File: test_decomp.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (1057 lines) | stat: -rw-r--r-- 37,248 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
#!/usr/bin/env python
#
# Created by: Pearu Peterson, March 2002
#
""" Test functions for linalg.decomp module

"""
__usage__ = """
Build linalg:
  python setup_linalg.py build
Run tests if scipy is installed:
  python -c 'import scipy;scipy.linalg.test()'
Run tests if linalg is not installed:
  python tests/test_decomp.py
"""

from numpy.testing import *

from scipy.linalg import eig,eigvals,lu,svd,svdvals,cholesky,qr, \
     schur,rsf2csf, lu_solve,lu_factor,solve,diagsvd,hessenberg,rq, \
     eig_banded, eigvals_banded, eigh
from scipy.linalg.flapack import dgbtrf, dgbtrs, zgbtrf, zgbtrs, \
     dsbev, dsbevd, dsbevx, zhbevd, zhbevx

from numpy import array, transpose, sometrue, diag, ones, linalg, \
     argsort, zeros, arange, float32, complex64, dot, conj, identity, \
     ravel, sqrt, iscomplex, shape, sort, conjugate, bmat, sign, \
     asarray, matrix, isfinite, all, ndarray, outer, eye, dtype, empty,\
     triu, tril

from numpy.random import rand, normal

# digit precision to use in asserts for different types
DIGITS = {'d':11, 'D':11, 'f':4, 'F':4}

# XXX: This function should be available through numpy.testing
def assert_dtype_equal(act, des):
    if isinstance(act, ndarray):
        act = act.dtype
    else:
        act = dtype(act)

    if isinstance(des, ndarray):
        des = des.dtype
    else:
        des = dtype(des)

    assert act == des, 'dtype mismatch: "%s" (should be "%s") '%(act, des)

# XXX: This function should not be defined here, but somewhere in
#      scipy.linalg namespace
def symrand(dim_or_eigv):
    """Return a random symmetric (Hermitian) matrix.

    If 'dim_or_eigv' is an integer N, return a NxN matrix, with eigenvalues
        uniformly distributed on (-1,1).

    If 'dim_or_eigv' is  1-D real array 'a', return a matrix whose
                      eigenvalues are 'a'.
    """
    if isinstance(dim_or_eigv, int):
        dim = dim_or_eigv
        d = (rand(dim)*2)-1
    elif (isinstance(dim_or_eigv, ndarray) and
          len(dim_or_eigv.shape) == 1):
        dim = dim_or_eigv.shape[0]
        d = dim_or_eigv
    else:
        raise TypeError("input type not supported.")

    v = random_rot(dim)
    h = dot(dot(v.T.conj(), diag(d)), v)
    # to avoid roundoff errors, symmetrize the matrix (again)
    h = 0.5*(h.T+h)
    return h

# XXX: This function should not be defined here, but somewhere in
#      scipy.linalg namespace
def random_rot(dim):
    """Return a random rotation matrix, drawn from the Haar distribution
    (the only uniform distribution on SO(n)).
    The algorithm is described in the paper
    Stewart, G.W., 'The efficient generation of random orthogonal
    matrices with an application to condition estimators', SIAM Journal
    on Numerical Analysis, 17(3), pp. 403-409, 1980.
    For more information see
    http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization"""
    H = eye(dim)
    D = ones((dim, ))
    for n in range(1, dim):
        x = normal(size=(dim-n+1, ))
        D[n-1] = sign(x[0])
        x[0] -= D[n-1]*sqrt((x*x).sum())
        # Householder transformation

        Hx = eye(dim-n+1) - 2.*outer(x, x)/(x*x).sum()
        mat = eye(dim)
        mat[n-1:,n-1:] = Hx
        H = dot(H, mat)
    # Fix the last sign such that the determinant is 1
    D[-1] = -D.prod()
    H = (D*H.T).T
    return H

def random(size):
    return rand(*size)

class TestEigVals(TestCase):

    def test_simple(self):
        a = [[1,2,3],[1,2,3],[2,5,6]]
        w = eigvals(a)
        exact_w = [(9+sqrt(93))/2,0,(9-sqrt(93))/2]
        assert_array_almost_equal(w,exact_w)

    def test_simple_tr(self):
        a = array([[1,2,3],[1,2,3],[2,5,6]],'d')
        a = transpose(a).copy()
        a = transpose(a)
        w = eigvals(a)
        exact_w = [(9+sqrt(93))/2,0,(9-sqrt(93))/2]
        assert_array_almost_equal(w,exact_w)

    def test_simple_complex(self):
        a = [[1,2,3],[1,2,3],[2,5,6+1j]]
        w = eigvals(a)
        exact_w = [(9+1j+sqrt(92+6j))/2,
                   0,
                   (9+1j-sqrt(92+6j))/2]
        assert_array_almost_equal(w,exact_w)


class TestEig(TestCase):

