    See Also
    --------
    ifft : Inverse FFT
    rfft : FFT of a real sequence

    Notes
    -----
    The packing of the result is "standard": If A = fft(a, n), then A[0]
    contains the zero-frequency term, A[1:n/2+1] contains the
    positive-frequency terms, and A[n/2+1:] contains the negative-frequency
    terms, in order of decreasingly negative frequency. So for an 8-point
    transform, the frequencies of the result are [ 0, 1, 2, 3, 4, -3, -2, -1].

    This is most efficient for n a power of two.

    Examples
    --------
    >>> x = np.arange(5)
    >>> np.all(np.abs(x-fft(ifft(x))<1.e-15) #within numerical accuracy.
    True

    """
    tmp = asarray(x)
    if istype(tmp, numpy.complex128):
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfft
    elif istype(tmp, numpy.complex64):
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zrfft

    #return _raw_fft(tmp,n,axis,1,overwrite_x,work_function)
    if n is None:
        n = tmp.shape[axis]
    elif n != tmp.shape[axis]:
        tmp = _fix_shape(tmp,n,axis)
        overwrite_x = 1

    if axis == -1 or axis == len(tmp.shape) - 1:
        return work_function(tmp,n,1,0,overwrite_x)

    tmp = swapaxes(tmp, axis, -1)
    tmp = work_function(tmp,n,1,0,overwrite_x)
    return swapaxes(tmp, axis, -1)

def ifft(x, n=None, axis=-1, overwrite_x=0):
    """ ifft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return inverse discrete Fourier transform of arbitrary type
    sequence x.

    The returned complex array contains
      [y(0),y(1),...,y(n-1)]
    where
      y(j) = 1/n sum[k=0..n-1] x[k] * exp(sqrt(-1)*j*k* 2*pi/n)

    Optional input: see fft.__doc__
    """
    tmp = asarray(x)
    if istype(tmp, numpy.complex128):
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfft
    elif istype(tmp, numpy.complex64):
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zrfft

    #return _raw_fft(tmp,n,axis,-1,overwrite_x,work_function)
    if n is None:
        n = tmp.shape[axis]
    elif n != tmp.shape[axis]:
        tmp = _fix_shape(tmp,n,axis)
        overwrite_x = 1

    if axis == -1 or axis == len(tmp.shape) - 1:
        return work_function(tmp,n,-1,1,overwrite_x)

    tmp = swapaxes(tmp, axis, -1)
    tmp = work_function(tmp,n,-1,1,overwrite_x)
    return swapaxes(tmp, axis, -1)


def rfft(x, n=None, axis=-1, overwrite_x=0):
    """ rfft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return discrete Fourier transform of real sequence x.

    The returned real arrays contains
      [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))]              if n is even
      [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))]   if n is odd
    where
      y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n)
      j = 0..n-1
    Note that y(-j) = y(n-j).

    Optional input:
      n
        Defines the length of the Fourier transform. If n is not
        specified then n=x.shape[axis] is set. If n<x.shape[axis],
        x is truncated. If n>x.shape[axis], x is zero-padded.
      axis
        The transform is applied along the given axis of the input
        array (or the newly constructed array if n argument was used).
      overwrite_x
        If set to true, the contents of x can be destroyed.

    Notes:
      y == rfft(irfft(y)) within numerical accuracy.
    """
    tmp = asarray(x)
    if not numpy.isrealobj(tmp):
        raise TypeError,"1st argument must be real sequence"
    work_function = fftpack.drfft
    return _raw_fft(tmp,n,axis,1,overwrite_x,work_function)


def rfftfreq(n,d=1.0):
    """ rfftfreq(n, d=1.0) -> f

    DFT sample frequencies (for usage with rfft,irfft).

    The returned float array contains the frequency bins in
    cycles/unit (with zero at the start) given a window length n and a
    sample spacing d:

      f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n)   if n is even
      f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n)   if n is odd
    """
    assert isinstance(n,int) or isinstance(n,integer)
    return array(range(1,n+1),dtype=int)/2/float(n*d)


def irfft(x, n=None, axis=-1, overwrite_x=0):
    """ irfft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return inverse discrete Fourier transform of real sequence x.
    The contents of x is interpreted as the output of rfft(..)
    function.

    The returned real array contains
      [y(0),y(1),...,y(n-1)]
    where for n is even
      y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
                                   * exp(sqrt(-1)*j*k* 2*pi/n)
                  + c.c. + x[0] + (-1)**(j) x[n-1])
    and for n is odd
      y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
                                   * exp(sqrt(-1)*j*k* 2*pi/n)
                  + c.c. + x[0])
    c.c. denotes complex conjugate of preceeding expression.

