File: mio5.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (1217 lines) | stat: -rw-r--r-- 41,890 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
''' Classes for read / write of matlab (TM) 5 files

The matfile specification last found here:

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf

(as of December 5 2008)
'''

# Small fragments of current code adapted from matfile.py by Heiko
# Henkelmann

import os
import time
import sys
import zlib
from StringIO import StringIO
from cStringIO import StringIO as cStringIO
from copy import copy as pycopy
import warnings

import numpy as np

import scipy.sparse

import byteordercodes
from miobase import MatFileReader, MatArrayReader, MatMatrixGetter, \
     MatFileWriter, MatStreamWriter, docfiller, matdims, \
     MatReadError

miINT8 = 1
miUINT8 = 2
miINT16 = 3
miUINT16 = 4
miINT32 = 5
miUINT32 = 6
miSINGLE = 7
miDOUBLE = 9
miINT64 = 12
miUINT64 = 13
miMATRIX = 14
miCOMPRESSED = 15
miUTF8 = 16
miUTF16 = 17
miUTF32 = 18

mxCELL_CLASS = 1
mxSTRUCT_CLASS = 2
# The March 2008 edition of "Matlab 7 MAT-File Format" says that
# mxOBJECT_CLASS = 3, whereas matrix.h says that mxLOGICAL = 3.
# Matlab 2008a appears to save logicals as type 9, so we assume that
# the document is correct.  See type 18, below.
mxOBJECT_CLASS = 3
mxCHAR_CLASS = 4
mxSPARSE_CLASS = 5
mxDOUBLE_CLASS = 6
mxSINGLE_CLASS = 7
mxINT8_CLASS = 8
mxUINT8_CLASS = 9
mxINT16_CLASS = 10
mxUINT16_CLASS = 11
mxINT32_CLASS = 12
mxUINT32_CLASS = 13
# The following are not in the March 2008 edition of "Matlab 7
# MAT-File Format," but were guessed from matrix.h.
mxINT64_CLASS = 14
mxUINT64_CLASS = 15
mxFUNCTION_CLASS = 16
# Not doing anything with these at the moment.
mxOPAQUE_CLASS = 17 # This appears to be a function workspace
# https://www-old.cae.wisc.edu/pipermail/octave-maintainers/2007-May/002824.html
mxOBJECT_CLASS_FROM_MATRIX_H = 18

mxmap = { # Sometimes good for debug prints
    mxCELL_CLASS: 'mxCELL_CLASS',
    mxSTRUCT_CLASS: 'mxSTRUCT_CLASS',
    mxOBJECT_CLASS: 'mxOBJECT_CLASS',
    mxCHAR_CLASS: 'mxCHAR_CLASS',
    mxSPARSE_CLASS: 'mxSPARSE_CLASS',
    mxDOUBLE_CLASS: 'mxDOUBLE_CLASS',
    mxSINGLE_CLASS: 'mxSINGLE_CLASS',
    mxINT8_CLASS: 'mxINT8_CLASS',
    mxUINT8_CLASS: 'mxUINT8_CLASS',
    mxINT16_CLASS: 'mxINT16_CLASS',
    mxUINT16_CLASS: 'mxUINT16_CLASS',
    mxINT32_CLASS: 'mxINT32_CLASS',
    mxUINT32_CLASS: 'mxUINT32_CLASS',
    mxINT64_CLASS: 'mxINT64_CLASS',
    mxUINT64_CLASS: 'mxUINT64_CLASS',
    mxFUNCTION_CLASS: 'mxFUNCTION_CLASS',
    mxOPAQUE_CLASS: 'mxOPAQUE_CLASS',
    mxOBJECT_CLASS_FROM_MATRIX_H: 'mxOBJECT_CLASS_FROM_MATRIX_H',
}

mdtypes_template = {
    miINT8: 'i1',
    miUINT8: 'u1',
    miINT16: 'i2',
    miUINT16: 'u2',
    miINT32: 'i4',
    miUINT32: 'u4',
    miSINGLE: 'f4',
    miDOUBLE: 'f8',
    miINT64: 'i8',
    miUINT64: 'u8',
    miUTF8: 'u1',
    miUTF16: 'u2',
    miUTF32: 'u4',
    'file_header': [('description', 'S116'),
                    ('subsystem_offset', 'i8'),
                    ('version', 'u2'),
                    ('endian_test', 'S2')],
    'tag_full': [('mdtype', 'u4'), ('byte_count', 'u4')],
    'tag_smalldata':[('byte_count_mdtype', 'u4'), ('data', 'S4')],
    'array_flags': [('data_type', 'u4'),
                    ('byte_count', 'u4'),
                    ('flags_class','u4'),
                    ('nzmax', 'u4')],
    'U1': 'U1',
    }

mclass_dtypes_template = {
    mxINT8_CLASS: 'i1',
    mxUINT8_CLASS: 'u1',
    mxINT16_CLASS: 'i2',
    mxUINT16_CLASS: 'u2',
    mxINT32_CLASS: 'i4',
    mxUINT32_CLASS: 'u4',
    mxINT64_CLASS: 'i8',
    mxUINT64_CLASS: 'u8',
    mxSINGLE_CLASS: 'f4',
    mxDOUBLE_CLASS: 'f8',
    }