    def test_simple(self):
        a = [[1,2,3],[1,2,3],[2,5,6]]
        w,v = eig(a)
        exact_w = [(9+sqrt(93))/2,0,(9-sqrt(93))/2]
        v0 = array([1,1,(1+sqrt(93)/3)/2])
        v1 = array([3.,0,-1])
        v2 = array([1,1,(1-sqrt(93)/3)/2])
        v0 = v0 / sqrt(dot(v0,transpose(v0)))
        v1 = v1 / sqrt(dot(v1,transpose(v1)))
        v2 = v2 / sqrt(dot(v2,transpose(v2)))
        assert_array_almost_equal(w,exact_w)
        assert_array_almost_equal(v0,v[:,0]*sign(v[0,0]))
        assert_array_almost_equal(v1,v[:,1]*sign(v[0,1]))
        assert_array_almost_equal(v2,v[:,2]*sign(v[0,2]))
        for i in range(3):
            assert_array_almost_equal(dot(a,v[:,i]),w[i]*v[:,i])
        w,v = eig(a,left=1,right=0)
        for i in range(3):
            assert_array_almost_equal(dot(transpose(a),v[:,i]),w[i]*v[:,i])

    def test_simple_complex(self):
        a = [[1,2,3],[1,2,3],[2,5,6+1j]]
        w,vl,vr = eig(a,left=1,right=1)
        for i in range(3):
            assert_array_almost_equal(dot(a,vr[:,i]),w[i]*vr[:,i])
        for i in range(3):
            assert_array_almost_equal(dot(conjugate(transpose(a)),vl[:,i]),
                                      conjugate(w[i])*vl[:,i])

    def test_singular(self):
        """Test singular pair"""
        # Example taken from
        # http://www.cs.umu.se/research/nla/singular_pairs/guptri/matlab.html
        A = array(( [22,34,31,31,17], [45,45,42,19,29], [39,47,49,26,34],
            [27,31,26,21,15], [38,44,44,24,30]))

        B = array(( [13,26,25,17,24], [31,46,40,26,37], [26,40,19,25,25],
            [16,25,27,14,23], [24,35,18,21,22]))

        w, vr = eig(A,B)
        wt = eigvals(A,B)
        val1 = dot(A, vr)
        val2 = dot(B, vr) * w
        res = val1 - val2
        for i in range(res.shape[1]):
            if all(isfinite(res[:, i])):
                assert_array_almost_equal(res[:, i], 0)

        # Disable this test, which fails now, and is not really necessary if the above
        # succeeds ?
        #assert_array_almost_equal(w[isfinite(w)], wt[isfinite(w)])

    def test_falker(self):
        """Test matrices giving some Nan generalized eigen values."""
        M = diag(array(([1,0,3])))
        K = array(([2,-1,-1],[-1,2,-1],[-1,-1,2]))
        D = array(([1,-1,0],[-1,1,0],[0,0,0]))
        Z = zeros((3,3))
        I = identity(3)
        A = bmat([[I,Z],[Z,-K]])
        B = bmat([[Z,I],[M,D]])
        A = asarray(A)
        B = asarray(B)

        w, vr = eig(A,B)
        val1 = dot(A, vr)
        val2 = dot(B, vr) * w
        res = val1 - val2
        for i in range(res.shape[1]):
            if all(isfinite(res[:, i])):
                assert_array_almost_equal(res[:, i], 0)

class TestEigBanded(TestCase):

    def __init__(self, *args):
        TestCase.__init__(self, *args)

        self.create_bandmat()

    def create_bandmat(self):
        """Create the full matrix `self.fullmat` and
           the corresponding band matrix `self.bandmat`."""
        N  = 10
        self.KL = 2   # number of subdiagonals (below the diagonal)
        self.KU = 2   # number of superdiagonals (above the diagonal)

        # symmetric band matrix
        self.sym_mat = ( diag(1.0*ones(N))
                     +  diag(-1.0*ones(N-1), -1) + diag(-1.0*ones(N-1), 1)
                     + diag(-2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )

        # hermitian band matrix
        self.herm_mat = ( diag(-1.0*ones(N))
                     + 1j*diag(1.0*ones(N-1), -1) - 1j*diag(1.0*ones(N-1), 1)
                     + diag(-2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )

        # general real band matrix
        self.real_mat = ( diag(1.0*ones(N))
                     +  diag(-1.0*ones(N-1), -1) + diag(-3.0*ones(N-1), 1)
                     + diag(2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )

        # general complex band matrix
        self.comp_mat = ( 1j*diag(1.0*ones(N))
                     +  diag(-1.0*ones(N-1), -1) + 1j*diag(-3.0*ones(N-1), 1)
                     + diag(2.0*ones(N-2), -2) + diag(-2.0*ones(N-2), 2) )


        # Eigenvalues and -vectors from linalg.eig
        ew, ev = linalg.eig(self.sym_mat)
        ew = ew.real
        args = argsort(ew)
        self.w_sym_lin = ew[args]
        self.evec_sym_lin = ev[:,args]

        ew, ev = linalg.eig(self.herm_mat)
        ew = ew.real
        args = argsort(ew)
        self.w_herm_lin = ew[args]
        self.evec_herm_lin = ev[:,args]


        # Extract upper bands from symmetric and hermitian band matrices
        # (for use in dsbevd, dsbevx, zhbevd, zhbevx
        #  and their single precision versions)
        LDAB = self.KU + 1
        self.bandmat_sym  = zeros((LDAB, N), dtype=float)
        self.bandmat_herm = zeros((LDAB, N), dtype=complex)
        for i in xrange(LDAB):
            self.bandmat_sym[LDAB-i-1,i:N]  = diag(self.sym_mat, i)
            self.bandmat_herm[LDAB-i-1,i:N] = diag(self.herm_mat, i)


