File: quadrature.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (623 lines) | stat: -rw-r--r-- 21,870 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

__all__ = ['fixed_quad','quadrature','romberg','trapz','simps','romb',
           'cumtrapz','newton_cotes','composite']

from scipy.special.orthogonal import p_roots
from scipy.special import gammaln
from numpy import sum, ones, add, diff, isinf, isscalar, \
     asarray, real, trapz, arange, empty
import numpy as np

def fixed_quad(func,a,b,args=(),n=5):
    """Compute a definite integral using fixed-order Gaussian quadrature.

  Description:

    Integrate func from a to b using Gaussian quadrature of order n.

  Inputs:

    func -- a Python function or method to integrate
            (must accept vector inputs)
    a -- lower limit of integration
    b -- upper limit of integration
    args -- extra arguments to pass to function.
    n -- order of quadrature integration.

  Outputs: (val, None)

    val -- Gaussian quadrature approximation to the integral.

  See also:

    quad - adaptive quadrature using QUADPACK
    dblquad, tplquad - double and triple integrals
    romberg - adaptive Romberg quadrature
    quadrature - adaptive Gaussian quadrature
    romb, simps, trapz - integrators for sampled data
    cumtrapz - cumulative integration for sampled data
    ode, odeint - ODE integrators
    """
    [x,w] = p_roots(n)
    x = real(x)
    ainf, binf = map(isinf,(a,b))
    if ainf or binf:
        raise ValueError, "Gaussian quadrature is only available for " \
              "finite limits."
    y = (b-a)*(x+1)/2.0 + a
    return (b-a)/2.0*sum(w*func(y,*args),0), None

def vectorize1(func, args=(), vec_func=False):
    """Vectorize the call to a function.

    This is an internal utility function used by `romberg` and
    `quadrature` to create a vectorized version of a function.

    If `vec_func` is True, the function `func` is assumed to take vector
    arguments.

    Parameters
    ----------
    func : callable
        User defined function.
    args : tuple
        Extra arguments for the function.
    vec_func : bool
        True if the function func takes vector arguments.

    Returns
    -------
    vfunc : callable
        A function that will take a vector argument and return the
        result.

    """
    if vec_func:
        def vfunc(x):
            return func(x, *args)
    else:
        def vfunc(x):
            if isscalar(x):
                return func(x, *args)
            x = asarray(x)
            # call with first point to get output type
            y0 = func(x[0], *args)
            n = len(x)
            if hasattr(y0, 'dtype'):
                output = empty((n,), dtype=y0.dtype)
            else:
                output = empty((n,), dtype=type(y0))
            output[0] = y0
            for i in xrange(1, n):
                output[i] = func(x[i], *args)
            return output
    return vfunc

def quadrature(func,a,b,args=(),tol=1.49e-8,maxiter=50, vec_func=True):
    """Compute a definite integral using fixed-tolerance Gaussian quadrature.

  Description:

    Integrate func from a to b using Gaussian quadrature
    with absolute tolerance tol.

  Inputs:

    func -- a Python function or method to integrate.
    a -- lower limit of integration.
    b -- upper limit of integration.
    args -- extra arguments to pass to function.
    tol -- iteration stops when error between last two iterates is less than
           tolerance.
    maxiter -- maximum number of iterations.
    vec_func -- True or False if func handles arrays as arguments (is
                a "vector" function ). Default is True.

  Outputs: (val, err)

    val -- Gaussian quadrature approximation (within tolerance) to integral.
    err -- Difference between last two estimates of the integral.

  See also:

    romberg - adaptive Romberg quadrature
    fixed_quad - fixed-order Gaussian quadrature
    quad - adaptive quadrature using QUADPACK
    dblquad, tplquad - double and triple integrals
    romb, simps, trapz - integrators for sampled data
    cumtrapz - cumulative integration for sampled data
    ode, odeint - ODE integrators
    """
    err = 100.0
    val = err
    n = 1
    vfunc = vectorize1(func, args, vec_func=vec_func)
    while (err > tol) and (n < maxiter):
        newval = fixed_quad(vfunc, a, b, (), n)[0]
        err = abs(newval-val)
        val = newval
        n = n + 1
    if n == maxiter:
        print "maxiter (%d) exceeded. Latest difference = %e" % (n,err)
    return val, err

def tupleset(t, i, value):
    l = list(t)
    l[i] = value
    return tuple(l)

def cumtrapz(y, x=None, dx=1.0, axis=-1):
    """Cumulatively integrate y(x) using samples along the given axis
    and the composite trapezoidal rule.  If x is None, spacing given by dx
    is assumed.

