1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
|
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy
import _ni_support
import _nd_image
import filters
def _center_is_true(structure, origin):
structure = numpy.array(structure)
coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape,
origin)])
return bool(structure[coor])
def iterate_structure(structure, iterations, origin = None):
"""Iterate a structure by dilating it with itself.
If origin is None, only the iterated structure is returned. If
not, a tuple of the iterated structure and the modified origin is
returned.
"""
structure = numpy.asarray(structure)
if iterations < 2:
return structure.copy()
ni = iterations - 1
shape = [ii + ni * (ii - 1) for ii in structure.shape]
pos = [ni * (structure.shape[ii] / 2) for ii in range(len(shape))]
slc = [slice(pos[ii], pos[ii] + structure.shape[ii], None)
for ii in range(len(shape))]
out = numpy.zeros(shape, bool)
out[slc] = structure != 0
out = binary_dilation(out, structure, iterations = ni)
if origin is None:
return out
else:
origin = _ni_support._normalize_sequence(origin, structure.ndim)
origin = [iterations * o for o in origin]
return out, origin
def generate_binary_structure(rank, connectivity):
"""Generate a binary structure for binary morphological operations.
The inputs are the rank of the array to which the structure will
be applied and the square of the connectivity of the structure.
"""
if connectivity < 1:
connectivity = 1
if rank < 1:
if connectivity < 1:
return numpy.array(0, dtype = bool)
else:
return numpy.array(1, dtype = bool)
output = numpy.fabs(numpy.indices([3] * rank) - 1)
output = numpy.add.reduce(output, 0)
return numpy.asarray(output <= connectivity, dtype = bool)
def _binary_erosion(input, structure, iterations, mask, output,
border_value, origin, invert, brute_force):
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError, 'Complex type not supported'
if structure is None:
structure = generate_binary_structure(input.ndim, 1)
else:
structure = numpy.asarray(structure)
structure = structure.astype(bool)
if structure.ndim != input.ndim:
raise RuntimeError, 'structure rank must equal input rank'
if not structure.flags.contiguous:
structure = structure.copy()
if numpy.product(structure.shape,axis=0) < 1:
raise RuntimeError, 'structure must not be empty'
if mask is not None:
mask = numpy.asarray(mask)
if mask.shape != input.shape:
raise RuntimeError, 'mask and input must have equal sizes'
origin = _ni_support._normalize_sequence(origin, input.ndim)
cit = _center_is_true(structure, origin)
if isinstance(output, numpy.ndarray):
if numpy.iscomplexobj(output):
raise TypeError, 'Complex output type not supported'
else:
output = bool
output, return_value = _ni_support._get_output(output, input)
if iterations == 1:
_nd_image.binary_erosion(input, structure, mask, output,
border_value, origin, invert, cit, 0)
return return_value
elif cit and not brute_force:
changed, coordinate_list = _nd_image.binary_erosion(input,
structure, mask, output, border_value, origin, invert, cit, 1)
structure = structure[tuple([slice(None, None, -1)] *
structure.ndim)]
for ii in range(len(origin)):
origin[ii] = -origin[ii]
if not structure.shape[ii] & 1:
origin[ii] -= 1
if mask is not None:
msk = numpy.asarray(mask)
msk = mask.astype(numpy.int8)
if msk is mask:
msk = mask.copy()
mask = msk
if not structure.flags.contiguous:
structure = structure.copy()
_nd_image.binary_erosion2(output, structure, mask, iterations - 1,
origin, invert, coordinate_list)
return return_value
else:
tmp_in = numpy.zeros(input.shape, bool)
if return_value is None:
tmp_out = output
else:
tmp_out = numpy.zeros(input.shape, bool)
if not iterations & 1:
tmp_in, tmp_out = tmp_out, tmp_in
changed = _nd_image.binary_erosion(input, structure, mask,
tmp_out, border_value, origin, invert, cit, 0)
ii = 1
while (ii < iterations) or (iterations < 1) and changed:
tmp_in, tmp_out = tmp_out, tmp_in
changed = _nd_image.binary_erosion(tmp_in, structure, mask,
tmp_out, border_value, origin, invert, cit, 0)
ii += 1
if return_value is not None:
return tmp_out
def binary_erosion(input, structure = None, iterations = 1, mask = None,
output = None, border_value = 0, origin = 0, brute_force = False):
"""Multi-dimensional binary erosion with the given structure.
An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. The border_value parameter gives the value of the array
outside the border. The erosion operation is repeated iterations
times. If iterations is less than 1, the erosion is repeated until
the result does not change anymore. If a mask is given, only those
elements with a true value at the corresponding mask element are
modified at each iteration.