        # Extract bands from general real and complex band matrix
        # (for use in dgbtrf, dgbtrs and their single precision versions)
        LDAB = 2*self.KL + self.KU + 1
        self.bandmat_real = zeros((LDAB, N), dtype=float)
        self.bandmat_real[2*self.KL,:] = diag(self.real_mat)     # diagonal
        for i in xrange(self.KL):
            # superdiagonals
            self.bandmat_real[2*self.KL-1-i,i+1:N]   = diag(self.real_mat, i+1)
            # subdiagonals
            self.bandmat_real[2*self.KL+1+i,0:N-1-i] = diag(self.real_mat,-i-1)

        self.bandmat_comp = zeros((LDAB, N), dtype=complex)
        self.bandmat_comp[2*self.KL,:] = diag(self.comp_mat)     # diagonal
        for i in xrange(self.KL):
            # superdiagonals
            self.bandmat_comp[2*self.KL-1-i,i+1:N]   = diag(self.comp_mat, i+1)
            # subdiagonals
            self.bandmat_comp[2*self.KL+1+i,0:N-1-i] = diag(self.comp_mat,-i-1)

        # absolute value for linear equation system A*x = b
        self.b = 1.0*arange(N)
        self.bc = self.b *(1 + 1j)


    #####################################################################


    def test_dsbev(self):
        """Compare dsbev eigenvalues and eigenvectors with
           the result of linalg.eig."""
        w, evec, info  = dsbev(self.bandmat_sym, compute_v=1)
        evec_ = evec[:,argsort(w)]
        assert_array_almost_equal(sort(w), self.w_sym_lin)
        assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin))



    def test_dsbevd(self):
        """Compare dsbevd eigenvalues and eigenvectors with
           the result of linalg.eig."""
        w, evec, info = dsbevd(self.bandmat_sym, compute_v=1)
        evec_ = evec[:,argsort(w)]
        assert_array_almost_equal(sort(w), self.w_sym_lin)
        assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin))



    def test_dsbevx(self):
        """Compare dsbevx eigenvalues and eigenvectors
           with the result of linalg.eig."""
        N,N = shape(self.sym_mat)
        ## Achtung: Argumente 0.0,0.0,range?
        w, evec, num, ifail, info = dsbevx(self.bandmat_sym, 0.0, 0.0, 1, N,
                                       compute_v=1, range=2)
        evec_ = evec[:,argsort(w)]
        assert_array_almost_equal(sort(w), self.w_sym_lin)
        assert_array_almost_equal(abs(evec_), abs(self.evec_sym_lin))


    def test_zhbevd(self):
        """Compare zhbevd eigenvalues and eigenvectors
           with the result of linalg.eig."""
        w, evec, info = zhbevd(self.bandmat_herm, compute_v=1)
        evec_ = evec[:,argsort(w)]
        assert_array_almost_equal(sort(w), self.w_herm_lin)
        assert_array_almost_equal(abs(evec_), abs(self.evec_herm_lin))



    def test_zhbevx(self):
        """Compare zhbevx eigenvalues and eigenvectors
           with the result of linalg.eig."""
        N,N = shape(self.herm_mat)
        ## Achtung: Argumente 0.0,0.0,range?
        w, evec, num, ifail, info = zhbevx(self.bandmat_herm, 0.0, 0.0, 1, N,
                                       compute_v=1, range=2)
        evec_ = evec[:,argsort(w)]
        assert_array_almost_equal(sort(w), self.w_herm_lin)
        assert_array_almost_equal(abs(evec_), abs(self.evec_herm_lin))



    def test_eigvals_banded(self):
        """Compare eigenvalues of eigvals_banded with those of linalg.eig."""
        w_sym = eigvals_banded(self.bandmat_sym)
        w_sym = w_sym.real
        assert_array_almost_equal(sort(w_sym), self.w_sym_lin)

        w_herm = eigvals_banded(self.bandmat_herm)
        w_herm = w_herm.real
        assert_array_almost_equal(sort(w_herm), self.w_herm_lin)

        # extracting eigenvalues with respect to an index range
        ind1 = 2
        ind2 = 6
        w_sym_ind = eigvals_banded(self.bandmat_sym,
                                    select='i', select_range=(ind1, ind2) )
        assert_array_almost_equal(sort(w_sym_ind),
                                  self.w_sym_lin[ind1:ind2+1])
        w_herm_ind = eigvals_banded(self.bandmat_herm,
                                    select='i', select_range=(ind1, ind2) )
        assert_array_almost_equal(sort(w_herm_ind),
                                  self.w_herm_lin[ind1:ind2+1])