    See also:

      quad - adaptive quadrature using QUADPACK
      romberg - adaptive Romberg quadrature
      quadrature - adaptive Gaussian quadrature
      fixed_quad - fixed-order Gaussian quadrature
      dblquad, tplquad - double and triple integrals
      romb, trapz - integrators for sampled data
      cumtrapz - cumulative integration for sampled data
      ode, odeint - ODE integrators
    """
    y = asarray(y)
    if x is None:
        d = dx
    else:
        d = diff(x,axis=axis)
    nd = len(y.shape)
    slice1 = tupleset((slice(None),)*nd, axis, slice(1, None))
    slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1))
    return add.accumulate(d * (y[slice1]+y[slice2])/2.0,axis)

def _basic_simps(y,start,stop,x,dx,axis):
    nd = len(y.shape)
    if start is None:
        start = 0
    step = 2
    all = (slice(None),)*nd
    slice0 = tupleset(all, axis, slice(start, stop, step))
    slice1 = tupleset(all, axis, slice(start+1, stop+1, step))
    slice2 = tupleset(all, axis, slice(start+2, stop+2, step))

    if x is None:  # Even spaced Simpson's rule.
        result = add.reduce(dx/3.0* (y[slice0]+4*y[slice1]+y[slice2]),
                                    axis)
    else:
        # Account for possibly different spacings.
        #    Simpson's rule changes a bit.
        h = diff(x,axis=axis)
        sl0 = tupleset(all, axis, slice(start, stop, step))
        sl1 = tupleset(all, axis, slice(start+1, stop+1, step))
        h0 = h[sl0]
        h1 = h[sl1]
        hsum = h0 + h1
        hprod = h0 * h1
        h0divh1 = h0 / h1
        result = add.reduce(hsum/6.0*(y[slice0]*(2-1.0/h0divh1) + \
                                              y[slice1]*hsum*hsum/hprod + \
                                              y[slice2]*(2-h0divh1)),axis)
    return result


def simps(y, x=None, dx=1, axis=-1, even='avg'):
    """Integrate y(x) using samples along the given axis and the composite
    Simpson's rule.  If x is None, spacing of dx is assumed.

    If there are an even number of samples, N, then there are an odd
    number of intervals (N-1), but Simpson's rule requires an even number
    of intervals.  The parameter 'even' controls how this is handled as
    follows:

    even='avg': Average two results: 1) use the first N-2 intervals with
                a trapezoidal rule on the last interval and 2) use the last
                N-2 intervals with a trapezoidal rule on the first interval

    even='first': Use Simpson's rule for the first N-2 intervals with
                  a trapezoidal rule on the last interval.

    even='last': Use Simpson's rule for the last N-2 intervals with a
                 trapezoidal rule on the first interval.

    For an odd number of samples that are equally spaced the result is
        exact if the function is a polynomial of order 3 or less.  If
        the samples are not equally spaced, then the result is exact only
        if the function is a polynomial of order 2 or less.

    See also:

      quad - adaptive quadrature using QUADPACK
      romberg - adaptive Romberg quadrature
      quadrature - adaptive Gaussian quadrature
      fixed_quad - fixed-order Gaussian quadrature
      dblquad, tplquad - double and triple integrals
      romb, trapz - integrators for sampled data
      cumtrapz - cumulative integration for sampled data
      ode, odeint - ODE integrators
    """
    y = asarray(y)
    nd = len(y.shape)
    N = y.shape[axis]
    last_dx = dx
    first_dx = dx
    returnshape = 0
    if not x is None:
        x = asarray(x)
        if len(x.shape) == 1:
            shapex = ones(nd)
            shapex[axis] = x.shape[0]
            saveshape = x.shape
            returnshape = 1
            x=x.reshape(tuple(shapex))
        elif len(x.shape) != len(y.shape):
            raise ValueError, "If given, shape of x must be 1-d or the " \
                  "same as y."
        if x.shape[axis] != N:
            raise ValueError, "If given, length of x along axis must be the " \
                  "same as y."
    if N % 2 == 0:
        val = 0.0
        result = 0.0
        slice1 = (slice(None),)*nd
        slice2 = (slice(None),)*nd
        if not even in ['avg', 'last', 'first']:
            raise ValueError, \
                  "Parameter 'even' must be 'avg', 'last', or 'first'."
        # Compute using Simpson's rule on first intervals
        if even in ['avg', 'first']:
            slice1 = tupleset(slice1, axis, -1)
            slice2 = tupleset(slice2, axis, -2)
            if not x is None:
                last_dx = x[slice1] - x[slice2]
            val += 0.5*last_dx*(y[slice1]+y[slice2])
            result = _basic_simps(y,0,N-3,x,dx,axis)
        # Compute using Simpson's rule on last set of intervals
        if even in ['avg', 'last']:
            slice1 = tupleset(slice1, axis, 0)
            slice2 = tupleset(slice2, axis, 1)
            if not x is None:
                first_dx = x[tuple(slice2)] - x[tuple(slice1)]
            val += 0.5*first_dx*(y[slice2]+y[slice1])
            result += _basic_simps(y,1,N-2,x,dx,axis)
        if even == 'avg':
            val /= 2.0
            result /= 2.0
        result = result + val
    else:
        result = _basic_simps(y,0,N-2,x,dx,axis)
    if returnshape:
        x = x.reshape(saveshape)
    return result

def romb(y, dx=1.0, axis=-1, show=False):
    """Romberg integration using samples of a function

    Inputs:

       y    -  a vector of 2**k + 1 equally-spaced samples of a fucntion
       dx   -  the sample spacing.
       axis -  the axis along which to integrate
       show -  When y is a single 1-d array, then if this argument is True
               print the table showing Richardson extrapolation from the
               samples.

    Output: ret

       ret  - The integrated result for each axis.

    See also:

      quad - adaptive quadrature using QUADPACK
      romberg - adaptive Romberg quadrature
      quadrature - adaptive Gaussian quadrature
      fixed_quad - fixed-order Gaussian quadrature
      dblquad, tplquad - double and triple integrals
      simps, trapz - integrators for sampled data
      cumtrapz - cumulative integration for sampled data
      ode, odeint - ODE integrators
    """
    y = asarray(y)
    nd = len(y.shape)
    Nsamps = y.shape[axis]
    Ninterv = Nsamps-1
    n = 1
    k = 0
    while n < Ninterv:
        n <<= 1
        k += 1
    if n != Ninterv:
        raise ValueError, \
              "Number of samples must be one plus a non-negative power of 2."

    R = {}
    all = (slice(None),) * nd
    slice0 = tupleset(all, axis, 0)
    slicem1 = tupleset(all, axis, -1)
    h = Ninterv*asarray(dx)*1.0
    R[(1,1)] = (y[slice0] + y[slicem1])/2.0*h
    slice_R = all
    start = stop = step = Ninterv
    for i in range(2,k+1):
        start >>= 1
        slice_R = tupleset(slice_R, axis, slice(start,stop,step))
        step >>= 1
        R[(i,1)] = 0.5*(R[(i-1,1)] + h*add.reduce(y[slice_R],axis))
        for j in range(2,i+1):
            R[(i,j)] = R[(i,j-1)] + \
                       (R[(i,j-1)]-R[(i-1,j-1)]) / ((1 << (2*(j-1)))-1)
        h = h / 2.0

    if show:
        if not isscalar(R[(1,1)]):
            print "*** Printing table only supported for integrals" + \
                  " of a single data set."
        else:
            try:
                precis = show[0]
            except (TypeError, IndexError):
                precis = 5
            try:
                width = show[1]
            except (TypeError, IndexError):
                width = 8
            formstr = "%" + str(width) + '.' + str(precis)+'f'

            print "\n       Richardson Extrapolation Table for Romberg Integration       "
            print "===================================================================="
            for i in range(1,k+1):
                for j in range(1,i+1):
                    print formstr % R[(i,j)],
                print
            print "====================================================================\n"

    return R[(k,k)]



