1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
## Automatically adapted for scipy Oct 21, 2005 by convertcode.py
import scipy.special
from numpy import logical_and, asarray, pi, zeros_like, \
piecewise, array, arctan2, tan, zeros, arange, floor
from numpy.core.umath import sqrt, exp, greater, less, cos, add, sin, \
less_equal, greater_equal
from spline import * # C-modules
from scipy.misc import comb
gamma = scipy.special.gamma
def factorial(n):
return gamma(n+1)
def spline_filter(Iin, lmbda=5.0):
"""Smoothing spline (cubic) filtering of a rank-2 array.
Filter an input data set, Iin, using a (cubic) smoothing spline of
fall-off lmbda.
"""
intype = Iin.dtype.char
hcol = array([1.0,4.0,1.0],'f')/6.0
if intype in ['F','D']:
Iin = Iin.astype('F')
ckr = cspline2d(Iin.real,lmbda)
cki = cspline2d(Iin.imag,lmbda)
outr = sepfir2d(ckr,hcol,hcol)
outi = sepfir2d(cki,hcol,hcol)
out = (outr + 1j*outi).astype(intype)
elif intype in ['f','d']:
ckr = cspline2d(Iin,lmbda)
out = sepfir2d(ckr, hcol, hcol)
out = out.astype(intype)
else:
raise TypeError;
return out
_splinefunc_cache = {}
def _bspline_piecefunctions(order):
"""Returns the function defined over the left-side
pieces for a bspline of a given order. The 0th piece
is the first one less than 0. The last piece is
a function identical to 0 (returned as the constant 0).
(There are order//2 + 2 total pieces).
Also returns the condition functions that when evaluated
return boolean arrays for use with numpy.piecewise
"""
try:
return _splinefunc_cache[order]
except KeyError:
pass
def condfuncgen(num, val1, val2):
if num == 0:
return lambda x: logical_and(less_equal(x, val1),
greater_equal(x, val2))
elif num == 2:
return lambda x: less_equal(x, val2)
else:
return lambda x: logical_and(less(x, val1),
greater_equal(x, val2))
last = order // 2 + 2
if order % 2:
startbound = -1.0
else:
startbound = -0.5
condfuncs = [condfuncgen(0, 0, startbound)]
bound = startbound
for num in xrange(1,last-1):
condfuncs.append(condfuncgen(1, bound, bound-1))
bound = bound-1
condfuncs.append(condfuncgen(2, 0, -(order+1)/2.0))
# final value of bound is used in piecefuncgen below
# the functions to evaluate are taken from the left-hand-side
# in the general expression derived from the central difference
# operator (because they involve fewer terms).
fval = factorial(order)
def piecefuncgen(num):
Mk = order // 2 - num
if (Mk < 0): return 0 # final function is 0
coeffs = [(1-2*(k%2))*float(comb(order+1, k, exact=1))/fval for k in xrange(Mk+1)]
shifts = [-bound - k for k in xrange(Mk+1)]
#print "Adding piece number %d with coeffs %s and shifts %s" % (num, str(coeffs), str(shifts))
def thefunc(x):
res = 0.0
for k in range(Mk+1):
res += coeffs[k]*(x+shifts[k])**order
return res
return thefunc
funclist = [piecefuncgen(k) for k in xrange(last)]
_splinefunc_cache[order] = (funclist, condfuncs)
return funclist, condfuncs
def bspline(x,n):
"""bspline(x,n): B-spline basis function of order n.
uses numpy.piecewise and automatic function-generator.
"""
ax = -abs(asarray(x))
# number of pieces on the left-side is (n+1)/2
funclist, condfuncs = _bspline_piecefunctions(n)
condlist = [func(ax) for func in condfuncs]
return piecewise(ax, condlist, funclist)
def gauss_spline(x,n):
"""Gaussian approximation to B-spline basis function of order n.
"""
signsq = (n+1) / 12.0
return 1/sqrt(2*pi*signsq) * exp(-x**2 / 2 / signsq)
def cubic(x):
"""Special case of bspline. Equivalent to bspline(x,3).