        # extracting eigenvalues with respect to a value range
        v_lower = self.w_sym_lin[ind1] - 1.0e-5
        v_upper = self.w_sym_lin[ind2] + 1.0e-5
        w_sym_val = eigvals_banded(self.bandmat_sym,
                                select='v', select_range=(v_lower, v_upper) )
        assert_array_almost_equal(sort(w_sym_val),
                                  self.w_sym_lin[ind1:ind2+1])

        v_lower = self.w_herm_lin[ind1] - 1.0e-5
        v_upper = self.w_herm_lin[ind2] + 1.0e-5
        w_herm_val = eigvals_banded(self.bandmat_herm,
                                select='v', select_range=(v_lower, v_upper) )
        assert_array_almost_equal(sort(w_herm_val),
                                  self.w_herm_lin[ind1:ind2+1])



    def test_eig_banded(self):
        """Compare eigenvalues and eigenvectors of eig_banded
           with those of linalg.eig. """
        w_sym, evec_sym = eig_banded(self.bandmat_sym)
        evec_sym_ = evec_sym[:,argsort(w_sym.real)]
        assert_array_almost_equal(sort(w_sym), self.w_sym_lin)
        assert_array_almost_equal(abs(evec_sym_), abs(self.evec_sym_lin))

        w_herm, evec_herm = eig_banded(self.bandmat_herm)
        evec_herm_ = evec_herm[:,argsort(w_herm.real)]
        assert_array_almost_equal(sort(w_herm), self.w_herm_lin)
        assert_array_almost_equal(abs(evec_herm_), abs(self.evec_herm_lin))

        # extracting eigenvalues with respect to an index range
        ind1 = 2
        ind2 = 6
        w_sym_ind, evec_sym_ind = eig_banded(self.bandmat_sym,
                                    select='i', select_range=(ind1, ind2) )
        assert_array_almost_equal(sort(w_sym_ind),
                                  self.w_sym_lin[ind1:ind2+1])
        assert_array_almost_equal(abs(evec_sym_ind),
                                  abs(self.evec_sym_lin[:,ind1:ind2+1]) )

        w_herm_ind, evec_herm_ind = eig_banded(self.bandmat_herm,
                                    select='i', select_range=(ind1, ind2) )
        assert_array_almost_equal(sort(w_herm_ind),
                                  self.w_herm_lin[ind1:ind2+1])
        assert_array_almost_equal(abs(evec_herm_ind),
                                  abs(self.evec_herm_lin[:,ind1:ind2+1]) )

        # extracting eigenvalues with respect to a value range
        v_lower = self.w_sym_lin[ind1] - 1.0e-5
        v_upper = self.w_sym_lin[ind2] + 1.0e-5
        w_sym_val, evec_sym_val = eig_banded(self.bandmat_sym,
                                select='v', select_range=(v_lower, v_upper) )
        assert_array_almost_equal(sort(w_sym_val),
                                  self.w_sym_lin[ind1:ind2+1])
        assert_array_almost_equal(abs(evec_sym_val),
                                  abs(self.evec_sym_lin[:,ind1:ind2+1]) )

        v_lower = self.w_herm_lin[ind1] - 1.0e-5
        v_upper = self.w_herm_lin[ind2] + 1.0e-5
        w_herm_val, evec_herm_val = eig_banded(self.bandmat_herm,
                                select='v', select_range=(v_lower, v_upper) )
        assert_array_almost_equal(sort(w_herm_val),
                                  self.w_herm_lin[ind1:ind2+1])
        assert_array_almost_equal(abs(evec_herm_val),
                                  abs(self.evec_herm_lin[:,ind1:ind2+1]) )


    def test_dgbtrf(self):
        """Compare dgbtrf  LU factorisation with the LU factorisation result
           of linalg.lu."""
        M,N = shape(self.real_mat)
        lu_symm_band, ipiv, info = dgbtrf(self.bandmat_real, self.KL, self.KU)

        # extract matrix u from lu_symm_band
        u = diag(lu_symm_band[2*self.KL,:])
        for i in xrange(self.KL + self.KU):
            u += diag(lu_symm_band[2*self.KL-1-i,i+1:N], i+1)

        p_lin, l_lin, u_lin = lu(self.real_mat, permute_l=0)
        assert_array_almost_equal(u, u_lin)


    def test_zgbtrf(self):
        """Compare zgbtrf  LU factorisation with the LU factorisation result
           of linalg.lu."""
        M,N = shape(self.comp_mat)
        lu_symm_band, ipiv, info = zgbtrf(self.bandmat_comp, self.KL, self.KU)

        # extract matrix u from lu_symm_band
        u = diag(lu_symm_band[2*self.KL,:])
        for i in xrange(self.KL + self.KU):
            u += diag(lu_symm_band[2*self.KL-1-i,i+1:N], i+1)

        p_lin, l_lin, u_lin =lu(self.comp_mat, permute_l=0)
        assert_array_almost_equal(u, u_lin)



    def test_dgbtrs(self):
        """Compare dgbtrs  solutions for linear equation system  A*x = b
           with solutions of linalg.solve."""

        lu_symm_band, ipiv, info = dgbtrf(self.bandmat_real, self.KL, self.KU)
        y, info = dgbtrs(lu_symm_band, self.KL, self.KU, self.b, ipiv)

        y_lin = linalg.solve(self.real_mat, self.b)
        assert_array_almost_equal(y, y_lin)

    def test_zgbtrs(self):
        """Compare zgbtrs  solutions for linear equation system  A*x = b
           with solutions of linalg.solve."""

