1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
__all__ = ['fixed_quad','quadrature','romberg','trapz','simps','romb',
'cumtrapz','newton_cotes','composite']
from scipy.special.orthogonal import p_roots
from scipy.special import gammaln
from numpy import sum, ones, add, diff, isinf, isscalar, \
asarray, real, trapz, arange, empty
import numpy as np
def fixed_quad(func,a,b,args=(),n=5):
"""Compute a definite integral using fixed-order Gaussian quadrature.
Description:
Integrate func from a to b using Gaussian quadrature of order n.
Inputs:
func -- a Python function or method to integrate
(must accept vector inputs)
a -- lower limit of integration
b -- upper limit of integration
args -- extra arguments to pass to function.
n -- order of quadrature integration.
Outputs: (val, None)
val -- Gaussian quadrature approximation to the integral.
See also:
quad - adaptive quadrature using QUADPACK
dblquad, tplquad - double and triple integrals
romberg - adaptive Romberg quadrature
quadrature - adaptive Gaussian quadrature
romb, simps, trapz - integrators for sampled data
cumtrapz - cumulative integration for sampled data
ode, odeint - ODE integrators
"""
[x,w] = p_roots(n)
x = real(x)
ainf, binf = map(isinf,(a,b))
if ainf or binf:
raise ValueError, "Gaussian quadrature is only available for " \
"finite limits."
y = (b-a)*(x+1)/2.0 + a
return (b-a)/2.0*sum(w*func(y,*args),0), None
def vectorize1(func, args=(), vec_func=False):
"""Vectorize the call to a function.
This is an internal utility function used by `romberg` and
`quadrature` to create a vectorized version of a function.
If `vec_func` is True, the function `func` is assumed to take vector
arguments.
Parameters
----------
func : callable
User defined function.
args : tuple
Extra arguments for the function.
vec_func : bool
True if the function func takes vector arguments.
Returns
-------
vfunc : callable
A function that will take a vector argument and return the
result.
"""
if vec_func:
def vfunc(x):
return func(x, *args)
else:
def vfunc(x):
if isscalar(x):
return func(x, *args)
x = asarray(x)
# call with first point to get output type
y0 = func(x[0], *args)
n = len(x)
if hasattr(y0, 'dtype'):
output = empty((n,), dtype=y0.dtype)
else:
output = empty((n,), dtype=type(y0))
output[0] = y0
for i in xrange(1, n):
output[i] = func(x[i], *args)
return output
return vfunc
def quadrature(func,a,b,args=(),tol=1.49e-8,maxiter=50, vec_func=True):
"""Compute a definite integral using fixed-tolerance Gaussian quadrature.
Description:
Integrate func from a to b using Gaussian quadrature
with absolute tolerance tol.
Inputs:
func -- a Python function or method to integrate.
a -- lower limit of integration.
b -- upper limit of integration.
args -- extra arguments to pass to function.
tol -- iteration stops when error between last two iterates is less than
tolerance.
maxiter -- maximum number of iterations.
vec_func -- True or False if func handles arrays as arguments (is
a "vector" function ). Default is True.
Outputs: (val, err)
val -- Gaussian quadrature approximation (within tolerance) to integral.
err -- Difference between last two estimates of the integral.
See also:
romberg - adaptive Romberg quadrature
fixed_quad - fixed-order Gaussian quadrature
quad - adaptive quadrature using QUADPACK
dblquad, tplquad - double and triple integrals
romb, simps, trapz - integrators for sampled data
cumtrapz - cumulative integration for sampled data
ode, odeint - ODE integrators
"""
err = 100.0
val = err
n = 1
vfunc = vectorize1(func, args, vec_func=vec_func)
while (err > tol) and (n < maxiter):
newval = fixed_quad(vfunc, a, b, (), n)[0]
err = abs(newval-val)
val = newval
n = n + 1
if n == maxiter:
print "maxiter (%d) exceeded. Latest difference = %e" % (n,err)
return val, err
def tupleset(t, i, value):
l = list(t)
l[i] = value
return tuple(l)
def cumtrapz(y, x=None, dx=1.0, axis=-1):
"""Cumulatively integrate y(x) using samples along the given axis
and the composite trapezoidal rule. If x is None, spacing given by dx
is assumed.