np_to_mtypes = {
    'f8': miDOUBLE,
    'c32': miDOUBLE,
    'c24': miDOUBLE,
    'c16': miDOUBLE,
    'f4': miSINGLE,
    'c8': miSINGLE,
    'i1': miINT8,
    'i2': miINT16,
    'i4': miINT32,
    'i8': miINT64,
    'u1': miUINT8,
    'u2': miUINT16,
    'u4': miUINT32,
    'u8': miUINT64,
    'S1': miUINT8,
    'U1': miUTF16,
    }


np_to_mxtypes = {
    'f8': mxDOUBLE_CLASS,
    'c32': mxDOUBLE_CLASS,
    'c24': mxDOUBLE_CLASS,
    'c16': mxDOUBLE_CLASS,
    'f4': mxSINGLE_CLASS,
    'c8': mxSINGLE_CLASS,
    'i8': mxINT64_CLASS,
    'i4': mxINT32_CLASS,
    'i2': mxINT16_CLASS,
    'u8': mxUINT64_CLASS,
    'u2': mxUINT16_CLASS,
    'u1': mxUINT8_CLASS,
    'S1': mxUINT8_CLASS,
    }



''' Before release v7.1 (release 14) matlab (TM) used the system
default character encoding scheme padded out to 16-bits. Release 14
and later use Unicode. When saving character data, R14 checks if it
can be encoded in 7-bit ascii, and saves in that format if so.'''

codecs_template = {
    miUTF8: {'codec': 'utf_8', 'width': 1},
    miUTF16: {'codec': 'utf_16', 'width': 2},
    miUTF32: {'codec': 'utf_32','width': 4},
    }

miUINT16_codec = sys.getdefaultencoding()

mx_numbers = (
    mxDOUBLE_CLASS,
    mxSINGLE_CLASS,
    mxINT8_CLASS,
    mxUINT8_CLASS,
    mxINT16_CLASS,
    mxUINT16_CLASS,
    mxINT32_CLASS,
    mxUINT32_CLASS,
    mxINT64_CLASS,
    mxUINT64_CLASS,
    )


class mat_struct(object):
    ''' Placeholder for holding read data from structs

    We will deprecate this method of holding struct information in a
    future version of scipy, in favor of the recarray method (see
    loadmat docstring)
    '''
    pass


class MatlabObject(np.ndarray):
    ''' ndarray Subclass to contain matlab object '''
    def __new__(cls, input_array, classname=None):
        # Input array is an already formed ndarray instance
        # We first cast to be our class type
        obj = np.asarray(input_array).view(cls)
        # add the new attribute to the created instance
        obj.classname = classname
        # Finally, we must return the newly created object:
        return obj

    def __array_finalize__(self,obj):
        # reset the attribute from passed original object
        self.classname = getattr(obj, 'classname', None)
        # We do not need to return anything


class MatlabFunction(np.ndarray):
    ''' Subclass to signal this is a matlab function '''
    def __new__(cls, input_array):
        obj = np.asarray(input_array).view(cls)


class MatlabBinaryBlock(object):
    ''' Class to contain matlab unreadable blocks '''
    def __init__(self, binaryblock, endian):
        self.binaryblock = binaryblock
        self.endian = endian


class Mat5ArrayReader(MatArrayReader):
    ''' Class to get Mat5 arrays

    Provides element reader functions, header reader, matrix reader
    factory function
    '''

    def __init__(self,
                 mat_stream,
                 dtypes,
                 processor_func,
                 codecs,
                 class_dtypes,
                 struct_as_record):
        super(Mat5ArrayReader, self).__init__(mat_stream,
                                              dtypes,
                                              processor_func)
        self.codecs = codecs
        self.class_dtypes = class_dtypes
        self.struct_as_record = struct_as_record

    def read_element(self, copy=True):
        raw_tag = self.mat_stream.read(8)
        tag = np.ndarray(shape=(),
                         dtype=self.dtypes['tag_full'],
                         buffer=raw_tag)
        mdtype = tag['mdtype'].item()
        # Byte count if this is small data element
        byte_count = mdtype >> 16
        if byte_count: # small data element format
            if byte_count > 4:
                raise ValueError, 'Too many bytes for sde format'
            mdtype = mdtype & 0xFFFF
            if mdtype == miMATRIX:
                raise TypeError('Cannot have matrix in SDE format')
            raw_str = raw_tag[4:byte_count+4]
        else: # regular element
            byte_count = tag['byte_count'].item()
            # Deal with miMATRIX type (cannot pass byte string)
            if mdtype == miMATRIX:
                return self.current_getter(byte_count).get_array()
            # All other types can be read from string
            raw_str = self.mat_stream.read(byte_count)
            # Seek to next 64-bit boundary
            mod8 = byte_count % 8
            if mod8:
                self.mat_stream.seek(8 - mod8, 1)