        lu_symm_band, ipiv, info = zgbtrf(self.bandmat_comp, self.KL, self.KU)
        y, info = zgbtrs(lu_symm_band, self.KL, self.KU, self.bc, ipiv)

        y_lin = linalg.solve(self.comp_mat, self.bc)
        assert_array_almost_equal(y, y_lin)

def test_eigh():
    DIM = 6
    v = {'dim': (DIM, ),
         'dtype': ('f','d','F','D'),
         'overwrite': (True, False),
         'lower': (True, False),
         'turbo': (True, False),
         'eigvals': (None, (2, DIM-2))}

    for dim in v['dim']:
        for typ in v['dtype']:
            for overwrite in v['overwrite']:
                for turbo in v['turbo']:
                    for eigvals in v['eigvals']:
                        for lower in v['lower']:
                            yield (eigenhproblem_standard,
                                   'ordinary',
                                   dim, typ, overwrite, lower,
                                   turbo, eigvals)
                            yield (eigenhproblem_general,
                                   'general ',
                                   dim, typ, overwrite, lower,
                                   turbo, eigvals)

def _complex_symrand(dim, dtype):
    a1, a2 = symrand(dim), symrand(dim)
    # add antisymmetric matrix as imag part
    a = a1 +1j*(triu(a2)-tril(a2))
    return a.astype(dtype)

def eigenhproblem_standard(desc, dim, dtype,
                           overwrite, lower, turbo,
                           eigvals):
    """Solve a standard eigenvalue problem."""
    if iscomplex(empty(1, dtype=dtype)):
        a = _complex_symrand(dim, dtype)
    else:
        a = symrand(dim).astype(dtype)

    if overwrite:
        a_c = a.copy()
    else:
        a_c = a
    w, z = eigh(a, overwrite_a=overwrite, lower=lower, eigvals=eigvals)
    assert_dtype_equal(z.dtype, dtype)
    w = w.astype(dtype)
    diag_ = diag(dot(z.T.conj(), dot(a_c, z))).real
    assert_array_almost_equal(diag_, w, DIGITS[dtype])

def eigenhproblem_general(desc, dim, dtype,
                          overwrite, lower, turbo,
                          eigvals):
    """Solve a generalized eigenvalue problem."""
    if iscomplex(empty(1, dtype=dtype)):
        a = _complex_symrand(dim, dtype)
        b = _complex_symrand(dim, dtype)+diag([2.1]*dim).astype(dtype)
    else:
        a = symrand(dim).astype(dtype)
        b = symrand(dim).astype(dtype)+diag([2.1]*dim).astype(dtype)

    if overwrite:
        a_c, b_c = a.copy(), b.copy()
    else:
        a_c, b_c = a, b

    w, z = eigh(a, b, overwrite_a=overwrite, lower=lower,
                overwrite_b=overwrite, turbo=turbo, eigvals=eigvals)
    assert_dtype_equal(z.dtype, dtype)
    w = w.astype(dtype)
    diag1_ = diag(dot(z.T.conj(), dot(a_c, z))).real
    assert_array_almost_equal(diag1_, w, DIGITS[dtype])
    diag2_ = diag(dot(z.T.conj(), dot(b_c, z))).real
    assert_array_almost_equal(diag2_, ones(diag2_.shape[0]), DIGITS[dtype])

def test_eigh_integer():
    a = array([[1,2],[2,7]])
    b = array([[3,1],[1,5]])
    w,z = eigh(a)
    w,z = eigh(a,b)

class TestLU(TestCase):

    def __init__(self, *args, **kw):
        TestCase.__init__(self, *args, **kw)

        self.a = array([[1,2,3],[1,2,3],[2,5,6]])
        self.ca = array([[1,2,3],[1,2,3],[2,5j,6]])
        # Those matrices are more robust to detect problems in permutation
        # matrices than the ones above
        self.b = array([[1,2,3],[4,5,6],[7,8,9]])
        self.cb = array([[1j,2j,3j],[4j,5j,6j],[7j,8j,9j]])

        # Reectangular matrices
        self.hrect = array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 12, 12]])
        self.chrect = 1.j * array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 12, 12]])

        self.vrect = array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 12, 12]])
        self.cvrect = 1.j * array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 12, 12]])

        # Medium sizes matrices
        self.med = rand(30, 40)
        self.cmed = rand(30, 40) + 1.j * rand(30, 40)

    def _test_common(self, data):
        p,l,u = lu(data)
        assert_array_almost_equal(dot(dot(p,l),u),data)
        pl,u = lu(data,permute_l=1)
        assert_array_almost_equal(dot(pl,u),data)

    # Simple tests
    def test_simple(self):
        self._test_common(self.a)

    def test_simple_complex(self):
        self._test_common(self.ca)

    def test_simple2(self):
        self._test_common(self.b)

    def test_simple2_complex(self):
        self._test_common(self.cb)

    # rectangular matrices tests
    def test_hrectangular(self):
        self._test_common(self.hrect)

    def test_vrectangular(self):
        self._test_common(self.vrect)

    def test_hrectangular_complex(self):
        self._test_common(self.chrect)

    def test_vrectangular_complex(self):
        self._test_common(self.cvrect)