"""
return _binary_erosion(input, structure, iterations, mask,
output, border_value, origin, 0, brute_force)
def binary_dilation(input, structure = None, iterations = 1, mask = None,
output = None, border_value = 0, origin = 0, brute_force = False):
"""Multi-dimensional binary dilation with the given structure.
An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. The dilation operation is repeated iterations times. If
iterations is less than 1, the dilation is repeated until the
result does not change anymore. If a mask is given, only those
elements with a true value at the corresponding mask element are
modified at each iteration.
"""
input = numpy.asarray(input)
if structure is None:
structure = generate_binary_structure(input.ndim, 1)
origin = _ni_support._normalize_sequence(origin, input.ndim)
structure = numpy.asarray(structure)
structure = structure[tuple([slice(None, None, -1)] *
structure.ndim)]
for ii in range(len(origin)):
origin[ii] = -origin[ii]
if not structure.shape[ii] & 1:
origin[ii] -= 1
return _binary_erosion(input, structure, iterations, mask,
output, border_value, origin, 1, brute_force)
def binary_opening(input, structure = None, iterations = 1, output = None,
origin = 0):
"""Multi-dimensional binary opening with the given structure.
An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. The iterations parameter gives the number of times the
erosions and then the dilations are done.
"""
input = numpy.asarray(input)
if structure is None:
rank = input.ndim
structure = generate_binary_structure(rank, 1)
tmp = binary_erosion(input, structure, iterations, None, None, 0,
origin)
return binary_dilation(tmp, structure, iterations, None, output, 0,
origin)
def binary_closing(input, structure = None, iterations = 1, output = None,
origin = 0):
"""Multi-dimensional binary closing with the given structure.
An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. The iterations parameter gives the number of times the
dilations and then the erosions are done.
"""
input = numpy.asarray(input)
if structure is None:
rank = input.ndim
structure = generate_binary_structure(rank, 1)
tmp = binary_dilation(input, structure, iterations, None, None, 0,
origin)
return binary_erosion(tmp, structure, iterations, None, output, 0,
origin)
def binary_hit_or_miss(input, structure1 = None, structure2 = None,
output = None, origin1 = 0, origin2 = None):
"""Multi-dimensional binary hit-or-miss transform.
An output array can optionally be provided. The origin parameters
controls the placement of the structuring elements. If the first
structuring element is not given one is generated with a squared
connectivity equal to one. If the second structuring element is
not provided, it set equal to the inverse of the first structuring
element. If the origin for the second structure is equal to None
it is set equal to the origin of the first.
"""
input = numpy.asarray(input)
if structure1 is None:
structure1 = generate_binary_structure(input.ndim, 1)
if structure2 is None:
structure2 = numpy.logical_not(structure1)
origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
if origin2 is None:
origin2 = origin1
else:
origin2 = _ni_support._normalize_sequence(origin2, input.ndim)
tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
0, False)
inplace = isinstance(output, numpy.ndarray)
result = _binary_erosion(input, structure2, 1, None, output, 0,
origin2, 1, False)
if inplace:
numpy.logical_not(output, output)
numpy.logical_and(tmp1, output, output)
else:
numpy.logical_not(result, result)
return numpy.logical_and(tmp1, result)
def binary_propagation(input, structure = None, mask = None,
output = None, border_value = 0, origin = 0):
"""Multi-dimensional binary propagation with the given structure.
An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one. If a mask is given, only those elements with a true value at
the corresponding mask element are.
This function is functionally equivalent to calling binary_dilation
with the number of iterations less then one: iterative dilation until
the result does not change anymore.
"""
return binary_dilation(input, structure, -1, mask, output,
border_value, origin)
def binary_fill_holes(input, structure = None, output = None, origin = 0):
"""Fill the holes in binary objects.
An output array can optionally be provided. The origin parameter
controls the placement of the filter. If no structuring element is
provided an element is generated with a squared connectivity equal
to one.
"""
mask = numpy.logical_not(input)
tmp = numpy.zeros(mask.shape, bool)
inplace = isinstance(output, numpy.ndarray)
if inplace:
binary_dilation(tmp, structure, -1, mask, output, 1, origin)
numpy.logical_not(output, output)
else:
output = binary_dilation(tmp, structure, -1, mask, None, 1,
origin)
numpy.logical_not(output, output)
return output
def grey_erosion(input, size = None, footprint = None, structure = None,
output = None, mode = "reflect", cval = 0.0, origin = 0):
"""Calculate a grey values erosion.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
return filters._min_or_max_filter(input, size, footprint, structure,
output, mode, cval, origin, 1)
def grey_dilation(input, size = None, footprint = None, structure = None,
output = None, mode = "reflect", cval = 0.0, origin = 0):
"""Calculate a grey values dilation.