        if mdtype in self.codecs: # encoded char data
            codec = self.codecs[mdtype]
            if not codec:
                raise TypeError, 'Do not support encoding %d' % mdtype
            el = raw_str.decode(codec)
        else: # numeric data
            dt = self.dtypes[mdtype]
            el_count = byte_count // dt.itemsize
            el = np.ndarray(shape=(el_count,),
                            dtype=dt,
                            buffer=raw_str)
            if copy:
                el = el.copy()

        return el

    def matrix_getter_factory(self):
        ''' Returns reader for next matrix at top level '''
        tag = self.read_dtype(self.dtypes['tag_full'])
        mdtype = tag['mdtype'].item()
        byte_count = tag['byte_count'].item()
        next_pos = self.mat_stream.tell() + byte_count
        if mdtype == miCOMPRESSED:
            getter = Mat5ZArrayReader(self, byte_count).matrix_getter_factory()
        elif not mdtype == miMATRIX:
            raise TypeError, \
                  'Expecting miMATRIX type here, got %d' %  mdtype
        else:
            getter = self.current_getter(byte_count)
        getter.next_position = next_pos
        return getter

    def current_getter(self, byte_count):
        ''' Return matrix getter for current stream position

        Returns matrix getters at top level and sub levels
        '''
        if not byte_count: # an empty miMATRIX can contain no bytes
            return Mat5EmptyMatrixGetter(self)
        af = self.read_dtype(self.dtypes['array_flags'])
        header = {}
        flags_class = af['flags_class']
        mc = flags_class & 0xFF
        header['mclass'] = mc
        header['is_logical'] = flags_class >> 9 & 1
        header['is_global'] = flags_class >> 10 & 1
        header['is_complex'] = flags_class >> 11 & 1
        header['nzmax'] = af['nzmax']
        ''' Here I am playing with a binary block read of
        untranslatable data. I am not using this at the moment because
        reading it has the side effect of making opposite ending mat
        files unwritable on the round trip.
        
        if mc == mxFUNCTION_CLASS:
            # we can't read these, and want to keep track of the byte
            # count - so we need to avoid the following unpredictable
            # length element reads
            return Mat5BinaryBlockGetter(self,
                                         header,
                                         af,
                                         byte_count)
        '''
        header['dims'] = self.read_element()
        header['name'] = self.read_element().tostring()
        # maybe a dictionary mapping here as a dispatch table
        if mc in mx_numbers:
            return Mat5NumericMatrixGetter(self, header)
        if mc == mxSPARSE_CLASS:
            return Mat5SparseMatrixGetter(self, header)
        if mc == mxCHAR_CLASS:
            return Mat5CharMatrixGetter(self, header)
        if mc == mxCELL_CLASS:
            return Mat5CellMatrixGetter(self, header)
        if mc == mxSTRUCT_CLASS:
            return Mat5StructMatrixGetter(self, header)
        if mc == mxOBJECT_CLASS:
            return Mat5ObjectMatrixGetter(self, header)
        if mc == mxFUNCTION_CLASS:
            return Mat5FunctionGetter(self, header)
        raise TypeError, 'No reader for class code %s' % mc


class Mat5ZArrayReader(Mat5ArrayReader):
    ''' Getter for compressed arrays

    Sets up reader for gzipped stream on init, providing wrapper
    for this new sub-stream.

    '''
    def __init__(self, array_reader, byte_count):
        super(Mat5ZArrayReader, self).__init__(
            cStringIO(zlib.decompress(
                        array_reader.mat_stream.read(byte_count))),
            array_reader.dtypes,
            array_reader.processor_func,
            array_reader.codecs,
            array_reader.class_dtypes,
            array_reader.struct_as_record)


class Mat5MatrixGetter(MatMatrixGetter):
    ''' Base class for getting Mat5 matrices

    Gets current read information from passed array_reader
    '''

    def __init__(self, array_reader, header):
        super(Mat5MatrixGetter, self).__init__(array_reader, header)
        self.class_dtypes = array_reader.class_dtypes
        self.codecs = array_reader.codecs
        self.is_global = header['is_global']
        self.mat_dtype = None

    def read_element(self, *args, **kwargs):
        return self.array_reader.read_element(*args, **kwargs)


class Mat5EmptyMatrixGetter(Mat5MatrixGetter):
    ''' Dummy class to return empty array for empty matrix
    '''
    def __init__(self, array_reader):
        self.array_reader = array_reader
        self.mat_stream = array_reader.mat_stream
        self.header = {}
        self.name = ''
        self.is_global = False
        self.mat_dtype = 'f8'

    def get_raw_array(self):
        return np.array([[]])


class Mat5NumericMatrixGetter(Mat5MatrixGetter):

    def __init__(self, array_reader, header):
        super(Mat5NumericMatrixGetter, self).__init__(array_reader, header)
        if header['is_logical']:
            self.mat_dtype = np.dtype('bool')
        else:
            self.mat_dtype = self.class_dtypes[header['mclass']]

    def get_raw_array(self):
        if self.header['is_complex']:
            # avoid array copy to save memory
            res = self.read_element(copy=False)
            res_j = self.read_element(copy=False)
            res = res + (res_j * 1j)
        else:
            res = self.read_element()
        return np.ndarray(shape=self.header['dims'],
                          dtype=res.dtype,
                          buffer=res,
                          order='F')


