1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
|
#!/usr/bin/env python
#
# Created by: Pearu Peterson, March 2002
#
""" Test functions for linalg.decomp module
"""
__usage__ = """
Build linalg:
python setup_linalg.py build
Run tests if scipy is installed:
python -c 'import scipy;scipy.linalg.test()'
Run tests if linalg is not installed:
python tests/test_decomp.py
"""
from numpy.testing import *
from scipy.linalg import eig,eigvals,lu,svd,svdvals,cholesky,qr, \
schur,rsf2csf, lu_solve,lu_factor,solve,diagsvd,hessenberg,rq, \
eig_banded, eigvals_banded, eigh
from scipy.linalg.flapack import dgbtrf, dgbtrs, zgbtrf, zgbtrs, \
dsbev, dsbevd, dsbevx, zhbevd, zhbevx
from numpy import array, transpose, sometrue, diag, ones, linalg, \
argsort, zeros, arange, float32, complex64, dot, conj, identity, \
ravel, sqrt, iscomplex, shape, sort, conjugate, bmat, sign, \
asarray, matrix, isfinite, all, ndarray, outer, eye, dtype, empty,\
triu, tril
from numpy.random import rand, normal
# digit precision to use in asserts for different types
DIGITS = {'d':11, 'D':11, 'f':4, 'F':4}
# XXX: This function should be available through numpy.testing
def assert_dtype_equal(act, des):
if isinstance(act, ndarray):
act = act.dtype
else:
act = dtype(act)
if isinstance(des, ndarray):
des = des.dtype
else:
des = dtype(des)
assert act == des, 'dtype mismatch: "%s" (should be "%s") '%(act, des)
# XXX: This function should not be defined here, but somewhere in
# scipy.linalg namespace
def symrand(dim_or_eigv):
"""Return a random symmetric (Hermitian) matrix.
If 'dim_or_eigv' is an integer N, return a NxN matrix, with eigenvalues
uniformly distributed on (-1,1).
If 'dim_or_eigv' is 1-D real array 'a', return a matrix whose
eigenvalues are 'a'.
"""
if isinstance(dim_or_eigv, int):
dim = dim_or_eigv
d = (rand(dim)*2)-1
elif (isinstance(dim_or_eigv, ndarray) and
len(dim_or_eigv.shape) == 1):
dim = dim_or_eigv.shape[0]
d = dim_or_eigv
else:
raise TypeError("input type not supported.")
v = random_rot(dim)
h = dot(dot(v.T.conj(), diag(d)), v)
# to avoid roundoff errors, symmetrize the matrix (again)
h = 0.5*(h.T+h)
return h
# XXX: This function should not be defined here, but somewhere in
# scipy.linalg namespace
def random_rot(dim):
"""Return a random rotation matrix, drawn from the Haar distribution
(the only uniform distribution on SO(n)).
The algorithm is described in the paper
Stewart, G.W., 'The efficient generation of random orthogonal
matrices with an application to condition estimators', SIAM Journal
on Numerical Analysis, 17(3), pp. 403-409, 1980.
For more information see
http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization"""
H = eye(dim)
D = ones((dim, ))
for n in range(1, dim):
x = normal(size=(dim-n+1, ))
D[n-1] = sign(x[0])
x[0] -= D[n-1]*sqrt((x*x).sum())
# Householder transformation
Hx = eye(dim-n+1) - 2.*outer(x, x)/(x*x).sum()
mat = eye(dim)
mat[n-1:,n-1:] = Hx
H = dot(H, mat)
# Fix the last sign such that the determinant is 1
D[-1] = -D.prod()
H = (D*H.T).T
return H
def random(size):
return rand(*size)
class TestEigVals(TestCase):
def test_simple(self):
a = [[1,2,3],[1,2,3],[2,5,6]]
w = eigvals(a)
exact_w = [(9+sqrt(93))/2,0,(9-sqrt(93))/2]
assert_array_almost_equal(w,exact_w)
def test_simple_tr(self):
a = array([[1,2,3],[1,2,3],[2,5,6]],'d')
a = transpose(a).copy()
a = transpose(a)
w = eigvals(a)
exact_w = [(9+sqrt(93))/2,0,(9-sqrt(93))/2]
assert_array_almost_equal(w,exact_w)