Either a size or a footprint, or the structure must be
provided. An output array can optionally be provided. The origin
parameter controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
if structure is not None:
structure = numpy.asarray(structure)
structure = structure[tuple([slice(None, None, -1)] *
structure.ndim)]
if footprint is not None:
footprint = numpy.asarray(footprint)
footprint = footprint[tuple([slice(None, None, -1)] *
footprint.ndim)]
input = numpy.asarray(input)
origin = _ni_support._normalize_sequence(origin, input.ndim)
for ii in range(len(origin)):
origin[ii] = -origin[ii]
if footprint is not None:
sz = footprint.shape[ii]
else:
sz = size[ii]
if not sz & 1:
origin[ii] -= 1
return filters._min_or_max_filter(input, size, footprint, structure,
output, mode, cval, origin, 0)
def grey_opening(input, size = None, footprint = None, structure = None,
output = None, mode = "reflect", cval = 0.0, origin = 0):
"""Multi-dimensional grey valued opening.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
tmp = grey_erosion(input, size, footprint, structure, None, mode,
cval, origin)
return grey_dilation(tmp, size, footprint, structure, output, mode,
cval, origin)
def grey_closing(input, size = None, footprint = None, structure = None,
output = None, mode = "reflect", cval = 0.0, origin = 0):
"""Multi-dimensional grey valued closing.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
tmp = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
return grey_erosion(tmp, size, footprint, structure, output, mode,
cval, origin)
def morphological_gradient(input, size = None, footprint = None,
structure = None, output = None, mode = "reflect",
cval = 0.0, origin = 0):
"""Multi-dimensional morphological gradient.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
tmp = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
if isinstance(output, numpy.ndarray):
grey_erosion(input, size, footprint, structure, output, mode,
cval, origin)
return numpy.subtract(tmp, output, output)
else:
return (tmp - grey_erosion(input, size, footprint, structure,
None, mode, cval, origin))
def morphological_laplace(input, size = None, footprint = None,
structure = None, output = None,
mode = "reflect", cval = 0.0, origin = 0):
"""Multi-dimensional morphological laplace.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
tmp1 = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
if isinstance(output, numpy.ndarray):
grey_erosion(input, size, footprint, structure, output, mode,
cval, origin)
numpy.add(tmp1, output, output)
del tmp1
numpy.subtract(output, input, output)
return numpy.subtract(output, input, output)
else:
tmp2 = grey_erosion(input, size, footprint, structure, None, mode,
cval, origin)
numpy.add(tmp1, tmp2, tmp2)
del tmp1
numpy.subtract(tmp2, input, tmp2)
numpy.subtract(tmp2, input, tmp2)
return tmp2
def white_tophat(input, size = None, footprint = None, structure = None,
output = None, mode = "reflect", cval = 0.0, origin = 0):
"""Multi-dimensional white tophat filter.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
tmp = grey_erosion(input, size, footprint, structure, None, mode,
cval, origin)
if isinstance(output, numpy.ndarray):
grey_dilation(tmp, size, footprint, structure, output, mode, cval,
origin)
del tmp
return numpy.subtract(input, output, output)
else:
tmp = grey_dilation(tmp, size, footprint, structure, None, mode,
cval, origin)
return input - tmp
def black_tophat(input, size = None, footprint = None,
structure = None, output = None, mode = "reflect",
cval = 0.0, origin = 0):
"""Multi-dimensional black tophat filter.
Either a size or a footprint, or the structure must be provided. An
output array can optionally be provided. The origin parameter
controls the placement of the filter. The mode parameter
determines how the array borders are handled, where cval is the
value when mode is equal to 'constant'.
"""
tmp = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
if isinstance(output, numpy.ndarray):
grey_erosion(tmp, size, footprint, structure, output, mode, cval,
origin)
del tmp
return numpy.subtract(output, input, output)
else:
tmp = grey_erosion(tmp, size, footprint, structure, None, mode,
cval, origin)
return tmp - input
def distance_transform_bf(input, metric = "euclidean", sampling = None,
return_distances = True, return_indices = False,
distances = None, indices = None):
"""Distance transform function by a brute force algorithm.
This function calculates the distance transform of the input, by
replacing each background element (zero values), with its
shortest distance to the foreground (any element non-zero). Three
types of distance metric are supported: 'euclidean', 'taxicab'
and 'chessboard'.