class Mat5SparseMatrixGetter(Mat5MatrixGetter):
    def get_raw_array(self):
        rowind = self.read_element()
        indptr = self.read_element()
        if self.header['is_complex']:
            # avoid array copy to save memory
            data   = self.read_element(copy=False)
            data_j = self.read_element(copy=False)
            data = data + (data_j * 1j)
        else:
            data = self.read_element()
        ''' From the matlab (TM) API documentation, last found here:
        http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/
        rowind are simply the row indices for all the (nnz) non-zero
        entries in the sparse array.  rowind has nzmax entries, so
        may well have more entries than nnz, the actual number
        of non-zero entries, but rowind[nnz:] can be discarded
        and should be 0. indptr has length (number of columns + 1),
        and is such that, if D = diff(colind), D[j] gives the number
        of non-zero entries in column j. Because rowind values are
        stored in column order, this gives the column corresponding to
        each rowind
        '''
        M,N = self.header['dims']
        indptr = indptr[:N+1]
        nnz = indptr[-1]
        rowind = rowind[:nnz]
        data   = data[:nnz]
        return scipy.sparse.csc_matrix(
            (data,rowind,indptr),
            shape=(M,N))


class Mat5CharMatrixGetter(Mat5MatrixGetter):
    def get_raw_array(self):
        res = self.read_element()
        # Convert non-string types to unicode
        if isinstance(res, np.ndarray):
            if res.dtype.type == np.uint16:
                codec = miUINT16_codec
                if self.codecs['uint16_len'] == 1:
                    res = res.astype(np.uint8)
            elif res.dtype.type in (np.uint8, np.int8):
                codec = 'ascii'
            else:
                raise TypeError, 'Did not expect type %s' % res.dtype
            res = res.tostring().decode(codec)
        return np.ndarray(shape=self.header['dims'],
                          dtype=np.dtype('U1'),
                          buffer=np.array(res),
                          order='F').copy()


class Mat5CellMatrixGetter(Mat5MatrixGetter):
    def get_raw_array(self):
        # Account for fortran indexing of cells
        tupdims = tuple(self.header['dims'][::-1])
        length = np.product(tupdims)
        result = np.empty(length, dtype=object)
        for i in range(length):
            result[i] = self.get_item()
        return result.reshape(tupdims).T

    def get_item(self):
        return self.read_element()


class Mat5StructMatrixGetter(Mat5MatrixGetter):
    def __init__(self, array_reader, header):
        super(Mat5StructMatrixGetter, self).__init__(array_reader, header)
        self.struct_as_record = array_reader.struct_as_record

    def get_raw_array(self):
        namelength = self.read_element()[0]
        names = self.read_element()
        field_names = [names[i:i+namelength].tostring().strip('\x00')
                       for i in xrange(0,len(names),namelength)]
        tupdims = tuple(self.header['dims'][::-1])
        length = np.product(tupdims)
        if self.struct_as_record:
            if not len(field_names):
                # If there are no field names, there is no dtype
                # representation we can use, falling back to empty
                # object
                return np.empty(tupdims, dtype=object).T
            dtype = [(field_name, object) for field_name in field_names]
            result = np.empty(length, dtype=dtype)
            for i in range(length):
                for field_name in field_names:
                    result[i][field_name] = self.read_element()
        else: # Backward compatibility with previous format
            self.obj_template = mat_struct()
            self.obj_template._fieldnames = field_names
            result = np.empty(length, dtype=object)
            for i in range(length):
                item = pycopy(self.obj_template)
                for name in field_names:
                    item.__dict__[name] = self.read_element()
                result[i] = item
        return result.reshape(tupdims).T


class Mat5ObjectMatrixGetter(Mat5StructMatrixGetter):
    def get_raw_array(self):
        '''Matlab objects are like structs, with an extra classname field'''
        classname = self.read_element().tostring()
        result = super(Mat5ObjectMatrixGetter, self).get_raw_array()
        return MatlabObject(result, classname)


class Mat5FunctionGetter(Mat5ObjectMatrixGetter):
    ''' Class to provide warning and message string for unreadable
    matlab function data
    '''
    def get_raw_array(self):
        raise MatReadError('Cannot read matlab functions')


class Mat5BinaryBlockGetter(object):
    ''' Class to read in unreadable binary blocks