    # Bigger matrices
    def test_medium1(self):
        """Check lu decomposition on medium size, rectangular matrix."""
        self._test_common(self.med)

    def test_medium1_complex(self):
        """Check lu decomposition on medium size, rectangular matrix."""
        self._test_common(self.cmed)

class TestLUSingle(TestLU):
    """LU testers for single precision, real and double"""
    def __init__(self, *args, **kw):
        TestLU.__init__(self, *args, **kw)

        self.a = self.a.astype(float32)
        self.ca = self.ca.astype(complex64)
        self.b = self.b.astype(float32)
        self.cb = self.cb.astype(complex64)

        self.hrect = self.hrect.astype(float32)
        self.chrect = self.hrect.astype(complex64)

        self.vrect = self.vrect.astype(float32)
        self.cvrect = self.vrect.astype(complex64)

        self.med = self.vrect.astype(float32)
        self.cmed = self.vrect.astype(complex64)

class TestLUSolve(TestCase):
    def test_lu(self):
        a = random((10,10))
        b = random((10,))

        x1 = solve(a,b)

        lu_a = lu_factor(a)
        x2 = lu_solve(lu_a,b)

        assert_array_equal(x1,x2)

class TestSVD(TestCase):

    def test_simple(self):
        a = [[1,2,3],[1,20,3],[2,5,6]]
        u,s,vh = svd(a)
        assert_array_almost_equal(dot(transpose(u),u),identity(3))
        assert_array_almost_equal(dot(transpose(vh),vh),identity(3))
        sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
        for i in range(len(s)): sigma[i,i] = s[i]
        assert_array_almost_equal(dot(dot(u,sigma),vh),a)

    def test_simple_singular(self):
        a = [[1,2,3],[1,2,3],[2,5,6]]
        u,s,vh = svd(a)
        assert_array_almost_equal(dot(transpose(u),u),identity(3))
        assert_array_almost_equal(dot(transpose(vh),vh),identity(3))
        sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
        for i in range(len(s)): sigma[i,i] = s[i]
        assert_array_almost_equal(dot(dot(u,sigma),vh),a)

    def test_simple_underdet(self):
        a = [[1,2,3],[4,5,6]]
        u,s,vh = svd(a)
        assert_array_almost_equal(dot(transpose(u),u),identity(2))
        assert_array_almost_equal(dot(transpose(vh),vh),identity(3))
        sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
        for i in range(len(s)): sigma[i,i] = s[i]
        assert_array_almost_equal(dot(dot(u,sigma),vh),a)

    def test_simple_overdet(self):
        a = [[1,2],[4,5],[3,4]]
        u,s,vh = svd(a)
        assert_array_almost_equal(dot(transpose(u),u),identity(3))
        assert_array_almost_equal(dot(transpose(vh),vh),identity(2))
        sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
        for i in range(len(s)): sigma[i,i] = s[i]
        assert_array_almost_equal(dot(dot(u,sigma),vh),a)

    def test_random(self):
        n = 20
        m = 15
        for i in range(3):
            for a in [random([n,m]),random([m,n])]:
                u,s,vh = svd(a)
                assert_array_almost_equal(dot(transpose(u),u),identity(len(u)))
                assert_array_almost_equal(dot(transpose(vh),vh),identity(len(vh)))
                sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
                for i in range(len(s)): sigma[i,i] = s[i]
                assert_array_almost_equal(dot(dot(u,sigma),vh),a)

    def test_simple_complex(self):
        a = [[1,2,3],[1,2j,3],[2,5,6]]
        u,s,vh = svd(a)
        assert_array_almost_equal(dot(conj(transpose(u)),u),identity(3))
        assert_array_almost_equal(dot(conj(transpose(vh)),vh),identity(3))
        sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
        for i in range(len(s)): sigma[i,i] = s[i]
        assert_array_almost_equal(dot(dot(u,sigma),vh),a)

    def test_random_complex(self):
        n = 20
        m = 15
        for i in range(3):
            for a in [random([n,m]),random([m,n])]:
                a = a + 1j*random(list(a.shape))
                u,s,vh = svd(a)
                assert_array_almost_equal(dot(conj(transpose(u)),u),identity(len(u)))
                # This fails when [m,n]
                #assert_array_almost_equal(dot(conj(transpose(vh)),vh),identity(len(vh),dtype=vh.dtype.char))
                sigma = zeros((u.shape[0],vh.shape[0]),s.dtype.char)
                for i in range(len(s)): sigma[i,i] = s[i]
                assert_array_almost_equal(dot(dot(u,sigma),vh),a)

class TestSVDVals(TestCase):

    def test_simple(self):
        a = [[1,2,3],[1,2,3],[2,5,6]]
        s = svdvals(a)
        assert len(s)==3
        assert s[0]>=s[1]>=s[2]

    def test_simple_underdet(self):
        a = [[1,2,3],[4,5,6]]
        s = svdvals(a)
        assert len(s)==2
        assert s[0]>=s[1]

    def test_simple_overdet(self):
        a = [[1,2],[4,5],[3,4]]
        s = svdvals(a)
        assert len(s)==2
        assert s[0]>=s[1]

    def test_simple_complex(self):
        a = [[1,2,3],[1,20,3j],[2,5,6]]
        s = svdvals(a)
        assert len(s)==3
        assert s[0]>=s[1]>=s[2]