def test_simple_complex(self):
a = [[1,2,3],[1,2,3],[2,5,6+1j]]
w = eigvals(a)
exact_w = [(9+1j+sqrt(92+6j))/2,
0,
(9+1j-sqrt(92+6j))/2]
assert_array_almost_equal(w,exact_w)
class TestEig(TestCase):
def test_simple(self):
a = [[1,2,3],[1,2,3],[2,5,6]]
w,v = eig(a)
exact_w = [(9+sqrt(93))/2,0,(9-sqrt(93))/2]
v0 = array([1,1,(1+sqrt(93)/3)/2])
v1 = array([3.,0,-1])
v2 = array([1,1,(1-sqrt(93)/3)/2])
v0 = v0 / sqrt(dot(v0,transpose(v0)))
v1 = v1 / sqrt(dot(v1,transpose(v1)))
v2 = v2 / sqrt(dot(v2,transpose(v2)))
assert_array_almost_equal(w,exact_w)
assert_array_almost_equal(v0,v[:,0]*sign(v[0,0]))
assert_array_almost_equal(v1,v[:,1]*sign(v[0,1]))
assert_array_almost_equal(v2,v[:,2]*sign(v[0,2]))
for i in range(3):
assert_array_almost_equal(dot(a,v[:,i]),w[i]*v[:,i])
w,v = eig(a,left=1,right=0)
for i in range(3):
assert_array_almost_equal(dot(transpose(a),v[:,i]),w[i]*v[:,i])
def test_simple_complex(self):
a = [[1,2,3],[1,2,3],[2,5,6+1j]]
w,vl,vr = eig(a,left=1,right=1)
for i in range(3):
assert_array_almost_equal(dot(a,vr[:,i]),w[i]*vr[:,i])
for i in range(3):
assert_array_almost_equal(dot(conjugate(transpose(a)),vl[:,i]),
conjugate(w[i])*vl[:,i])
def test_singular(self):
"""Test singular pair"""
# Example taken from
# http://www.cs.umu.se/research/nla/singular_pairs/guptri/matlab.html
A = array(( [22,34,31,31,17], [45,45,42,19,29], [39,47,49,26,34],
[27,31,26,21,15], [38,44,44,24,30]))
B = array(( [13,26,25,17,24], [31,46,40,26,37], [26,40,19,25,25],
[16,25,27,14,23], [24,35,18,21,22]))
w, vr = eig(A,B)
wt = eigvals(A,B)
val1 = dot(A, vr)
val2 = dot(B, vr) * w
res = val1 - val2
for i in range(res.shape[1]):
if all(isfinite(res[:, i])):
assert_array_almost_equal(res[:, i], 0)
# Disable this test, which fails now, and is not really necessary if the above
# succeeds ?
#assert_array_almost_equal(w[isfinite(w)], wt[isfinite(w)])
def test_falker(self):
"""Test matrices giving some Nan generalized eigen values."""
M = diag(array(([1,0,3])))
K = array(([2,-1,-1],[-1,2,-1],[-1,-1,2]))
D = array(([1,-1,0],[-1,1,0],[0,0,0]))
Z = zeros((3,3))
I = identity(3)
A = bmat([[I,Z],[Z,-K]])
B = bmat([[Z,I],[M,D]])
A = asarray(A)
B = asarray(B)
w, vr = eig(A,B)
val1 = dot(A, vr)
val2 = dot(B, vr) * w
res = val1 - val2
for i in range(res.shape[1]):
if all(isfinite(res[:, i])):
assert_array_almost_equal(res[:, i], 0)
class TestEigBanded(TestCase):
def __init__(self, *args):
TestCase.__init__(self, *args)
self.create_bandmat()
def create_bandmat(self):
"""Create the full matrix `self.fullmat` and
the corresponding band matrix `self.bandmat`."""
N = 10
self.KL = 2 # number of subdiagonals (below the diagonal)
self.KU = 2 # number of superdiagonals (above the diagonal)
# symmetric band matrix
self.sym_mat = ( diag(1.0*ones(N))
+ diag(-1.0*ones(N-1), -1) + diag(-1.0*ones(N-1), 1)
+ diag(-2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )
# hermitian band matrix
self.herm_mat = ( diag(-1.0*ones(N))
+ 1j*diag(1.0*ones(N-1), -1) - 1j*diag(1.0*ones(N-1), 1)
+ diag(-2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )
# general real band matrix
self.real_mat = ( diag(1.0*ones(N))
+ diag(-1.0*ones(N-1), -1) + diag(-3.0*ones(N-1), 1)
+ diag(2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )
# general complex band matrix
self.comp_mat = ( 1j*diag(1.0*ones(N))
+ diag(-1.0*ones(N-1), -1) + 1j*diag(-3.0*ones(N-1), 1)
+ diag(2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )
# Eigenvalues and -vectors from linalg.eig
ew, ev = linalg.eig(self.sym_mat)
ew = ew.real
args = argsort(ew)
self.w_sym_lin = ew[args]
self.evec_sym_lin = ev[:,args]
ew, ev = linalg.eig(self.herm_mat)
ew = ew.real
args = argsort(ew)
self.w_herm_lin = ew[args]
self.evec_herm_lin = ev[:,args]
# Extract upper bands from symmetric and hermitian band matrices
# (for use in dsbevd, dsbevx, zhbevd, zhbevx
# and their single precision versions)
LDAB = self.KU + 1
self.bandmat_sym = zeros((LDAB, N), dtype=float)
self.bandmat_herm = zeros((LDAB, N), dtype=complex)
for i in xrange(LDAB):
self.bandmat_sym[LDAB-i-1,i:N] = diag(self.sym_mat, i)
self.bandmat_herm[LDAB-i-1,i:N] = diag(self.herm_mat, i)
# Extract bands from general real and complex band matrix
# (for use in dgbtrf, dgbtrs and their single precision versions)
LDAB = 2*self.KL + self.KU + 1
self.bandmat_real = zeros((LDAB, N), dtype=float)
self.bandmat_real[2*self.KL,:] = diag(self.real_mat) # diagonal
for i in xrange(self.KL):
# superdiagonals
self.bandmat_real[2*self.KL-1-i,i+1:N] = diag(self.real_mat, i+1)
# subdiagonals
self.bandmat_real[2*self.KL+1+i,0:N-1-i] = diag(self.real_mat,-i-1)
self.bandmat_comp = zeros((LDAB, N), dtype=complex)
self.bandmat_comp[2*self.KL,:] = diag(self.comp_mat) # diagonal
for i in xrange(self.KL):
# superdiagonals
self.bandmat_comp[2*self.KL-1-i,i+1:N] = diag(self.comp_mat, i+1)
# subdiagonals
self.bandmat_comp[2*self.KL+1+i,0:N-1-i] = diag(self.comp_mat,-i-1)
# absolute value for linear equation system A*x = b
self.b = 1.0*arange(N)
self.bc = self.b *(1 + 1j)
#####################################################################
def test_dsbev(self):
"""Compare dsbev eigenvalues and eigenvectors with
the result of linalg.eig."""
w, evec, info = dsbev(self.bandmat_sym, compute_v=1)
evec_ = evec[:,argsort(w)]
assert_array_almost_equal(sort(w), self.w_sym_lin)
assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin))
def test_dsbevd(self):
"""Compare dsbevd eigenvalues and eigenvectors with
the result of linalg.eig."""
w, evec, info = dsbevd(self.bandmat_sym, compute_v=1)
evec_ = evec[:,argsort(w)]
assert_array_almost_equal(sort(w), self.w_sym_lin)
assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin))
def test_dsbevx(self):
"""Compare dsbevx eigenvalues and eigenvectors
with the result of linalg.eig."""
N,N = shape(self.sym_mat)
## Achtung: Argumente 0.0,0.0,range?
w, evec, num, ifail, info = dsbevx(self.bandmat_sym, 0.0, 0.0, 1, N,
compute_v=1, range=2)
evec_ = evec[:,argsort(w)]
assert_array_almost_equal(sort(w), self.w_sym_lin)
assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin))
def test_zhbevd(self):
"""Compare zhbevd eigenvalues and eigenvectors
with the result of linalg.eig."""
w, evec, info = zhbevd(self.bandmat_herm, compute_v=1)
evec_ = evec[:,argsort(w)]
assert_array_almost_equal(sort(w), self.w_herm_lin)
assert_array_almost_equal(abs(evec_), abs(self.evec_herm_lin))
def test_zhbevx(self):
"""Compare zhbevx eigenvalues and eigenvectors
with the result of linalg.eig."""
N,N = shape(self.herm_mat)
## Achtung: Argumente 0.0,0.0,range?
w, evec, num, ifail, info = zhbevx(self.bandmat_herm, 0.0, 0.0, 1, N,
compute_v=1, range=2)
evec_ = evec[:,argsort(w)]
assert_array_almost_equal(sort(w), self.w_herm_lin)
assert_array_almost_equal(abs(evec_), abs(self.evec_herm_lin))
def test_eigvals_banded(self):
"""Compare eigenvalues of eigvals_banded with those of linalg.eig."""