# Romberg quadratures for numeric integration.
#
# Written by Scott M. Ransom <ransom@cfa.harvard.edu>
# last revision: 14 Nov 98
#
# Cosmetic changes by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-21
#
# Adapted to scipy by Travis Oliphant <oliphant.travis@ieee.org>
# last revision: Dec 2001

def _difftrap(function, interval, numtraps):
    """
    Perform part of the trapezoidal rule to integrate a function.
    Assume that we had called difftrap with all lower powers-of-2
    starting with 1.  Calling difftrap only returns the summation
    of the new ordinates.  It does _not_ multiply by the width
    of the trapezoids.  This must be performed by the caller.
        'function' is the function to evaluate (must accept vector arguments).
        'interval' is a sequence with lower and upper limits
                   of integration.
        'numtraps' is the number of trapezoids to use (must be a
                   power-of-2).
    """
    if numtraps <= 0:
        raise ValueError("numtraps must be > 0 in difftrap().")
    elif numtraps == 1:
        return 0.5*(function(interval[0])+function(interval[1]))
    else:
        numtosum = numtraps/2
        h = float(interval[1]-interval[0])/numtosum
        lox = interval[0] + 0.5 * h;
        points = lox + h * arange(0, numtosum)
        s = sum(function(points),0)
        return s

def _romberg_diff(b, c, k):
    """
    Compute the differences for the Romberg quadrature corrections.
    See Forman Acton's "Real Computing Made Real," p 143.
    """
    tmp = 4.0**k
    return (tmp * c - b)/(tmp - 1.0)

def _printresmat(function, interval, resmat):
    # Print the Romberg result matrix.
    i = j = 0
    print 'Romberg integration of', `function`,
    print 'from', interval
    print ''
    print '%6s %9s %9s' % ('Steps', 'StepSize', 'Results')
    for i in range(len(resmat)):
        print '%6d %9f' % (2**i, (interval[1]-interval[0])/(i+1.0)),
        for j in range(i+1):
            print '%9f' % (resmat[i][j]),
        print ''
    print ''
    print 'The final result is', resmat[i][j],
    print 'after', 2**(len(resmat)-1)+1, 'function evaluations.'

def romberg(function, a, b, args=(), tol=1.48E-8, show=False,
            divmax=10, vec_func=False):
    """Romberg integration of a callable function or method.

    Returns the integral of |function| (a function of one variable)
    over |interval| (a sequence of length two containing the lower and
    upper limit of the integration interval), calculated using
    Romberg integration up to the specified |accuracy|. If |show| is 1,
    the triangular array of the intermediate results will be printed.
    If |vec_func| is True (default is False), then |function| is
    assumed to support vector arguments.

    See also:

      quad - adaptive quadrature using QUADPACK
      quadrature - adaptive Gaussian quadrature
      fixed_quad - fixed-order Gaussian quadrature
      dblquad, tplquad - double and triple integrals
      romb, simps, trapz - integrators for sampled data
      cumtrapz - cumulative integration for sampled data
      ode, odeint - ODE integrators
    """
    if isinf(a) or isinf(b):
        raise ValueError("Romberg integration only available for finite limits.")
    vfunc = vectorize1(function, args, vec_func=vec_func)
    i = n = 1
    interval = [a,b]
    intrange = b-a
    ordsum = _difftrap(vfunc, interval, n)
    result = intrange * ordsum
    resmat = [[result]]
    lastresult = result + tol * 2.0
    while (abs(result - lastresult) > tol) and (i <= divmax):
        n = n * 2
        ordsum = ordsum + _difftrap(vfunc, interval, n)
        resmat.append([])
        resmat[i].append(intrange * ordsum / n)
        for k in range(i):
            resmat[i].append(_romberg_diff(resmat[i-1][k], resmat[i][k], k+1))
        result = resmat[i][i]
        lastresult = resmat[i-1][i-1]
        i = i + 1
    if show:
        _printresmat(vfunc, interval, resmat)
    return result


# Coefficients for Netwon-Cotes quadrature
#
# These are the points being used
#  to construct the local interpolating polynomial
#  a are the weights for Newton-Cotes integration
#  B is the error coefficient.
#  error in these coefficients grows as N gets larger.
#  or as samples are closer and closer together