    def test_simple_underdet_complex(self):
        a = [[1,2,3],[4,5j,6]]
        s = svdvals(a)
        assert len(s)==2
        assert s[0]>=s[1]

    def test_simple_overdet_complex(self):
        a = [[1,2],[4,5],[3j,4]]
        s = svdvals(a)
        assert len(s)==2
        assert s[0]>=s[1]

class TestDiagSVD(TestCase):

    def test_simple(self):
        assert_array_almost_equal(diagsvd([1,0,0],3,3),[[1,0,0],[0,0,0],[0,0,0]])

class TestCholesky(TestCase):

    def test_simple(self):
        a = [[8,2,3],[2,9,3],[3,3,6]]
        c = cholesky(a)
        assert_array_almost_equal(dot(transpose(c),c),a)
        c = transpose(c)
        a = dot(c,transpose(c))
        assert_array_almost_equal(cholesky(a,lower=1),c)

    def test_simple_complex(self):
        m = array([[3+1j,3+4j,5],[0,2+2j,2+7j],[0,0,7+4j]])
        a = dot(transpose(conjugate(m)),m)
        c = cholesky(a)
        a1 = dot(transpose(conjugate(c)),c)
        assert_array_almost_equal(a,a1)
        c = transpose(c)
        a = dot(c,transpose(conjugate(c)))
        assert_array_almost_equal(cholesky(a,lower=1),c)

    def test_random(self):
        n = 20
        for k in range(2):
            m = random([n,n])
            for i in range(n):
                m[i,i] = 20*(.1+m[i,i])
            a = dot(transpose(m),m)
            c = cholesky(a)
            a1 = dot(transpose(c),c)
            assert_array_almost_equal(a,a1)
            c = transpose(c)
            a = dot(c,transpose(c))
            assert_array_almost_equal(cholesky(a,lower=1),c)

    def test_random_complex(self):
        n = 20
        for k in range(2):
            m = random([n,n])+1j*random([n,n])
            for i in range(n):
                m[i,i] = 20*(.1+abs(m[i,i]))
            a = dot(transpose(conjugate(m)),m)
            c = cholesky(a)
            a1 = dot(transpose(conjugate(c)),c)
            assert_array_almost_equal(a,a1)
            c = transpose(c)
            a = dot(c,transpose(conjugate(c)))
            assert_array_almost_equal(cholesky(a,lower=1),c)


class TestQR(TestCase):

    def test_simple(self):
        a = [[8,2,3],[2,9,3],[5,3,6]]
        q,r = qr(a)
        assert_array_almost_equal(dot(transpose(q),q),identity(3))
        assert_array_almost_equal(dot(q,r),a)

    def test_simple_trap(self):
        a = [[8,2,3],[2,9,3]]
        q,r = qr(a)
        assert_array_almost_equal(dot(transpose(q),q),identity(2))
        assert_array_almost_equal(dot(q,r),a)

    def test_simple_tall(self):
        # full version
        a = [[8,2],[2,9],[5,3]]
        q,r = qr(a)
        assert_array_almost_equal(dot(transpose(q),q),identity(3))
        assert_array_almost_equal(dot(q,r),a)

    def test_simple_tall_e(self):
        # economy version
        a = [[8,2],[2,9],[5,3]]
        q,r = qr(a,econ=True)
        assert_array_almost_equal(dot(transpose(q),q),identity(2))
        assert_array_almost_equal(dot(q,r),a)
        assert_equal(q.shape, (3,2))
        assert_equal(r.shape, (2,2))

    def test_simple_complex(self):
        a = [[3,3+4j,5],[5,2,2+7j],[3,2,7]]
        q,r = qr(a)
        assert_array_almost_equal(dot(conj(transpose(q)),q),identity(3))
        assert_array_almost_equal(dot(q,r),a)

    def test_random(self):
        n = 20
        for k in range(2):
            a = random([n,n])
            q,r = qr(a)
            assert_array_almost_equal(dot(transpose(q),q),identity(n))
            assert_array_almost_equal(dot(q,r),a)

    def test_random_tall(self):
        # full version
        m = 200
        n = 100
        for k in range(2):
            a = random([m,n])
            q,r = qr(a)
            assert_array_almost_equal(dot(transpose(q),q),identity(m))
            assert_array_almost_equal(dot(q,r),a)

    def test_random_tall_e(self):
        # economy version
        m = 200
        n = 100
        for k in range(2):
            a = random([m,n])
            q,r = qr(a,econ=True)
            assert_array_almost_equal(dot(transpose(q),q),identity(n))
            assert_array_almost_equal(dot(q,r),a)
            assert_equal(q.shape, (m,n))
            assert_equal(r.shape, (n,n))

    def test_random_trap(self):
        m = 100
        n = 200
        for k in range(2):
            a = random([m,n])
            q,r = qr(a)
            assert_array_almost_equal(dot(transpose(q),q),identity(m))
            assert_array_almost_equal(dot(q,r),a)

    def test_random_complex(self):
        n = 20
        for k in range(2):
            a = random([n,n])+1j*random([n,n])
            q,r = qr(a)
            assert_array_almost_equal(dot(conj(transpose(q)),q),identity(n))
            assert_array_almost_equal(dot(q,r),a)

class TestRQ(TestCase):

    def test_simple(self):
        a = [[8,2,3],[2,9,3],[5,3,6]]
        r,q = rq(a)
        assert_array_almost_equal(dot(transpose(q),q),identity(3))
        assert_array_almost_equal(dot(r,q),a)

    def test_random(self):
        n = 20
        for k in range(2):
            a = random([n,n])
            r,q = rq(a)
            assert_array_almost_equal(dot(transpose(q),q),identity(n))
            assert_array_almost_equal(dot(r,q),a)