w_sym = eigvals_banded(self.bandmat_sym)
w_sym = w_sym.real
assert_array_almost_equal(sort(w_sym), self.w_sym_lin)
w_herm = eigvals_banded(self.bandmat_herm)
w_herm = w_herm.real
assert_array_almost_equal(sort(w_herm), self.w_herm_lin)
# extracting eigenvalues with respect to an index range
ind1 = 2
ind2 = 6
w_sym_ind = eigvals_banded(self.bandmat_sym,
select='i', select_range=(ind1, ind2) )
assert_array_almost_equal(sort(w_sym_ind),
self.w_sym_lin[ind1:ind2+1])
w_herm_ind = eigvals_banded(self.bandmat_herm,
select='i', select_range=(ind1, ind2) )
assert_array_almost_equal(sort(w_herm_ind),
self.w_herm_lin[ind1:ind2+1])
# extracting eigenvalues with respect to a value range
v_lower = self.w_sym_lin[ind1] - 1.0e-5
v_upper = self.w_sym_lin[ind2] + 1.0e-5
w_sym_val = eigvals_banded(self.bandmat_sym,
select='v', select_range=(v_lower, v_upper) )
assert_array_almost_equal(sort(w_sym_val),
self.w_sym_lin[ind1:ind2+1])
v_lower = self.w_herm_lin[ind1] - 1.0e-5
v_upper = self.w_herm_lin[ind2] + 1.0e-5
w_herm_val = eigvals_banded(self.bandmat_herm,
select='v', select_range=(v_lower, v_upper) )
assert_array_almost_equal(sort(w_herm_val),
self.w_herm_lin[ind1:ind2+1])
def test_eig_banded(self):
"""Compare eigenvalues and eigenvectors of eig_banded
with those of linalg.eig. """
w_sym, evec_sym = eig_banded(self.bandmat_sym)
evec_sym_ = evec_sym[:,argsort(w_sym.real)]
assert_array_almost_equal(sort(w_sym), self.w_sym_lin)
assert_array_almost_equal(abs(evec_sym_), abs(self.evec_sym_lin))
w_herm, evec_herm = eig_banded(self.bandmat_herm)
evec_herm_ = evec_herm[:,argsort(w_herm.real)]
assert_array_almost_equal(sort(w_herm), self.w_herm_lin)
assert_array_almost_equal(abs(evec_herm_), abs(self.evec_herm_lin))
# extracting eigenvalues with respect to an index range
ind1 = 2
ind2 = 6
w_sym_ind, evec_sym_ind = eig_banded(self.bandmat_sym,
select='i', select_range=(ind1, ind2) )
assert_array_almost_equal(sort(w_sym_ind),
self.w_sym_lin[ind1:ind2+1])
assert_array_almost_equal(abs(evec_sym_ind),
abs(self.evec_sym_lin[:,ind1:ind2+1]) )
w_herm_ind, evec_herm_ind = eig_banded(self.bandmat_herm,
select='i', select_range=(ind1, ind2) )
assert_array_almost_equal(sort(w_herm_ind),
self.w_herm_lin[ind1:ind2+1])
assert_array_almost_equal(abs(evec_herm_ind),
abs(self.evec_herm_lin[:,ind1:ind2+1]) )
# extracting eigenvalues with respect to a value range
v_lower = self.w_sym_lin[ind1] - 1.0e-5
v_upper = self.w_sym_lin[ind2] + 1.0e-5
w_sym_val, evec_sym_val = eig_banded(self.bandmat_sym,
select='v', select_range=(v_lower, v_upper) )
assert_array_almost_equal(sort(w_sym_val),
self.w_sym_lin[ind1:ind2+1])
assert_array_almost_equal(abs(evec_sym_val),
abs(self.evec_sym_lin[:,ind1:ind2+1]) )
v_lower = self.w_herm_lin[ind1] - 1.0e-5
v_upper = self.w_herm_lin[ind2] + 1.0e-5
w_herm_val, evec_herm_val = eig_banded(self.bandmat_herm,
select='v', select_range=(v_lower, v_upper) )
assert_array_almost_equal(sort(w_herm_val),
self.w_herm_lin[ind1:ind2+1])
assert_array_almost_equal(abs(evec_herm_val),
abs(self.evec_herm_lin[:,ind1:ind2+1]) )
def test_dgbtrf(self):
"""Compare dgbtrf LU factorisation with the LU factorisation result
of linalg.lu."""
M,N = shape(self.real_mat)
lu_symm_band, ipiv, info = dgbtrf(self.bandmat_real, self.KL, self.KU)
# extract matrix u from lu_symm_band
u = diag(lu_symm_band[2*self.KL,:])
for i in xrange(self.KL + self.KU):
u += diag(lu_symm_band[2*self.KL-1-i,i+1:N], i+1)
p_lin, l_lin, u_lin = lu(self.real_mat, permute_l=0)
assert_array_almost_equal(u, u_lin)
def test_zgbtrf(self):
"""Compare zgbtrf LU factorisation with the LU factorisation result
of linalg.lu."""
M,N = shape(self.comp_mat)
lu_symm_band, ipiv, info = zgbtrf(self.bandmat_comp, self.KL, self.KU)
# extract matrix u from lu_symm_band
u = diag(lu_symm_band[2*self.KL,:])
for i in xrange(self.KL + self.KU):
u += diag(lu_symm_band[2*self.KL-1-i,i+1:N], i+1)
p_lin, l_lin, u_lin =lu(self.comp_mat, permute_l=0)
assert_array_almost_equal(u, u_lin)
def test_dgbtrs(self):
"""Compare dgbtrs solutions for linear equation system A*x = b
with solutions of linalg.solve."""