See also:
quad - adaptive quadrature using QUADPACK
romberg - adaptive Romberg quadrature
quadrature - adaptive Gaussian quadrature
fixed_quad - fixed-order Gaussian quadrature
dblquad, tplquad - double and triple integrals
romb, trapz - integrators for sampled data
cumtrapz - cumulative integration for sampled data
ode, odeint - ODE integrators
"""
y = asarray(y)
if x is None:
d = dx
else:
d = diff(x,axis=axis)
nd = len(y.shape)
slice1 = tupleset((slice(None),)*nd, axis, slice(1, None))
slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1))
return add.accumulate(d * (y[slice1]+y[slice2])/2.0,axis)
def _basic_simps(y,start,stop,x,dx,axis):
nd = len(y.shape)
if start is None:
start = 0
step = 2
all = (slice(None),)*nd
slice0 = tupleset(all, axis, slice(start, stop, step))
slice1 = tupleset(all, axis, slice(start+1, stop+1, step))
slice2 = tupleset(all, axis, slice(start+2, stop+2, step))
if x is None: # Even spaced Simpson's rule.
result = add.reduce(dx/3.0* (y[slice0]+4*y[slice1]+y[slice2]),
axis)
else:
# Account for possibly different spacings.
# Simpson's rule changes a bit.
h = diff(x,axis=axis)
sl0 = tupleset(all, axis, slice(start, stop, step))
sl1 = tupleset(all, axis, slice(start+1, stop+1, step))
h0 = h[sl0]
h1 = h[sl1]
hsum = h0 + h1
hprod = h0 * h1
h0divh1 = h0 / h1
result = add.reduce(hsum/6.0*(y[slice0]*(2-1.0/h0divh1) + \
y[slice1]*hsum*hsum/hprod + \
y[slice2]*(2-h0divh1)),axis)
return result
def simps(y, x=None, dx=1, axis=-1, even='avg'):
"""Integrate y(x) using samples along the given axis and the composite
Simpson's rule. If x is None, spacing of dx is assumed.
If there are an even number of samples, N, then there are an odd
number of intervals (N-1), but Simpson's rule requires an even number
of intervals. The parameter 'even' controls how this is handled as
follows:
even='avg': Average two results: 1) use the first N-2 intervals with
a trapezoidal rule on the last interval and 2) use the last
N-2 intervals with a trapezoidal rule on the first interval
even='first': Use Simpson's rule for the first N-2 intervals with
a trapezoidal rule on the last interval.
even='last': Use Simpson's rule for the last N-2 intervals with a
trapezoidal rule on the first interval.
For an odd number of samples that are equally spaced the result is
exact if the function is a polynomial of order 3 or less. If
the samples are not equally spaced, then the result is exact only
if the function is a polynomial of order 2 or less.
See also:
quad - adaptive quadrature using QUADPACK
romberg - adaptive Romberg quadrature
quadrature - adaptive Gaussian quadrature
fixed_quad - fixed-order Gaussian quadrature
dblquad, tplquad - double and triple integrals
romb, trapz - integrators for sampled data
cumtrapz - cumulative integration for sampled data
ode, odeint - ODE integrators
"""
y = asarray(y)
nd = len(y.shape)
N = y.shape[axis]
last_dx = dx
first_dx = dx
returnshape = 0
if not x is None:
x = asarray(x)
if len(x.shape) == 1:
shapex = ones(nd)
shapex[axis] = x.shape[0]
saveshape = x.shape
returnshape = 1
x=x.reshape(tuple(shapex))
elif len(x.shape) != len(y.shape):
raise ValueError, "If given, shape of x must be 1-d or the " \
"same as y."
if x.shape[axis] != N:
raise ValueError, "If given, length of x along axis must be the " \
"same as y."
if N % 2 == 0:
val = 0.0
result = 0.0
slice1 = (slice(None),)*nd
slice2 = (slice(None),)*nd
if not even in ['avg', 'last', 'first']:
raise ValueError, \
"Parameter 'even' must be 'avg', 'last', or 'first'."