    This class could be used to read in matlab functions
    '''

    def __init__(self,
                 array_reader,
                 header,
                 array_flags,
                 byte_count):
        self.array_reader = array_reader
        self.header = header
        self.array_flags = array_flags
        arr_str = array_flags.tostring()
        self.binaryblock = array_reader.mat_stream.read(
            byte_count-len(array_flags.tostring()))
        stream = StringIO(self.binaryblock)
        reader = Mat5ArrayReader(
            stream,
            array_reader.dtypes,
            lambda x : None,
            array_reader.codecs,
            array_reader.class_dtypes,
            False)
        self.header['dims'] = reader.read_element()
        self.header['name'] = reader.read_element().tostring()
        self.name = self.header['name']
        self.is_global = header['is_global']

    def get_array(self):
        dt = self.array_reader.dtypes[miINT32]
        endian = byteordercodes.to_numpy_code(dt.byteorder)
        data = self.array_flags.tostring() + self.binaryblock
        return MatlabBinaryBlock(data, endian)

               
class MatFile5Reader(MatFileReader):
    ''' Reader for Mat 5 mat files
    Adds the following attribute to base class

    uint16_codec       - char codec to use for uint16 char arrays
                          (defaults to system default codec)
   '''
    @docfiller
    def __init__(self,
                 mat_stream,
                 byte_order=None,
                 mat_dtype=False,
                 squeeze_me=False,
                 chars_as_strings=True,
                 matlab_compatible=False,
                 struct_as_record=None, # default False, for now
                 uint16_codec=None
                 ):
        '''Initializer for matlab 5 file format reader

    %(matstream_arg)s
    %(load_args)s
    %(struct_arg)s
    uint16_codec : {None, string}
        Set codec to use for uint16 char arrays (e.g. 'utf-8').
        Use system default codec if None
        '''
        # Deal with deprecations
        if struct_as_record is None:
            warnings.warn("Using struct_as_record default value (False)" +
                          " This will change to True in future versions",
                          FutureWarning, stacklevel=2)
            struct_as_record = False
        self.codecs = {}
        # Missing inputs to array reader set later (processor func
        # below, dtypes, codecs via our own set_dtype function, called
        # from parent __init__)
        self._array_reader = Mat5ArrayReader(
            mat_stream,
            None,
            None,
            None,
            None,
            struct_as_record
            )
        super(MatFile5Reader, self).__init__(
            mat_stream,
            byte_order,
            mat_dtype,
            squeeze_me,
            chars_as_strings,
            matlab_compatible,
            )
        self._array_reader.processor_func = self.processor_func
        self.uint16_codec = uint16_codec

    def get_uint16_codec(self):
        return self._uint16_codec
    def set_uint16_codec(self, uint16_codec):
        if not uint16_codec:
            uint16_codec = sys.getdefaultencoding()
        # Set length of miUINT16 char encoding
        self.codecs['uint16_len'] = len("  ".encode(uint16_codec)) \
                               - len(" ".encode(uint16_codec))
        self.codecs['uint16_codec'] = uint16_codec
        self._array_reader.codecs = self.codecs
        self._uint16_codec = uint16_codec
    uint16_codec = property(get_uint16_codec,
                            set_uint16_codec,
                            None,
                            'get/set uint16_codec')

    def set_dtypes(self):
        ''' Set dtypes and codecs '''
        self.dtypes = self.convert_dtypes(mdtypes_template)
        self.class_dtypes = self.convert_dtypes(mclass_dtypes_template)
        codecs = {}
        postfix = self.order_code == '<' and '_le' or '_be'
        for k, v in codecs_template.items():
            codec = v['codec']
            try:
                " ".encode(codec)
            except LookupError:
                codecs[k] = None
                continue
            if v['width'] > 1:
                codec += postfix
            codecs[k] = codec
        self.codecs.update(codecs)
        self.update_array_reader()

    def update_array_reader(self):
        self._array_reader.codecs = self.codecs
        self._array_reader.dtypes = self.dtypes
        self._array_reader.class_dtypes = self.class_dtypes

    def matrix_getter_factory(self):
        return self._array_reader.matrix_getter_factory()

    def guess_byte_order(self):
        ''' Guess byte order.
        Sets stream pointer to 0 '''
        self.mat_stream.seek(126)
        mi = self.mat_stream.read(2)
        self.mat_stream.seek(0)
        return mi == 'IM' and '<' or '>'

    def file_header(self):
        ''' Read in mat 5 file header '''
        hdict = {}
        hdr = self.read_dtype(self.dtypes['file_header'])
        hdict['__header__'] = hdr['description'].item().strip(' \t\n\000')
        v_major = hdr['version'] >> 8
        v_minor = hdr['version'] & 0xFF
        hdict['__version__'] = '%d.%d' % (v_major, v_minor)
        return hdict


class Mat5MatrixWriter(MatStreamWriter):
    ''' Generic matlab matrix writing class '''
    mat_tag = np.zeros((), mdtypes_template['tag_full'])
    mat_tag['mdtype'] = miMATRIX
    default_mclass = None # default class for header writing
    def __init__(self,
                 file_stream,
                 arr,
                 name,
                 is_global=False,
                 unicode_strings=False,
                 long_field_names=False,
                 oned_as='column'):
        super(Mat5MatrixWriter, self).__init__(file_stream, 
                                               arr, 
                                               name,
                                               oned_as)
        self.is_global = is_global
        self.unicode_strings = unicode_strings
        self.long_field_names = long_field_names
        self.oned_as = oned_as

    def write_dtype(self, arr):
        self.file_stream.write(arr.tostring())