lu_symm_band, ipiv, info = dgbtrf(self.bandmat_real, self.KL, self.KU)
y, info = dgbtrs(lu_symm_band, self.KL, self.KU, self.b, ipiv)
y_lin = linalg.solve(self.real_mat, self.b)
assert_array_almost_equal(y, y_lin)
def test_zgbtrs(self):
"""Compare zgbtrs solutions for linear equation system A*x = b
with solutions of linalg.solve."""
lu_symm_band, ipiv, info = zgbtrf(self.bandmat_comp, self.KL, self.KU)
y, info = zgbtrs(lu_symm_band, self.KL, self.KU, self.bc, ipiv)
y_lin = linalg.solve(self.comp_mat, self.bc)
assert_array_almost_equal(y, y_lin)
def test_eigh():
DIM = 6
v = {'dim': (DIM, ),
'dtype': ('f','d','F','D'),
'overwrite': (True, False),
'lower': (True, False),
'turbo': (True, False),
'eigvals': (None, (2, DIM-2))}
for dim in v['dim']:
for typ in v['dtype']:
for overwrite in v['overwrite']:
for turbo in v['turbo']:
for eigvals in v['eigvals']:
for lower in v['lower']:
yield (eigenhproblem_standard,
'ordinary',
dim, typ, overwrite, lower,
turbo, eigvals)
yield (eigenhproblem_general,
'general ',
dim, typ, overwrite, lower,
turbo, eigvals)
def _complex_symrand(dim, dtype):
a1, a2 = symrand(dim), symrand(dim)
# add antisymmetric matrix as imag part
a = a1 +1j*(triu(a2)-tril(a2))
return a.astype(dtype)
def eigenhproblem_standard(desc, dim, dtype,
overwrite, lower, turbo,
eigvals):
"""Solve a standard eigenvalue problem."""
if iscomplex(empty(1, dtype=dtype)):
a = _complex_symrand(dim, dtype)
else:
a = symrand(dim).astype(dtype)
if overwrite:
a_c = a.copy()
else:
a_c = a
w, z = eigh(a, overwrite_a=overwrite, lower=lower, eigvals=eigvals)
assert_dtype_equal(z.dtype, dtype)
w = w.astype(dtype)
diag_ = diag(dot(z.T.conj(), dot(a_c, z))).real
assert_array_almost_equal(diag_, w, DIGITS[dtype])
def eigenhproblem_general(desc, dim, dtype,
overwrite, lower, turbo,
eigvals):
"""Solve a generalized eigenvalue problem."""
if iscomplex(empty(1, dtype=dtype)):
a = _complex_symrand(dim, dtype)
b = _complex_symrand(dim, dtype)+diag([2.1]*dim).astype(dtype)
else:
a = symrand(dim).astype(dtype)
b = symrand(dim).astype(dtype)+diag([2.1]*dim).astype(dtype)
if overwrite:
a_c, b_c = a.copy(), b.copy()
else:
a_c, b_c = a, b
w, z = eigh(a, b, overwrite_a=overwrite, lower=lower,
overwrite_b=overwrite, turbo=turbo, eigvals=eigvals)
assert_dtype_equal(z.dtype, dtype)
w = w.astype(dtype)
diag1_ = diag(dot(z.T.conj(), dot(a_c, z))).real
assert_array_almost_equal(diag1_, w, DIGITS[dtype])
diag2_ = diag(dot(z.T.conj(), dot(b_c, z))).real
assert_array_almost_equal(diag2_, ones(diag2_.shape[0]), DIGITS[dtype])
def test_eigh_integer():
a = array([[1,2],[2,7]])
b = array([[3,1],[1,5]])
w,z = eigh(a)
w,z = eigh(a,b)
class TestLU(TestCase):
def __init__(self, *args, **kw):
TestCase.__init__(self, *args, **kw)
self.a = array([[1,2,3],[1,2,3],[2,5,6]])
self.ca = array([[1,2,3],[1,2,3],[2,5j,6]])
# Those matrices are more robust to detect problems in permutation
# matrices than the ones above
self.b = array([[1,2,3],[4,5,6],[7,8,9]])
self.cb = array([[1j,2j,3j],[4j,5j,6j],[7j,8j,9j]])
# Reectangular matrices
self.hrect = array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 12, 12]])
self.chrect = 1.j * array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 12, 12]])
self.vrect = array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 12, 12]])
self.cvrect = 1.j * array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 12, 12]])
# Medium sizes matrices
self.med = rand(30, 40)
self.cmed = rand(30, 40) + 1.j * rand(30, 40)
def _test_common(self, data):
p,l,u = lu(data)
assert_array_almost_equal(dot(dot(p,l),u),data)
pl,u = lu(data,permute_l=1)
assert_array_almost_equal(dot(pl,u),data)
# Simple tests
def test_simple(self):
self._test_common(self.a)
def test_simple_complex(self):
self._test_common(self.ca)
def test_simple2(self):
self._test_common(self.b)
def test_simple2_complex(self):
self._test_common(self.cb)
# rectangular matrices tests
def test_hrectangular(self):
self._test_common(self.hrect)
def test_vrectangular(self):
self._test_common(self.vrect)
def test_hrectangular_complex(self):
self._test_common(self.chrect)
def test_vrectangular_complex(self):
self._test_common(self.cvrect)
# Bigger matrices
def test_medium1(self):
"""Check lu decomposition on medium size, rectangular matrix."""