# Compute using Simpson's rule on first intervals
if even in ['avg', 'first']:
slice1 = tupleset(slice1, axis, -1)
slice2 = tupleset(slice2, axis, -2)
if not x is None:
last_dx = x[slice1] - x[slice2]
val += 0.5*last_dx*(y[slice1]+y[slice2])
result = _basic_simps(y,0,N-3,x,dx,axis)
# Compute using Simpson's rule on last set of intervals
if even in ['avg', 'last']:
slice1 = tupleset(slice1, axis, 0)
slice2 = tupleset(slice2, axis, 1)
if not x is None:
first_dx = x[tuple(slice2)] - x[tuple(slice1)]
val += 0.5*first_dx*(y[slice2]+y[slice1])
result += _basic_simps(y,1,N-2,x,dx,axis)
if even == 'avg':
val /= 2.0
result /= 2.0
result = result + val
else:
result = _basic_simps(y,0,N-2,x,dx,axis)
if returnshape:
x = x.reshape(saveshape)
return result
def romb(y, dx=1.0, axis=-1, show=False):
"""Romberg integration using samples of a function
Inputs:
y - a vector of 2**k + 1 equally-spaced samples of a fucntion
dx - the sample spacing.
axis - the axis along which to integrate
show - When y is a single 1-d array, then if this argument is True
print the table showing Richardson extrapolation from the
samples.
Output: ret
ret - The integrated result for each axis.
See also:
quad - adaptive quadrature using QUADPACK
romberg - adaptive Romberg quadrature
quadrature - adaptive Gaussian quadrature
fixed_quad - fixed-order Gaussian quadrature
dblquad, tplquad - double and triple integrals
simps, trapz - integrators for sampled data
cumtrapz - cumulative integration for sampled data
ode, odeint - ODE integrators
"""
y = asarray(y)
nd = len(y.shape)
Nsamps = y.shape[axis]
Ninterv = Nsamps-1
n = 1
k = 0
while n < Ninterv:
n <<= 1
k += 1
if n != Ninterv:
raise ValueError, \
"Number of samples must be one plus a non-negative power of 2."
R = {}
all = (slice(None),) * nd
slice0 = tupleset(all, axis, 0)
slicem1 = tupleset(all, axis, -1)
h = Ninterv*asarray(dx)*1.0
R[(1,1)] = (y[slice0] + y[slicem1])/2.0*h
slice_R = all
start = stop = step = Ninterv
for i in range(2,k+1):
start >>= 1
slice_R = tupleset(slice_R, axis, slice(start,stop,step))
step >>= 1
R[(i,1)] = 0.5*(R[(i-1,1)] + h*add.reduce(y[slice_R],axis))
for j in range(2,i+1):
R[(i,j)] = R[(i,j-1)] + \
(R[(i,j-1)]-R[(i-1,j-1)]) / ((1 << (2*(j-1)))-1)
h = h / 2.0
if show:
if not isscalar(R[(1,1)]):
print "*** Printing table only supported for integrals" + \
" of a single data set."
else:
try:
precis = show[0]
except (TypeError, IndexError):
precis = 5
try:
width = show[1]
except (TypeError, IndexError):
width = 8
formstr = "%" + str(width) + '.' + str(precis)+'f'
print "\n Richardson Extrapolation Table for Romberg Integration "
print "===================================================================="
for i in range(1,k+1):
for j in range(1,i+1):
print formstr % R[(i,j)],
print
print "====================================================================\n"
return R[(k,k)]
# Romberg quadratures for numeric integration.
#
# Written by Scott M. Ransom <ransom@cfa.harvard.edu>
# last revision: 14 Nov 98
#
# Cosmetic changes by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-21
#
# Adapted to scipy by Travis Oliphant <oliphant.travis@ieee.org>
# last revision: Dec 2001
def _difftrap(function, interval, numtraps):
"""
Perform part of the trapezoidal rule to integrate a function.