    def write_element(self, arr, mdtype=None):
        ''' write tag and data '''
        if mdtype is None:
            mdtype = np_to_mtypes[arr.dtype.str[1:]]
        byte_count = arr.size*arr.itemsize
        if byte_count <= 4:
            self.write_smalldata_element(arr, mdtype, byte_count)
        else:
            self.write_regular_element(arr, mdtype, byte_count)

    def write_smalldata_element(self, arr, mdtype, byte_count):
        # write tag with embedded data
        tag = np.zeros((), mdtypes_template['tag_smalldata'])
        tag['byte_count_mdtype'] = (byte_count << 16) + mdtype
        # if arr.tostring is < 4, the element will be zero-padded as needed.
        tag['data'] = arr.tostring(order='F')
        self.write_dtype(tag)

    def write_regular_element(self, arr, mdtype, byte_count):
        # write tag, data
        tag = np.zeros((), mdtypes_template['tag_full'])
        tag['mdtype'] = mdtype
        tag['byte_count'] = byte_count
        padding = (8 - tag['byte_count']) % 8
        self.write_dtype(tag)
        self.write_bytes(arr)
        # pad to next 64-bit boundary
        self.write_bytes(np.zeros((padding,),'u1'))

    def write_header(self, mclass=None,
                     is_global=False,
                     is_complex=False,
                     is_logical=False,
                     nzmax=0,
                     shape=None):
        ''' Write header for given data options
        mclass      - mat5 matrix class
        is_global   - True if matrix is global
        is_complex  - True if matrix is complex
        is_logical  - True if matrix is logical
        nzmax        - max non zero elements for sparse arrays
        shape : {None, tuple} optional
            directly specify shape if this is not the same as for
            self.arr
        '''
        if mclass is None:
            mclass = self.default_mclass
        if shape is None:
            shape = matdims(self.arr, self.oned_as)
        self._mat_tag_pos = self.file_stream.tell()
        self.write_dtype(self.mat_tag)
        # write array flags (complex, global, logical, class, nzmax)
        af = np.zeros((), mdtypes_template['array_flags'])
        af['data_type'] = miUINT32
        af['byte_count'] = 8
        flags = is_complex << 3 | is_global << 2 | is_logical << 1
        af['flags_class'] = mclass | flags << 8
        af['nzmax'] = nzmax
        self.write_dtype(af)
        self.write_element(np.array(shape, dtype='i4'))
        # write name
        self.write_element(np.array([ord(c) for c in self.name], 'i1'))

    def update_matrix_tag(self):
        curr_pos = self.file_stream.tell()
        self.file_stream.seek(self._mat_tag_pos)
        self.mat_tag['byte_count'] = curr_pos - self._mat_tag_pos - 8
        self.write_dtype(self.mat_tag)
        self.file_stream.seek(curr_pos)

    def write(self):
        raise NotImplementedError

    def make_writer_getter(self):
        ''' Make writer getter for this stream '''
        return Mat5WriterGetter(self.unicode_strings,
                                self.long_field_names,
                                self.oned_as)


class Mat5NumericWriter(Mat5MatrixWriter):
    default_mclass = None # can be any numeric type
    def write(self):
        imagf = self.arr.dtype.kind == 'c'
        try:
            mclass = np_to_mxtypes[self.arr.dtype.str[1:]]
        except KeyError:
            if imagf:
                self.arr = self.arr.astype('c128')
            else:
                self.arr = self.arr.astype('f8')
            mclass = mxDOUBLE_CLASS
        self.write_header(mclass=mclass,is_complex=imagf)
        if imagf:
            self.write_element(self.arr.real)
            self.write_element(self.arr.imag)
        else:
            self.write_element(self.arr)
        self.update_matrix_tag()


class Mat5CharWriter(Mat5MatrixWriter):
    codec='ascii'
    default_mclass = mxCHAR_CLASS
    def write(self):
        self.arr_to_chars()
        # We have to write the shape directly, because we are going
        # recode the characters, and the resulting stream of chars
        # may have a different length
        shape = self.arr.shape
        self.write_header(shape=shape)
        # We need to do our own transpose (not using the normal
        # write routines that do this for us)
        arr = self.arr.T.copy()
        if self.arr.dtype.kind == 'U' and arr.size:
            # Recode unicode using self.codec
            n_chars = np.product(shape)
            st_arr = np.ndarray(shape=(),
                                dtype=self.arr_dtype_number(n_chars),
                                buffer=arr)
            st = st_arr.item().encode(self.codec)
            arr = np.ndarray(shape=(len(st),),
                             dtype='u1',
                             buffer=st)
        self.write_element(arr, mdtype=miUTF8)
        self.update_matrix_tag()


class Mat5UniCharWriter(Mat5CharWriter):
    codec='UTF8'


class Mat5SparseWriter(Mat5MatrixWriter):
    default_mclass = mxSPARSE_CLASS
    def write(self):
        ''' Sparse matrices are 2D
        '''
        A = self.arr.tocsc() # convert to sparse CSC format
        A.sort_indices()     # MATLAB expects sorted row indices
        is_complex = (A.dtype.kind == 'c')
        nz = A.nnz
        self.write_header(is_complex=is_complex,
                          nzmax=nz)
        self.write_element(A.indices.astype('i4'))
        self.write_element(A.indptr.astype('i4'))
        self.write_element(A.data.real)
        if is_complex:
            self.write_element(A.data.imag)
        self.update_matrix_tag()