self._test_common(self.med)
def test_medium1_complex(self):
"""Check lu decomposition on medium size, rectangular matrix."""
self._test_common(self.cmed)
class TestLUSingle(TestLU):
"""LU testers for single precision, real and double"""
def __init__(self, *args, **kw):
TestLU.__init__(self, *args, **kw)
self.a = self.a.astype(float32)
self.ca = self.ca.astype(complex64)
self.b = self.b.astype(float32)
self.cb = self.cb.astype(complex64)
self.hrect = self.hrect.astype(float32)
self.chrect = self.hrect.astype(complex64)
self.vrect = self.vrect.astype(float32)
self.cvrect = self.vrect.astype(complex64)
self.med = self.vrect.astype(float32)
self.cmed = self.vrect.astype(complex64)
class TestLUSolve(TestCase):
def test_lu(self):
a = random((10,10))
b = random((10,))
x1 = solve(a,b)
lu_a = lu_factor(a)
x2 = lu_solve(lu_a,b)
assert_array_equal(x1,x2)
class TestSVD(TestCase):
def test_simple(self):
a = [[1,2,3],[1,20,3],[2,5,6]]
u,s,vh = svd(a)
assert_array_almost_equal(dot(transpose(u),u),identity(3))
assert_array_almost_equal(dot(transpose(vh),vh),identity(3))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
def test_simple_singular(self):
a = [[1,2,3],[1,2,3],[2,5,6]]
u,s,vh = svd(a)
assert_array_almost_equal(dot(transpose(u),u),identity(3))
assert_array_almost_equal(dot(transpose(vh),vh),identity(3))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
def test_simple_underdet(self):
a = [[1,2,3],[4,5,6]]
u,s,vh = svd(a)
assert_array_almost_equal(dot(transpose(u),u),identity(2))
assert_array_almost_equal(dot(transpose(vh),vh),identity(3))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
def test_simple_overdet(self):
a = [[1,2],[4,5],[3,4]]
u,s,vh = svd(a)
assert_array_almost_equal(dot(transpose(u),u),identity(3))
assert_array_almost_equal(dot(transpose(vh),vh),identity(2))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
def test_random(self):
n = 20
m = 15
for i in range(3):
for a in [random([n,m]),random([m,n])]:
u,s,vh = svd(a)
assert_array_almost_equal(dot(transpose(u),u),identity(len(u)))
assert_array_almost_equal(dot(transpose(vh),vh),identity(len(vh)))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
def test_simple_complex(self):
a = [[1,2,3],[1,2j,3],[2,5,6]]
u,s,vh = svd(a)
assert_array_almost_equal(dot(conj(transpose(u)),u),identity(3))
assert_array_almost_equal(dot(conj(transpose(vh)),vh),identity(3))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
def test_random_complex(self):
n = 20
m = 15
for i in range(3):
for a in [random([n,m]),random([m,n])]:
a = a + 1j*random(list(a.shape))
u,s,vh = svd(a)
assert_array_almost_equal(dot(conj(transpose(u)),u),identity(len(u)))
# This fails when [m,n]
#assert_array_almost_equal(dot(conj(transpose(vh)),vh),identity(len(vh),dtype=vh.dtype.char))
sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
for i in range(len(s)): sigma[i,i] = s[i]
assert_array_almost_equal(dot(dot(u,sigma),vh),a)
class TestSVDVals(TestCase):
def test_simple(self):
a = [[1,2,3],[1,2,3],[2,5,6]]
s = svdvals(a)
assert len(s)==3
assert s[0]>=s[1]>=s[2]
def test_simple_underdet(self):
a = [[1,2,3],[4,5,6]]
s = svdvals(a)
assert len(s)==2
assert s[0]>=s[1]
def test_simple_overdet(self):
a = [[1,2],[4,5],[3,4]]
s = svdvals(a)
assert len(s)==2
assert s[0]>=s[1]
def test_simple_complex(self):
a = [[1,2,3],[1,20,3j],[2,5,6]]
s = svdvals(a)
assert len(s)==3
assert s[0]>=s[1]>=s[2]
def test_simple_underdet_complex(self):
a = [[1,2,3],[4,5j,6]]
s = svdvals(a)
assert len(s)==2
assert s[0]>=s[1]