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element is returned along the first axis of the result.
The return_distances, and return_indices flags can be used to
indicate if the distance transform, the feature transform, or both
must be returned.
Optionally the sampling along each axis can be given by the
sampling parameter which should be a sequence of length equal to
the input rank, or a single number in which the sampling is assumed
to be equal along all axes. This parameter is only used in the
case of the euclidean distance transform.
This function employs a slow brute force algorithm, see also the
function distance_transform_cdt for more efficient taxicab and
chessboard algorithms.
the distances and indices arguments can be used to give optional
output arrays that must be of the correct size and type (float64
and int32).
"""
if (not return_distances) and (not return_indices):
msg = 'at least one of distances/indices must be specified'
raise RuntimeError, msg
tmp1 = numpy.asarray(input) != 0
struct = generate_binary_structure(tmp1.ndim, tmp1.ndim)
tmp2 = binary_dilation(tmp1, struct)
tmp2 = numpy.logical_xor(tmp1, tmp2)
tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8)
del tmp2
metric = metric.lower()
if metric == 'euclidean':
metric = 1
elif metric in ['taxicab', 'cityblock', 'manhattan']:
metric = 2
elif metric == 'chessboard':
metric = 3
else:
raise RuntimeError, 'distance metric not supported'
if sampling is not None:
sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim)
sampling = numpy.asarray(sampling, dtype = numpy.float64)
if not sampling.flags.contiguous:
sampling = sampling.copy()
if return_indices:
ft = numpy.zeros(tmp1.shape, dtype = numpy.int32)
else:
ft = None
if return_distances:
if distances is None:
if metric == 1:
dt = numpy.zeros(tmp1.shape, dtype = numpy.float64)
else:
dt = numpy.zeros(tmp1.shape, dtype = numpy.uint32)
else:
if distances.shape != tmp1.shape:
raise RuntimeError, 'distances array has wrong shape'
if metric == 1:
if distances.dtype.type != numpy.float64:
raise RuntimeError, 'distances array must be float64'
else:
if distances.dtype.type != numpy.uint32:
raise RuntimeError, 'distances array must be uint32'
dt = distances
else:
dt = None
_nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft)
if return_indices:
if isinstance(indices, numpy.ndarray):
if indices.dtype.type != numpy.int32:
raise RuntimeError, 'indices must of int32 type'
if indices.shape != (tmp1.ndim,) + tmp1.shape:
raise RuntimeError, 'indices has wrong shape'
tmp2 = indices
else:
tmp2 = numpy.indices(tmp1.shape, dtype = numpy.int32)
ft = numpy.ravel(ft)
for ii in range(tmp2.shape[0]):
rtmp = numpy.ravel(tmp2[ii, ...])[ft]
rtmp.shape = tmp1.shape
tmp2[ii, ...] = rtmp
ft = tmp2
# construct and return the result
result = []
if return_distances and not isinstance(distances, numpy.ndarray):
result.append(dt)
if return_indices and not isinstance(indices, numpy.ndarray):
result.append(ft)
if len(result) == 2:
return tuple(result)
elif len(result) == 1:
return result[0]
else:
return None
def distance_transform_cdt(input, metric = 'chessboard',
return_distances = True, return_indices = False,
distances = None, indices = None):
"""Distance transform for chamfer type of transforms.
The metric determines the type of chamfering that is done. If
the metric is equal to 'taxicab' a structure is generated
using generate_binary_structure with a squared distance equal to
1. If the metric is equal to 'chessboard', a metric is
generated using generate_binary_structure with a squared distance
equal to the rank of the array. These choices correspond to the
common interpretations of the taxicab and the chessboard
distance metrics in two dimensions.
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element is returned along the first axis of the result.
The return_distances, and return_indices flags can be used to
indicate if the distance transform, the feature transform, or both
must be returned.
The distances and indices arguments can be used to give optional
output arrays that must be of the correct size and type (both int32).
