1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
"""rbf - Radial basis functions for interpolation/smoothing scattered Nd data.
Written by John Travers <jtravs@gmail.com>, February 2007
Based closely on Matlab code by Alex Chirokov
Additional, large, improvements by Robert Hetland
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
this distribution for specifics.
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
Copyright (c) 2006-2007, Robert Hetland <hetland@tamu.edu>
Copyright (c) 2007, John Travers <jtravs@gmail.com>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Robert Hetland nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from numpy import (sqrt, log, asarray, newaxis, all, dot, float64, exp, eye,
isnan, float_)
from scipy import linalg
class Rbf(object):
"""
Rbf(*args)
A class for radial basis function approximation/interpolation of
n-dimensional scattered data.
Parameters
----------
*args : arrays
x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes
and d is the array of values at the nodes
function : str, optional
The radial basis function, based on the radius, r, given by the norm
(defult is Euclidean distance); the default is 'multiquadric'::
'multiquadric': sqrt((r/self.epsilon)**2 + 1)
'inverse multiquadric': 1.0/sqrt((r/self.epsilon)**2 + 1)
'gaussian': exp(-(r/self.epsilon)**2)
'linear': r
'cubic': r**3
'quintic': r**5
'thin-plate': r**2 * log(r)
epsilon : float, optional
Adjustable constant for gaussian or multiquadrics functions
- defaults to approximate average distance between nodes (which is
a good start).
smooth : float, optional
Values greater than zero increase the smoothness of the
approximation. 0 is for interpolation (default), the function will
always go through the nodal points in this case.
norm : callable, optional
A function that returns the 'distance' between two points, with
inputs as arrays of positions (x, y, z, ...), and an output as an
array of distance. E.g, the default::
def euclidean_norm(x1, x2):
return sqrt( ((x1 - x2)**2).sum(axis=0) )
which is called with x1=x1[ndims,newaxis,:] and
x2=x2[ndims,:,newaxis] such that the result is a matrix of the distances
from each point in x1 to each point in x2.
Examples
--------
>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
>>> di = rbfi(xi, yi, zi) # interpolated values
"""
def _euclidean_norm(self, x1, x2):
return sqrt( ((x1 - x2)**2).sum(axis=0) )
def _function(self, r):
if self.function.lower() == 'multiquadric':
return sqrt((1.0/self.epsilon*r)**2 + 1)
elif self.function.lower() == 'inverse multiquadric':
return 1.0/sqrt((1.0/self.epsilon*r)**2 + 1)
elif self.function.lower() == 'gaussian':
return exp(-(1.0/self.epsilon*r)**2)
elif self.function.lower() == 'linear':
return r
elif self.function.lower() == 'cubic':
return r**3
elif self.function.lower() == 'quintic':
return r**5
elif self.function.lower() == 'thin-plate':
result = r**2 * log(r)
result[r == 0] = 0 # the spline is zero at zero
return result
else:
raise ValueError, 'Invalid basis function name'
def __init__(self, *args, **kwargs):
self.xi = asarray([asarray(a, dtype=float_).flatten()
for a in args[:-1]])
self.N = self.xi.shape[-1]
self.di = asarray(args[-1]).flatten()
assert [x.size==self.di.size for x in self.xi], \
'All arrays must be equal length'
self.norm = kwargs.pop('norm', self._euclidean_norm)
r = self._call_norm(self.xi, self.xi)
self.epsilon = kwargs.pop('epsilon', r.mean())
self.function = kwargs.pop('function', 'multiquadric')
self.smooth = kwargs.pop('smooth', 0.0)
self.A = self._function(r) - eye(self.N)*self.smooth
self.nodes = linalg.solve(self.A, self.di)
def _call_norm(self, x1, x2):
if len(x1.shape) == 1:
x1 = x1[newaxis, :]
if len(x2.shape) == 1:
x2 = x2[newaxis, :]
x1 = x1[..., :, newaxis]
x2 = x2[..., newaxis, :]
return self.norm(x1, x2)
def __call__(self, *args):
args = [asarray(x) for x in args]
assert all([x.shape == y.shape \
for x in args \
for y in args]), 'Array lengths must be equal'
shp = args[0].shape
self.xa = asarray([a.flatten() for a in args], dtype=float_)
r = self._call_norm(self.xa, self.xi)
return dot(self._function(r), self.nodes).reshape(shp)
|