# You can use maxima to find these rational coefficients
#  for equally spaced data using the commands
#  a(i,N) := integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N) / ((N-i)! * i!) * (-1)^(N-i);
#  Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N));
#  Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N));
#  B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N));
#
# pre-computed for equally-spaced weights
#
# num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N]
#
#  a = num_a*array(int_a)/den_a
#  B = num_B*1.0 / den_B
#
#  integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*)
#    where k = N // 2
#
_builtincoeffs = {
    1:(1,2,[1,1],-1,12),
    2:(1,3,[1,4,1],-1,90),
    3:(3,8,[1,3,3,1],-3,80),
    4:(2,45,[7,32,12,32,7],-8,945),
    5:(5,288,[19,75,50,50,75,19],-275,12096),
    6:(1,140,[41,216,27,272,27,216,41],-9,1400),
    7:(7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400),
    8:(4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989],
       -2368,467775),
    9:(9,89600,[2857,15741,1080,19344,5778,5778,19344,1080,
                15741,2857], -4671, 394240),
    10:(5,299376,[16067,106300,-48525,272400,-260550,427368,
                  -260550,272400,-48525,106300,16067],
        -673175, 163459296),
    11:(11,87091200,[2171465,13486539,-3237113, 25226685,-9595542,
                     15493566,15493566,-9595542,25226685,-3237113,
                     13486539,2171465], -2224234463, 237758976000),
    12:(1, 5255250, [1364651,9903168,-7587864,35725120,-51491295,
                     87516288,-87797136,87516288,-51491295,35725120,
                     -7587864,9903168,1364651], -3012, 875875),
    13:(13, 402361344000,[8181904909, 56280729661, -31268252574,
                          156074417954,-151659573325,206683437987,
                          -43111992612,-43111992612,206683437987,
                          -151659573325,156074417954,-31268252574,
                          56280729661,8181904909], -2639651053,
        344881152000),
    14:(7, 2501928000, [90241897,710986864,-770720657,3501442784,
                        -6625093363,12630121616,-16802270373,19534438464,
                        -16802270373,12630121616,-6625093363,3501442784,
                        -770720657,710986864,90241897], -3740727473,
        1275983280000)
    }

def newton_cotes(rn,equal=0):
    r"""Return weights and error coefficient for Netwon-Cotes integration.

     Suppose we have (N+1) samples of f at the positions
       x_0, x_1, ..., x_N.  Then an N-point Newton-Cotes formula for the
       integral between x_0 and x_N is:

     $\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
                                + B_N (\Delta x)^{N+2} f^{N+1} (\xi)$

       where $\xi \in [x_0,x_N]$ and $\Delta x = \frac{x_N-x_0}{N}$ is the
       averages samples spacing.

     If the samples are equally-spaced and N is even, then the error
     term is $B_N (\Delta x)^{N+3} f^{N+2}(\xi)$.

     Normally, the Newton-Cotes rules are used on smaller integration
     regions and a composite rule is used to return the total integral.

    Inputs:
        rn    -- the integer order for equally-spaced data
                 or the relative positions of the samples with
                 the first sample at 0 and the last at N, where
                 N+1 is the length of rn.  N is the order of the Newt
        equal -- Set to 1 to enforce equally spaced data

    Outputs:
        an    -- 1-d array of weights to apply to the function at
                 the provided sample positions.
        B     -- error coefficient
    """
    try:
        N = len(rn)-1
        if equal:
            rn = np.arange(N+1)
        elif np.all(np.diff(rn)==1):
            equal = 1
    except:
        N = rn
        rn = np.arange(N+1)
        equal = 1

    if equal and N in _builtincoeffs:
        na, da, vi, nb, db = _builtincoeffs[N]
        return na*np.array(vi,float)/da, float(nb)/db

    if (rn[0] != 0) or (rn[-1] != N):
        raise ValueError, "The sample positions must start at 0"\
              " and end at N"
    yi = rn / float(N)
    ti = 2.0*yi - 1
    nvec = np.arange(0,N+1)
    C = np.mat(ti**nvec[:,np.newaxis])
    Cinv = C.I
    # improve precision of result
    Cinv = 2*Cinv - Cinv*C*Cinv
    Cinv = 2*Cinv - Cinv*C*Cinv
    Cinv = Cinv.A
    vec = 2.0/ (nvec[::2]+1)
    ai = np.dot(Cinv[:,::2],vec) * N/2

    if (N%2 == 0) and equal:
        BN = N/(N+3.)
        power = N+2
    else:
        BN = N/(N+2.)
        power = N+1

    BN = BN - np.dot(yi**power, ai)
    p1 = power+1
    fac = power*math.log(N) - gammaln(p1)
    fac = math.exp(fac)
    return ai, BN*fac


# Should only use if samples are forced on you
def composite(f,x=None,dx=1,axis=-1,n=5):
    pass