Assume that we had called difftrap with all lower powers-of-2
starting with 1. Calling difftrap only returns the summation
of the new ordinates. It does _not_ multiply by the width
of the trapezoids. This must be performed by the caller.
'function' is the function to evaluate (must accept vector arguments).
'interval' is a sequence with lower and upper limits
of integration.
'numtraps' is the number of trapezoids to use (must be a
power-of-2).
"""
if numtraps <= 0:
raise ValueError("numtraps must be > 0 in difftrap().")
elif numtraps == 1:
return 0.5*(function(interval[0])+function(interval[1]))
else:
numtosum = numtraps/2
h = float(interval[1]-interval[0])/numtosum
lox = interval[0] + 0.5 * h;
points = lox + h * arange(0, numtosum)
s = sum(function(points),0)
return s
def _romberg_diff(b, c, k):
"""
Compute the differences for the Romberg quadrature corrections.
See Forman Acton's "Real Computing Made Real," p 143.
"""
tmp = 4.0**k
return (tmp * c - b)/(tmp - 1.0)
def _printresmat(function, interval, resmat):
# Print the Romberg result matrix.
i = j = 0
print 'Romberg integration of', `function`,
print 'from', interval
print ''
print '%6s %9s %9s' % ('Steps', 'StepSize', 'Results')
for i in range(len(resmat)):
print '%6d %9f' % (2**i, (interval[1]-interval[0])/(i+1.0)),
for j in range(i+1):
print '%9f' % (resmat[i][j]),
print ''
print ''
print 'The final result is', resmat[i][j],
print 'after', 2**(len(resmat)-1)+1, 'function evaluations.'
def romberg(function, a, b, args=(), tol=1.48E-8, show=False,
divmax=10, vec_func=False):
"""Romberg integration of a callable function or method.
Returns the integral of |function| (a function of one variable)
over |interval| (a sequence of length two containing the lower and
upper limit of the integration interval), calculated using
Romberg integration up to the specified |accuracy|. If |show| is 1,
the triangular array of the intermediate results will be printed.
If |vec_func| is True (default is False), then |function| is
assumed to support vector arguments.
See also:
quad - adaptive quadrature using QUADPACK
quadrature - adaptive Gaussian quadrature
fixed_quad - fixed-order Gaussian quadrature
dblquad, tplquad - double and triple integrals
romb, simps, trapz - integrators for sampled data
cumtrapz - cumulative integration for sampled data
ode, odeint - ODE integrators
"""
if isinf(a) or isinf(b):
raise ValueError("Romberg integration only available for finite limits.")
vfunc = vectorize1(function, args, vec_func=vec_func)
i = n = 1
interval = [a,b]
intrange = b-a
ordsum = _difftrap(vfunc, interval, n)
result = intrange * ordsum
resmat = [[result]]
lastresult = result + tol * 2.0
while (abs(result - lastresult) > tol) and (i <= divmax):
n = n * 2
ordsum = ordsum + _difftrap(vfunc, interval, n)
resmat.append([])
resmat[i].append(intrange * ordsum / n)
for k in range(i):
resmat[i].append(_romberg_diff(resmat[i-1][k], resmat[i][k], k+1))
result = resmat[i][i]
lastresult = resmat[i-1][i-1]
i = i + 1
if show:
_printresmat(vfunc, interval, resmat)