def test_simple_overdet_complex(self):
a = [[1,2],[4,5],[3j,4]]
s = svdvals(a)
assert len(s)==2
assert s[0]>=s[1]
class TestDiagSVD(TestCase):
def test_simple(self):
assert_array_almost_equal(diagsvd([1,0,0],3,3),[[1,0,0],[0,0,0],[0,0,0]])
class TestCholesky(TestCase):
def test_simple(self):
a = [[8,2,3],[2,9,3],[3,3,6]]
c = cholesky(a)
assert_array_almost_equal(dot(transpose(c),c),a)
c = transpose(c)
a = dot(c,transpose(c))
assert_array_almost_equal(cholesky(a,lower=1),c)
def test_simple_complex(self):
m = array([[3+1j,3+4j,5],[0,2+2j,2+7j],[0,0,7+4j]])
a = dot(transpose(conjugate(m)),m)
c = cholesky(a)
a1 = dot(transpose(conjugate(c)),c)
assert_array_almost_equal(a,a1)
c = transpose(c)
a = dot(c,transpose(conjugate(c)))
assert_array_almost_equal(cholesky(a,lower=1),c)
def test_random(self):
n = 20
for k in range(2):
m = random([n,n])
for i in range(n):
m[i,i] = 20*(.1+m[i,i])
a = dot(transpose(m),m)
c = cholesky(a)
a1 = dot(transpose(c),c)
assert_array_almost_equal(a,a1)
c = transpose(c)
a = dot(c,transpose(c))
assert_array_almost_equal(cholesky(a,lower=1),c)
def test_random_complex(self):
n = 20
for k in range(2):
m = random([n,n])+1j*random([n,n])
for i in range(n):
m[i,i] = 20*(.1+abs(m[i,i]))
a = dot(transpose(conjugate(m)),m)
c = cholesky(a)
a1 = dot(transpose(conjugate(c)),c)
assert_array_almost_equal(a,a1)
c = transpose(c)
a = dot(c,transpose(conjugate(c)))
assert_array_almost_equal(cholesky(a,lower=1),c)
class TestQR(TestCase):
def test_simple(self):
a = [[8,2,3],[2,9,3],[5,3,6]]
q,r = qr(a)
assert_array_almost_equal(dot(transpose(q),q),identity(3))
assert_array_almost_equal(dot(q,r),a)
def test_simple_trap(self):
a = [[8,2,3],[2,9,3]]
q,r = qr(a)
assert_array_almost_equal(dot(transpose(q),q),identity(2))
assert_array_almost_equal(dot(q,r),a)
def test_simple_tall(self):
# full version
a = [[8,2],[2,9],[5,3]]
q,r = qr(a)
assert_array_almost_equal(dot(transpose(q),q),identity(3))
assert_array_almost_equal(dot(q,r),a)
def test_simple_tall_e(self):
# economy version
a = [[8,2],[2,9],[5,3]]
q,r = qr(a,econ=True)
assert_array_almost_equal(dot(transpose(q),q),identity(2))
assert_array_almost_equal(dot(q,r),a)
assert_equal(q.shape, (3,2))
assert_equal(r.shape, (2,2))
def test_simple_complex(self):
a = [[3,3+4j,5],[5,2,2+7j],[3,2,7]]
q,r = qr(a)
assert_array_almost_equal(dot(conj(transpose(q)),q),identity(3))
assert_array_almost_equal(dot(q,r),a)
def test_random(self):
n = 20
for k in range(2):
a = random([n,n])
q,r = qr(a)
assert_array_almost_equal(dot(transpose(q),q),identity(n))
assert_array_almost_equal(dot(q,r),a)
def test_random_tall(self):
# full version
m = 200
n = 100
for k in range(2):
a = random([m,n])
q,r = qr(a)
assert_array_almost_equal(dot(transpose(q),q),identity(m))
assert_array_almost_equal(dot(q,r),a)
def test_random_tall_e(self):
# economy version
m = 200
n = 100
for k in range(2):
a = random([m,n])
q,r = qr(a,econ=True)
assert_array_almost_equal(dot(transpose(q),q),identity(n))
assert_array_almost_equal(dot(q,r),a)
assert_equal(q.shape, (m,n))
assert_equal(r.shape, (n,n))
def test_random_trap(self):
m = 100
n = 200
for k in range(2):
a = random([m,n])
q,r = qr(a)
assert_array_almost_equal(dot(transpose(q),q),identity(m))
assert_array_almost_equal(dot(q,r),a)
def test_random_complex(self):
n = 20
for k in range(2):
a = random([n,n])+1j*random([n,n])
q,r = qr(a)
assert_array_almost_equal(dot(conj(transpose(q)),q),identity(n))
assert_array_almost_equal(dot(q,r),a)
class TestRQ(TestCase):
def test_simple(self):
a = [[8,2,3],[2,9,3],[5,3,6]]