    Optional input: see rfft.__doc__
    """
    tmp = asarray(x)
    if not numpy.isrealobj(tmp):
        raise TypeError,"1st argument must be real sequence"
    work_function = fftpack.drfft
    return _raw_fft(tmp,n,axis,-1,overwrite_x,work_function)


def _raw_fftnd(x, s, axes, direction, overwrite_x, work_function):
    """ Internal auxiliary function for fftnd, ifftnd."""
    if s is None:
        if axes is None:
            s = x.shape
        else:
            s = numpy.take(x.shape, axes)

    s = tuple(s)
    if axes is None:
        noaxes = True
        axes = range(-x.ndim, 0)
    else:
        noaxes = False
    if len(axes) != len(s):
        raise ValueError("when given, axes and shape arguments "\
                         "have to be of the same length")

    # No need to swap axes, array is in C order
    if noaxes:
        for i in axes:
            x = _fix_shape(x, s[i], i)
        #print x.shape, s
        return work_function(x,s,direction,overwrite_x=overwrite_x)

    # We ordered axes, because the code below to push axes at the end of the
    # array assumes axes argument is in ascending order.
    id = numpy.argsort(axes)
    axes = [axes[i] for i in id]
    s = [s[i] for i in id]

    # Swap the request axes, last first (i.e. First swap the axis which ends up
    # at -1, then at -2, etc...), such as the request axes on which the
    # operation is carried become the last ones
    for i in range(1, len(axes)+1):
        x = numpy.swapaxes(x, axes[-i], -i)

    # We can now operate on the axes waxes, the p last axes (p = len(axes)), by
    # fixing the shape of the input array to 1 for any axis the fft is not
    # carried upon.
    waxes = range(x.ndim - len(axes), x.ndim)
    shape = numpy.ones(x.ndim)
    shape[waxes] = s

    for i in range(len(waxes)):
        x = _fix_shape(x, s[i], waxes[i])

    r = work_function(x, shape, direction, overwrite_x=overwrite_x)

    # reswap in the reverse order (first axis first, etc...) to get original
    # order
    for i in range(len(axes), 0, -1):
        r = numpy.swapaxes(r, -i, axes[-i])

    return r


def fftn(x, shape=None, axes=None, overwrite_x=0):
    """ fftn(x, shape=None, axes=None, overwrite_x=0) -> y

    Return multi-dimensional discrete Fourier transform of arbitrary
    type sequence x.

    The returned array contains

      y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
         x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

    where d = len(x.shape) and n = x.shape.
    Note that y[..., -j_i, ...] = y[..., n_i-j_i, ...].

    Optional input:
      shape
        Defines the shape of the Fourier transform. If shape is not
        specified then shape=take(x.shape,axes,axis=0).
        If shape[i]>x.shape[i] then the i-th dimension is padded with
        zeros. If shape[i]<x.shape[i], then the i-th dimension is
        truncated to desired length shape[i].
      axes
        The transform is applied along the given axes of the input
        array (or the newly constructed array if shape argument was
        used).
      overwrite_x
        If set to true, the contents of x can be destroyed.

    Notes:
      y == fftn(ifftn(y)) within numerical accuracy.
    """
    tmp = asarray(x)
    if istype(tmp, numpy.complex128):
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfftnd
    elif istype(tmp, numpy.complex64):
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zfftnd
    return _raw_fftnd(tmp,shape,axes,1,overwrite_x,work_function)


def ifftn(x, shape=None, axes=None, overwrite_x=0):
    """ ifftn(x, s=None, axes=None, overwrite_x=0) -> y

    Return inverse multi-dimensional discrete Fourier transform of
    arbitrary type sequence x.

    The returned array contains

      y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
         x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)

    where d = len(x.shape), n = x.shape, and p = prod[i=1..d] n_i.

    Optional input: see fftn.__doc__
    """
    tmp = asarray(x)
    if istype(tmp, numpy.complex128):
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfftnd
    elif istype(tmp, numpy.complex64):
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zfftnd
    return _raw_fftnd(tmp,shape,axes,-1,overwrite_x,work_function)


def fft2(x, shape=None, axes=(-2,-1), overwrite_x=0):
    """ fft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y

    Return two-dimensional discrete Fourier transform of
    arbitrary type sequence x.

    See fftn.__doc__ for more information.
    """
    return fftn(x,shape,axes,overwrite_x)


def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=0):
    """ ifft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y

    Return inverse two-dimensional discrete Fourier transform of
    arbitrary type sequence x.

    See ifftn.__doc__ for more information.
    """
    return ifftn(x,shape,axes,overwrite_x)