class Mat5CellWriter(Mat5MatrixWriter):
    default_mclass = mxCELL_CLASS
    def write(self):
        self.write_header()
        self._write_items()

    def _write_items(self):
        # loop over data, column major
        A = np.atleast_2d(self.arr).flatten('F')
        MWG = self.make_writer_getter()
        for el in A:
            MW = MWG.matrix_writer_factory(self.file_stream, el)
            MW.write()
        self.update_matrix_tag()


class Mat5BinaryBlockWriter(Mat5MatrixWriter):
    ''' class to write untranslatable binary blocks '''
    def write(self):
        # check endian
        # write binary block as is
        pass

class Mat5StructWriter(Mat5CellWriter):
    ''' class to write matlab structs

    Differs from cell writing class in writing field names,
    and in mx class
    '''
    default_mclass = mxSTRUCT_CLASS

    def _write_items(self):
        # write fieldnames
        fieldnames = [f[0] for f in self.arr.dtype.descr]
        length = max([len(fieldname) for fieldname in fieldnames])+1
        max_length = (self.long_field_names and 64) or 32
        if length > max_length:
            raise ValueError(
                "Field names are restricted to %d characters"
                 % (max_length-1))
        self.write_element(np.array([length], dtype='i4'))
        self.write_element(
            np.array(fieldnames, dtype='S%d'%(length)),
            mdtype=miINT8)
        A = np.atleast_2d(self.arr).flatten('F')
        MWG = self.make_writer_getter()
        for el in A:
            for f in fieldnames:
                MW = MWG.matrix_writer_factory(self.file_stream, el[f])
                MW.write()
        self.update_matrix_tag()


class Mat5ObjectWriter(Mat5StructWriter):
    ''' class to write matlab objects

    Same as writing structs, except different mx class, and extra
    classname element after header
    '''
    default_mclass = mxOBJECT_CLASS
    def write(self):
        self.write_header()
        self.write_element(np.array(self.arr.classname, dtype='S'),
                           mdtype=miINT8)
        self._write_items()


class Mat5WriterGetter(object):
    ''' Wraps options, provides methods for getting Writer objects '''
    @docfiller
    def __init__(self, 
                 unicode_strings=True, 
                 long_field_names=False,
                 oned_as='column'):
        ''' Initialize writer getter

        Parameters
        ----------
        unicode_strings : bool
           If True, write unicode strings
        %(long_fields)s
        %(oned_as)s
        '''
        self.unicode_strings = unicode_strings
        self.long_field_names = long_field_names
        self.oned_as = oned_as

    def to_writeable(self, source):
        ''' Convert input object ``source`` to something we can write

        Parameters
        ----------
        source : object

        Returns
        -------
        arr : ndarray

        Examples
        --------
        >>> mwg = Mat5WriterGetter()
        >>> mwg.to_writeable(np.array([1])) # pass through ndarrays
        array([1])
        >>> expected = np.array([(1, 2)], dtype=[('a', '|O8'), ('b', '|O8')])
        >>> np.all(mwg.to_writeable({'a':1,'b':2}) == expected)
        True
        >>> np.all(mwg.to_writeable({'a':1,'b':2, '_c':3}) == expected)
        True
        >>> np.all(mwg.to_writeable({'a':1,'b':2, 100:3}) == expected)
        True
        >>> np.all(mwg.to_writeable({'a':1,'b':2, '99':3}) == expected)
        True
        >>> class klass(object): pass
        >>> c = klass
        >>> c.a = 1
        >>> c.b = 2
        >>> np.all(mwg.to_writeable({'a':1,'b':2}) == expected)
        True
        >>> mwg.to_writeable([])
        array([], dtype=float64)
        >>> mwg.to_writeable(())
        array([], dtype=float64)
        >>> mwg.to_writeable(None)

        >>> mwg.to_writeable('a string').dtype
        dtype('|S8')
        >>> mwg.to_writeable(1)
        array(1)
        >>> mwg.to_writeable([1])
        array([1])
        >>> mwg.to_writeable([1])
        array([1])
        >>> mwg.to_writeable(object()) # not convertable

        dict keys with legal characters are convertible

        >>> mwg.to_writeable({'a':1})['a']
        array([1], dtype=object)

        but not with illegal characters

        >>> mwg.to_writeable({'1':1}) is None
        True
        >>> mwg.to_writeable({'_a':1}) is None
        True
        '''
        if isinstance(source, np.ndarray):
            return source
        if source is None:
            return None
        # Objects that have dicts
        if hasattr(source, '__dict__'):
            source = dict((key, value) for key, value in source.__dict__.items()
                          if not key.startswith('_'))
        # Mappings or object dicts
        if hasattr(source, 'keys'):
            dtype = []
            values = []
            for field, value in source.items():
                if (isinstance(field, basestring) and 
                    not field[0] in '_0123456789'):
                    dtype.append((field,object))
                    values.append(value)
            if dtype:
                return np.array( [tuple(values)] ,dtype)
            else:
                return None
        # Next try and convert to an array
        narr = np.asanyarray(source)
        if narr.dtype.type in (np.object, np.object_) and \
           narr.shape == () and narr == source:
            # No interesting conversion possible
            return None
        return narr

    def matrix_writer_factory(self, stream, arr, name='', is_global=False):
        ''' Factory function to return matrix writer given variable to write