r,q = rq(a)
assert_array_almost_equal(dot(transpose(q),q),identity(3))
assert_array_almost_equal(dot(r,q),a)
def test_random(self):
n = 20
for k in range(2):
a = random([n,n])
r,q = rq(a)
assert_array_almost_equal(dot(transpose(q),q),identity(n))
assert_array_almost_equal(dot(r,q),a)
# TODO: implement support for non-square and complex arrays
## def test_simple_trap(self):
## a = [[8,2,3],[2,9,3]]
## r,q = rq(a)
## assert_array_almost_equal(dot(transpose(q),q),identity(2))
## assert_array_almost_equal(dot(r,q),a)
## def test_simple_tall(self):
## a = [[8,2],[2,9],[5,3]]
## r,q = rq(a)
## assert_array_almost_equal(dot(transpose(q),q),identity(3))
## assert_array_almost_equal(dot(r,q),a)
## def test_simple_complex(self):
## a = [[3,3+4j,5],[5,2,2+7j],[3,2,7]]
## r,q = rq(a)
## assert_array_almost_equal(dot(conj(transpose(q)),q),identity(3))
## assert_array_almost_equal(dot(r,q),a)
## def test_random_tall(self):
## m = 200
## n = 100
## for k in range(2):
## a = random([m,n])
## r,q = rq(a)
## assert_array_almost_equal(dot(transpose(q),q),identity(m))
## assert_array_almost_equal(dot(r,q),a)
## def test_random_trap(self):
## m = 100
## n = 200
## for k in range(2):
## a = random([m,n])
## r,q = rq(a)
## assert_array_almost_equal(dot(transpose(q),q),identity(m))
## assert_array_almost_equal(dot(r,q),a)
## def test_random_complex(self):
## n = 20
## for k in range(2):
## a = random([n,n])+1j*random([n,n])
## r,q = rq(a)
## assert_array_almost_equal(dot(conj(transpose(q)),q),identity(n))
## assert_array_almost_equal(dot(r,q),a)
transp = transpose
any = sometrue
class TestSchur(TestCase):
def test_simple(self):
a = [[8,12,3],[2,9,3],[10,3,6]]
t,z = schur(a)
assert_array_almost_equal(dot(dot(z,t),transp(conj(z))),a)
tc,zc = schur(a,'complex')
assert(any(ravel(iscomplex(zc))) and any(ravel(iscomplex(tc))))
assert_array_almost_equal(dot(dot(zc,tc),transp(conj(zc))),a)
tc2,zc2 = rsf2csf(tc,zc)
assert_array_almost_equal(dot(dot(zc2,tc2),transp(conj(zc2))),a)
class TestHessenberg(TestCase):
def test_simple(self):
a = [[-149, -50,-154],
[ 537, 180, 546],
[ -27, -9, -25]]
h1 = [[-149.0000,42.2037,-156.3165],
[-537.6783,152.5511,-554.9272],
[0,0.0728, 2.4489]]
h,q = hessenberg(a,calc_q=1)
assert_array_almost_equal(dot(transp(q),dot(a,q)),h)
assert_array_almost_equal(h,h1,decimal=4)
def test_simple_complex(self):
a = [[-149, -50,-154],
[ 537, 180j, 546],
[ -27j, -9, -25]]
h,q = hessenberg(a,calc_q=1)
h1 = dot(transp(conj(q)),dot(a,q))
assert_array_almost_equal(h1,h)
def test_simple2(self):
a = [[1,2,3,4,5,6,7],
[0,2,3,4,6,7,2],
[0,2,2,3,0,3,2],
[0,0,2,8,0,0,2],
[0,3,1,2,0,1,2],
[0,1,2,3,0,1,0],
[0,0,0,0,0,1,2]]
h,q = hessenberg(a,calc_q=1)
assert_array_almost_equal(dot(transp(q),dot(a,q)),h)
def test_random(self):
n = 20
for k in range(2):
a = random([n,n])
h,q = hessenberg(a,calc_q=1)
assert_array_almost_equal(dot(transp(q),dot(a,q)),h)
def test_random_complex(self):
n = 20
for k in range(2):
a = random([n,n])+1j*random([n,n])
h,q = hessenberg(a,calc_q=1)
h1 = dot(transp(conj(q)),dot(a,q))
assert_array_almost_equal(h1,h)
class TestDataNotShared(TestCase):
def test_datanotshared(self):
from scipy.linalg.decomp import _datanotshared
M = matrix([[0,1],[2,3]])
A = asarray(M)
L = M.tolist()
M2 = M.copy()
assert_equal(_datanotshared(M,M),False)
assert_equal(_datanotshared(M,A),False)
assert_equal(_datanotshared(M,L),True)
assert_equal(_datanotshared(M,M2),True)
assert_equal(_datanotshared(A,M2),True)
if __name__ == "__main__":
run_module_suite()
|