File: rbf.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (157 lines) | stat: -rw-r--r-- 6,416 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""rbf - Radial basis functions for interpolation/smoothing scattered Nd data.

Written by John Travers <jtravs@gmail.com>, February 2007
Based closely on Matlab code by Alex Chirokov
Additional, large, improvements by Robert Hetland

Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license.  See LICENSE.txt that came with
this distribution for specifics.

NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.

Copyright (c) 2006-2007, Robert Hetland <hetland@tamu.edu>
Copyright (c) 2007, John Travers <jtravs@gmail.com>

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

    * Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    * Redistributions in binary form must reproduce the above
       copyright notice, this list of conditions and the following
       disclaimer in the documentation and/or other materials provided
       with the distribution.

    * Neither the name of Robert Hetland nor the names of any
       contributors may be used to endorse or promote products derived
       from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""

from numpy import (sqrt, log, asarray, newaxis, all, dot, float64, exp, eye,
                   isnan, float_)
from scipy import linalg

class Rbf(object):
    """
    Rbf(*args)

    A class for radial basis function approximation/interpolation of
    n-dimensional scattered data.

    Parameters
    ----------
    *args : arrays
        x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes
        and d is the array of values at the nodes
    function : str, optional
        The radial basis function, based on the radius, r, given by the norm
        (defult is Euclidean distance); the default is 'multiquadric'::

            'multiquadric': sqrt((r/self.epsilon)**2 + 1)
            'inverse multiquadric': 1.0/sqrt((r/self.epsilon)**2 + 1)
            'gaussian': exp(-(r/self.epsilon)**2)
            'linear': r
            'cubic': r**3
            'quintic': r**5
            'thin-plate': r**2 * log(r)

    epsilon : float, optional
        Adjustable constant for gaussian or multiquadrics functions
        - defaults to approximate average distance between nodes (which is
        a good start).
    smooth : float, optional
        Values greater than zero increase the smoothness of the
        approximation.  0 is for interpolation (default), the function will
        always go through the nodal points in this case.
    norm : callable, optional
        A function that returns the 'distance' between two points, with
        inputs as arrays of positions (x, y, z, ...), and an output as an
        array of distance.  E.g, the default::

            def euclidean_norm(x1, x2):
                return sqrt( ((x1 - x2)**2).sum(axis=0) )

        which is called with x1=x1[ndims,newaxis,:] and
        x2=x2[ndims,:,newaxis] such that the result is a matrix of the distances
        from each point in x1 to each point in x2.

    Examples
    --------
    >>> rbfi = Rbf(x, y, z, d)  # radial basis function interpolator instance
    >>> di = rbfi(xi, yi, zi)   # interpolated values
    """

    def _euclidean_norm(self, x1, x2):
        return sqrt( ((x1 - x2)**2).sum(axis=0) )

    def _function(self, r):
        if self.function.lower() == 'multiquadric':
            return sqrt((1.0/self.epsilon*r)**2 + 1)
        elif self.function.lower() == 'inverse multiquadric':
            return 1.0/sqrt((1.0/self.epsilon*r)**2 + 1)
        elif self.function.lower() == 'gaussian':
            return exp(-(1.0/self.epsilon*r)**2)
        elif self.function.lower() == 'linear':
            return r
        elif self.function.lower() == 'cubic':
            return r**3
        elif self.function.lower() == 'quintic':
            return r**5
        elif self.function.lower() == 'thin-plate':
            result = r**2 * log(r)
            result[r == 0] = 0 # the spline is zero at zero
            return result
        else:
            raise ValueError, 'Invalid basis function name'

    def __init__(self, *args, **kwargs):
        self.xi = asarray([asarray(a, dtype=float_).flatten()
                           for a in args[:-1]])
        self.N = self.xi.shape[-1]
        self.di = asarray(args[-1]).flatten()

        assert [x.size==self.di.size for x in self.xi], \
               'All arrays must be equal length'

        self.norm = kwargs.pop('norm', self._euclidean_norm)
        r = self._call_norm(self.xi, self.xi)
        self.epsilon = kwargs.pop('epsilon', r.mean())
        self.function = kwargs.pop('function', 'multiquadric')
        self.smooth = kwargs.pop('smooth', 0.0)

        self.A = self._function(r) - eye(self.N)*self.smooth
        self.nodes = linalg.solve(self.A, self.di)

    def _call_norm(self, x1, x2):
        if len(x1.shape) == 1:
            x1 = x1[newaxis, :]
        if len(x2.shape) == 1:
            x2 = x2[newaxis, :]
        x1 = x1[..., :, newaxis]
        x2 = x2[..., newaxis, :]
        return self.norm(x1, x2)

    def __call__(self, *args):
        args = [asarray(x) for x in args]
        assert all([x.shape == y.shape \
                    for x in args \
                    for y in args]), 'Array lengths must be equal'
        shp = args[0].shape
        self.xa = asarray([a.flatten() for a in args], dtype=float_)
        r = self._call_norm(self.xa, self.xi)
        return dot(self._function(r), self.nodes).reshape(shp)