return result
# Coefficients for Netwon-Cotes quadrature
#
# These are the points being used
# to construct the local interpolating polynomial
# a are the weights for Newton-Cotes integration
# B is the error coefficient.
# error in these coefficients grows as N gets larger.
# or as samples are closer and closer together
# You can use maxima to find these rational coefficients
# for equally spaced data using the commands
# a(i,N) := integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N) / ((N-i)! * i!) * (-1)^(N-i);
# Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N));
# Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N));
# B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N));
#
# pre-computed for equally-spaced weights
#
# num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N]
#
# a = num_a*array(int_a)/den_a
# B = num_B*1.0 / den_B
#
# integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*)
# where k = N // 2
#
_builtincoeffs = {
1:(1,2,[1,1],-1,12),
2:(1,3,[1,4,1],-1,90),
3:(3,8,[1,3,3,1],-3,80),
4:(2,45,[7,32,12,32,7],-8,945),
5:(5,288,[19,75,50,50,75,19],-275,12096),
6:(1,140,[41,216,27,272,27,216,41],-9,1400),
7:(7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400),
8:(4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989],
-2368,467775),
9:(9,89600,[2857,15741,1080,19344,5778,5778,19344,1080,
15741,2857], -4671, 394240),
10:(5,299376,[16067,106300,-48525,272400,-260550,427368,
-260550,272400,-48525,106300,16067],
-673175, 163459296),
11:(11,87091200,[2171465,13486539,-3237113, 25226685,-9595542,
15493566,15493566,-9595542,25226685,-3237113,
13486539,2171465], -2224234463, 237758976000),
12:(1, 5255250, [1364651,9903168,-7587864,35725120,-51491295,
87516288,-87797136,87516288,-51491295,35725120,
-7587864,9903168,1364651], -3012, 875875),
13:(13, 402361344000,[8181904909, 56280729661, -31268252574,
156074417954,-151659573325,206683437987,
-43111992612,-43111992612,206683437987,
-151659573325,156074417954,-31268252574,
56280729661,8181904909], -2639651053,
344881152000),
14:(7, 2501928000, [90241897,710986864,-770720657,3501442784,
-6625093363,12630121616,-16802270373,19534438464,
-16802270373,12630121616,-6625093363,3501442784,
-770720657,710986864,90241897], -3740727473,
1275983280000)
}
def newton_cotes(rn,equal=0):
r"""Return weights and error coefficient for Netwon-Cotes integration.
Suppose we have (N+1) samples of f at the positions
x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
integral between x_0 and x_N is:
$\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
+ B_N (\Delta x)^{N+2} f^{N+1} (\xi)$
where $\xi \in [x_0,x_N]$ and $\Delta x = \frac{x_N-x_0}{N}$ is the
averages samples spacing.
If the samples are equally-spaced and N is even, then the error
term is $B_N (\Delta x)^{N+3} f^{N+2}(\xi)$.
Normally, the Newton-Cotes rules are used on smaller integration
regions and a composite rule is used to return the total integral.
Inputs:
rn -- the integer order for equally-spaced data
or the relative positions of the samples with
the first sample at 0 and the last at N, where
N+1 is the length of rn. N is the order of the Newt
equal -- Set to 1 to enforce equally spaced data
Outputs:
an -- 1-d array of weights to apply to the function at
the provided sample positions.
B -- error coefficient
"""
try:
N = len(rn)-1
if equal:
rn = np.arange(N+1)
elif np.all(np.diff(rn)==1):
equal = 1
except:
N = rn
rn = np.arange(N+1)
equal = 1
if equal and N in _builtincoeffs:
na, da, vi, nb, db = _builtincoeffs[N]
return na*np.array(vi,float)/da, float(nb)/db
if (rn[0] != 0) or (rn[-1] != N):
raise ValueError, "The sample positions must start at 0"\
" and end at N"
yi = rn / float(N)
ti = 2.0*yi - 1
nvec = np.arange(0,N+1)
C = np.mat(ti**nvec[:,np.newaxis])
Cinv = C.I
# improve precision of result
Cinv = 2*Cinv - Cinv*C*Cinv
Cinv = 2*Cinv - Cinv*C*Cinv
Cinv = Cinv.A
vec = 2.0/ (nvec[::2]+1)
ai = np.dot(Cinv[:,::2],vec) * N/2
if (N%2 == 0) and equal:
BN = N/(N+3.)
power = N+2
else:
BN = N/(N+2.)
power = N+1
BN = BN - np.dot(yi**power, ai)
p1 = power+1
fac = power*math.log(N) - gammaln(p1)
fac = math.exp(fac)
return ai, BN*fac
# Should only use if samples are forced on you
def composite(f,x=None,dx=1,axis=-1,n=5):
pass
|