        Parameters
        ----------
        stream : fileobj
            stream to write to
        arr : array-like
            array-like object to create writer for
        name : string
            name as it will appear in matlab workspace
            default is empty string
        is_global : {False, True} optional
            whether variable will be global on load into matlab

        Returns
        -------
        writer : matrix writer object
        '''
        # First check if these are sparse
        if scipy.sparse.issparse(arr):
            return Mat5SparseWriter(stream, arr, name, is_global)
        # Try to convert things that aren't arrays
        narr = self.to_writeable(arr)
        if narr is None:
            raise TypeError('Could not convert %s (type %s) to array'
                            % (arr, type(arr)))
        args = (stream,
                narr,
                name,
                is_global,
                self.unicode_strings,
                self.long_field_names,
                self.oned_as)
        if isinstance(narr, MatlabBinaryBlock):
            return Mat5BinaryBlockWriter(*args)
        if isinstance(narr, MatlabObject):
            return Mat5ObjectWriter(*args)
        if narr.dtype.fields: # struct array
            return Mat5StructWriter(*args)
        if narr.dtype.hasobject: # cell array
            return Mat5CellWriter(*args)
        if narr.dtype.kind in ('U', 'S'):
            if self.unicode_strings:
                return Mat5UniCharWriter(*args)
            else:
                return Mat5CharWriter(*args)
        else:
            return Mat5NumericWriter(*args)


class MatFile5Writer(MatFileWriter):
    ''' Class for writing mat5 files '''
    @docfiller
    def __init__(self, file_stream,
                 do_compression=False,
                 unicode_strings=False,
                 global_vars=None,
                 long_field_names=False,
                 oned_as=None):
        ''' Initialize writer for matlab 5 format files 

        Parameters
        ----------
        %(do_compression)s
        %(unicode_strings)s
        global_vars : None or sequence of strings, optional
            Names of variables to be marked as global for matlab
        %(long_fields)s
        %(oned_as)s
        '''
        super(MatFile5Writer, self).__init__(file_stream)
        self.do_compression = do_compression
        if global_vars:
            self.global_vars = global_vars
        else:
            self.global_vars = []
        # deal with deprecations
        if oned_as is None:
            warnings.warn("Using oned_as default value ('column')" +
                          " This will change to 'row' in future versions",
                          FutureWarning, stacklevel=2)
            oned_as = 'column'
        self.writer_getter = Mat5WriterGetter(
            unicode_strings,
            long_field_names,
            oned_as)
        # write header
        hdr =  np.zeros((), mdtypes_template['file_header'])
        hdr['description']='MATLAB 5.0 MAT-file Platform: %s, Created on: %s' \
            % (os.name,time.asctime())
        hdr['version']= 0x0100
        hdr['endian_test']=np.ndarray(shape=(),
                                      dtype='S2',
                                      buffer=np.uint16(0x4d49))
        file_stream.write(hdr.tostring())

    def get_unicode_strings(self):
        return self.writer_getter.unicode_strings
    def set_unicode_strings(self, unicode_strings):
        self.writer_getter.unicode_strings = unicode_strings
    unicode_strings = property(get_unicode_strings,
                               set_unicode_strings,
                               None,
                               'get/set unicode strings property')

    def get_long_field_names(self):
        return self.writer_getter.long_field_names
    def set_long_field_names(self, long_field_names):
        self.writer_getter.long_field_names = long_field_names
    long_field_names = property(get_long_field_names,
                                set_long_field_names,
                                None,
                                'enable writing 32-63 character field '
                                'names for Matlab 7.6+')

    def get_oned_as(self):
        return self.writer_getter.oned_as
    def set_oned_as(self, oned_as):
        self.writer_getter.oned_as = oned_as
    oned_as = property(get_oned_as,
                       set_oned_as,
                       None,
                       'get/set oned_as property')

    def put_variables(self, mdict):
        for name, var in mdict.items():
            if name[0] == '_':
                continue
            is_global = name in self.global_vars
            if self.do_compression:
                stream = StringIO()
                mat_writer = self.writer_getter.matrix_writer_factory(
                    stream,
                    var,
                    name,
                    is_global)
                mat_writer.write()
                out_str = zlib.compress(stream.getvalue())
                tag = np.empty((), mdtypes_template['tag_full'])
                tag['mdtype'] = miCOMPRESSED
                tag['byte_count'] = len(out_str)
                self.file_stream.write(tag.tostring() + out_str)
            else: # not compressing
                mat_writer = self.writer_getter.matrix_writer_factory(
                    self.file_stream,
                    var,
                    name,
                    is_global)
                mat_writer.write()