# TODO: implement support for non-square and complex arrays

##    def test_simple_trap(self):
##        a = [[8,2,3],[2,9,3]]
##        r,q = rq(a)
##        assert_array_almost_equal(dot(transpose(q),q),identity(2))
##        assert_array_almost_equal(dot(r,q),a)

##    def test_simple_tall(self):
##        a = [[8,2],[2,9],[5,3]]
##        r,q = rq(a)
##        assert_array_almost_equal(dot(transpose(q),q),identity(3))
##        assert_array_almost_equal(dot(r,q),a)

##    def test_simple_complex(self):
##        a = [[3,3+4j,5],[5,2,2+7j],[3,2,7]]
##        r,q = rq(a)
##        assert_array_almost_equal(dot(conj(transpose(q)),q),identity(3))
##        assert_array_almost_equal(dot(r,q),a)

##    def test_random_tall(self):
##        m = 200
##        n = 100
##        for k in range(2):
##            a = random([m,n])
##            r,q = rq(a)
##            assert_array_almost_equal(dot(transpose(q),q),identity(m))
##            assert_array_almost_equal(dot(r,q),a)

##    def test_random_trap(self):
##        m = 100
##        n = 200
##        for k in range(2):
##            a = random([m,n])
##            r,q = rq(a)
##            assert_array_almost_equal(dot(transpose(q),q),identity(m))
##            assert_array_almost_equal(dot(r,q),a)

##    def test_random_complex(self):
##        n = 20
##        for k in range(2):
##            a = random([n,n])+1j*random([n,n])
##            r,q = rq(a)
##            assert_array_almost_equal(dot(conj(transpose(q)),q),identity(n))
##            assert_array_almost_equal(dot(r,q),a)

transp = transpose
any = sometrue

class TestSchur(TestCase):

    def test_simple(self):
        a = [[8,12,3],[2,9,3],[10,3,6]]
        t,z = schur(a)
        assert_array_almost_equal(dot(dot(z,t),transp(conj(z))),a)
        tc,zc = schur(a,'complex')
        assert(any(ravel(iscomplex(zc))) and any(ravel(iscomplex(tc))))
        assert_array_almost_equal(dot(dot(zc,tc),transp(conj(zc))),a)
        tc2,zc2 = rsf2csf(tc,zc)
        assert_array_almost_equal(dot(dot(zc2,tc2),transp(conj(zc2))),a)

class TestHessenberg(TestCase):

    def test_simple(self):
        a = [[-149, -50,-154],
             [ 537, 180, 546],
             [ -27,  -9, -25]]
        h1 = [[-149.0000,42.2037,-156.3165],
              [-537.6783,152.5511,-554.9272],
              [0,0.0728, 2.4489]]
        h,q = hessenberg(a,calc_q=1)
        assert_array_almost_equal(dot(transp(q),dot(a,q)),h)
        assert_array_almost_equal(h,h1,decimal=4)

    def test_simple_complex(self):
        a = [[-149, -50,-154],
             [ 537, 180j, 546],
             [ -27j,  -9, -25]]
        h,q = hessenberg(a,calc_q=1)
        h1 = dot(transp(conj(q)),dot(a,q))
        assert_array_almost_equal(h1,h)

    def test_simple2(self):
        a = [[1,2,3,4,5,6,7],
             [0,2,3,4,6,7,2],
             [0,2,2,3,0,3,2],
             [0,0,2,8,0,0,2],
             [0,3,1,2,0,1,2],
             [0,1,2,3,0,1,0],
             [0,0,0,0,0,1,2]]
        h,q = hessenberg(a,calc_q=1)
        assert_array_almost_equal(dot(transp(q),dot(a,q)),h)

    def test_random(self):
        n = 20
        for k in range(2):
            a = random([n,n])
            h,q = hessenberg(a,calc_q=1)
            assert_array_almost_equal(dot(transp(q),dot(a,q)),h)

    def test_random_complex(self):
        n = 20
        for k in range(2):
            a = random([n,n])+1j*random([n,n])
            h,q = hessenberg(a,calc_q=1)
            h1 = dot(transp(conj(q)),dot(a,q))
            assert_array_almost_equal(h1,h)



class TestDataNotShared(TestCase):

    def test_datanotshared(self):
        from scipy.linalg.decomp import _datanotshared

        M = matrix([[0,1],[2,3]])
        A = asarray(M)
        L = M.tolist()
        M2 = M.copy()

        assert_equal(_datanotshared(M,M),False)
        assert_equal(_datanotshared(M,A),False)

        assert_equal(_datanotshared(M,L),True)
        assert_equal(_datanotshared(M,M2),True)
        assert_equal(_datanotshared(A,M2),True)


if __name__ == "__main__":
    run_module_suite()