"""
if (not return_distances) and (not return_indices):
msg = 'at least one of distances/indices must be specified'
raise RuntimeError, msg
ft_inplace = isinstance(indices, numpy.ndarray)
dt_inplace = isinstance(distances, numpy.ndarray)
input = numpy.asarray(input)
if metric in ['taxicab', 'cityblock', 'manhattan']:
rank = input.ndim
metric = generate_binary_structure(rank, 1)
elif metric == 'chessboard':
rank = input.ndim
metric = generate_binary_structure(rank, rank)
else:
try:
metric = numpy.asarray(metric)
except:
raise RuntimeError, 'invalid metric provided'
for s in metric.shape:
if s != 3:
raise RuntimeError, 'metric sizes must be equal to 3'
if not metric.flags.contiguous:
metric = metric.copy()
if dt_inplace:
if distances.dtype.type != numpy.int32:
raise RuntimeError, 'distances must be of int32 type'
if distances.shape != input.shape:
raise RuntimeError, 'distances has wrong shape'
dt = distances
dt[...] = numpy.where(input, -1, 0).astype(numpy.int32)
else:
dt = numpy.where(input, -1, 0).astype(numpy.int32)
rank = dt.ndim
if return_indices:
sz = numpy.product(dt.shape,axis=0)
ft = numpy.arange(sz, dtype = numpy.int32)
ft.shape = dt.shape
else:
ft = None
_nd_image.distance_transform_op(metric, dt, ft)
dt = dt[tuple([slice(None, None, -1)] * rank)]
if return_indices:
ft = ft[tuple([slice(None, None, -1)] * rank)]
_nd_image.distance_transform_op(metric, dt, ft)
dt = dt[tuple([slice(None, None, -1)] * rank)]
if return_indices:
ft = ft[tuple([slice(None, None, -1)] * rank)]
ft = numpy.ravel(ft)
if ft_inplace:
if indices.dtype.type != numpy.int32:
raise RuntimeError, 'indices must of int32 type'
if indices.shape != (dt.ndim,) + dt.shape:
raise RuntimeError, 'indices has wrong shape'
tmp = indices
else:
tmp = numpy.indices(dt.shape, dtype = numpy.int32)
for ii in range(tmp.shape[0]):
rtmp = numpy.ravel(tmp[ii, ...])[ft]
rtmp.shape = dt.shape
tmp[ii, ...] = rtmp
ft = tmp
# construct and return the result
result = []
if return_distances and not dt_inplace:
result.append(dt)
if return_indices and not ft_inplace:
result.append(ft)
if len(result) == 2:
return tuple(result)
elif len(result) == 1:
return result[0]
else:
return None
def distance_transform_edt(input, sampling = None,
return_distances = True, return_indices = False,
distances = None, indices = None):
"""Exact euclidean distance transform.
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element is returned along the first axis of the result.
The return_distances, and return_indices flags can be used to
indicate if the distance transform, the feature transform, or both
must be returned.
Optionally the sampling along each axis can be given by the
sampling parameter which should be a sequence of length equal to
the input rank, or a single number in which the sampling is assumed
to be equal along all axes.
the distances and indices arguments can be used to give optional
output arrays that must be of the correct size and type (float64
and int32).
"""
if (not return_distances) and (not return_indices):
msg = 'at least one of distances/indices must be specified'
raise RuntimeError, msg
ft_inplace = isinstance(indices, numpy.ndarray)
dt_inplace = isinstance(distances, numpy.ndarray)
# calculate the feature transform
input = numpy.where(input, 1, 0).astype(numpy.int8)
if sampling is not None:
sampling = _ni_support._normalize_sequence(sampling, input.ndim)
sampling = numpy.asarray(sampling, dtype = numpy.float64)
if not sampling.flags.contiguous:
sampling = sampling.copy()
if ft_inplace:
ft = indices
if ft.shape != (input.ndim,) + input.shape:
raise RuntimeError, 'indices has wrong shape'
if ft.dtype.type != numpy.int32:
raise RuntimeError, 'indices must be of int32 type'
else:
ft = numpy.zeros((input.ndim,) + input.shape,
dtype = numpy.int32)
_nd_image.euclidean_feature_transform(input, sampling, ft)
# if requested, calculate the distance transform
if return_distances:
dt = ft - numpy.indices(input.shape, dtype = ft.dtype)
dt = dt.astype(numpy.float64)
if sampling is not None:
for ii in range(len(sampling)):
dt[ii, ...] *= sampling[ii]
numpy.multiply(dt, dt, dt)
if dt_inplace:
dt = numpy.add.reduce(dt, axis = 0)
if distances.shape != dt.shape:
raise RuntimeError, 'indices has wrong shape'
if distances.dtype.type != numpy.float64:
raise RuntimeError, 'indices must be of float64 type'
numpy.sqrt(dt, distances)
del dt
else:
dt = numpy.add.reduce(dt, axis = 0)
dt = numpy.sqrt(dt)
# construct and return the result
result = []
if return_distances and not dt_inplace:
result.append(dt)
if return_indices and not ft_inplace:
result.append(ft)
if len(result) == 2:
return tuple(result)
elif len(result) == 1:
return result[0]
else:
return None
|