"""
ax = abs(asarray(x))
res = zeros_like(ax)
cond1 = less(ax, 1)
if cond1.any():
ax1 = ax[cond1]
res[cond1] = 2.0/3 - 1.0/2*ax1**2 * (2-ax1)
cond2 = ~cond1 & less(ax, 2)
if cond2.any():
ax2 = ax[cond2]
res[cond2] = 1.0/6*(2-ax2)**3
return res
def quadratic(x):
"""Special case of bspline. Equivalent to bspline(x,2).
"""
ax = abs(asarray(x))
res = zeros_like(ax)
cond1 = less(ax, 0.5)
if cond1.any():
ax1 = ax[cond1]
res[cond1] = 0.75-ax1**2
cond2 = ~cond1 & less(ax, 1.5)
if cond2.any():
ax2 = ax[cond2]
res[cond2] = (ax2-1.5)**2 / 2.0
return res
def c0_P(order):
# values taken from Unser, et.al. 1993 IEEE
if order == 0:
c0 = 1
P = array([1])
elif order == 1:
c0 = 1
P = array([0,1])
elif order == 2:
c0 = 8
P = array([1,6,1])
elif order == 3:
c0 = 6
P = array([1,4,1])
elif order == 4:
c0 = 384
P = array([1,76,230,76,1])
elif order == 5:
c0 = 120
P = array([1,26,66,26,1])
elif order == 6:
c0 = 46080
P = array([1,722,10543,23548, 10543, 722, 1])
elif order == 7:
c0 = 5040
P = array([1,120,1191,2416,1191, 120, 1])
else:
raise ValueError, "Unknown order."
def _coeff_smooth(lam):
xi = 1 - 96*lam + 24*lam * sqrt(3 + 144*lam)
omeg = arctan2(sqrt(144*lam-1),sqrt(xi))
rho = (24*lam - 1 - sqrt(xi)) / (24*lam)
rho = rho * sqrt((48*lam + 24*lam * sqrt(3+144*lam))/xi)
return rho,omeg
def _hc(k,cs,rho,omega):
return cs / sin(omega) * (rho**k)*sin(omega*(k+1))*(greater(k,-1))
def _hs(k,cs,rho,omega):
c0 = cs*cs * (1 + rho*rho) / (1 - rho*rho) / (1-2*rho*rho*cos(2*omega) + rho**4)
gamma = (1-rho*rho) / (1+rho*rho) / tan(omega)
ak = abs(k)
return c0 * rho**ak * (cos(omega*ak) + gamma*sin(omega*ak))
def _cubic_smooth_coeff(signal,lamb):
rho, omega = _coeff_smooth(lamb)
cs = 1-2*rho*cos(omega) + rho*rho
K = len(signal)
yp = zeros((K,),signal.dtype.char)
k = arange(K)
yp[0] = _hc(0,cs,rho,omega)*signal[0] + \
add.reduce(_hc(k+1,cs,rho,omega)*signal)
yp[1] = _hc(0,cs,rho,omega)*signal[0] + \
_hc(1,cs,rho,omega)*signal[1] + \
add.reduce(_hc(k+2,cs,rho,omega)*signal)
for n in range(2,K):
yp[n] = cs * signal[n] + 2*rho*cos(omega)*yp[n-1] - rho*rho*yp[n-2]
y = zeros((K,),signal.dtype.char)
y[K-1] = add.reduce((_hs(k,cs,rho,omega) + _hs(k+1,cs,rho,omega))*signal[::-1])
y[K-2] = add.reduce((_hs(k-1,cs,rho,omega) + _hs(k+2,cs,rho,omega))*signal[::-1])
for n in range(K-3,-1,-1):
y[n] = cs*yp[n] + 2*rho*cos(omega)*y[n+1] - rho*rho*y[n+2]
return y
def _cubic_coeff(signal):
zi = -2 + sqrt(3)
K = len(signal)
yplus = zeros((K,),signal.dtype.char)
powers = zi**arange(K)
yplus[0] = signal[0] + zi*add.reduce(powers*signal)
for k in range(1,K):
yplus[k] = signal[k] + zi*yplus[k-1]
output = zeros((K,),signal.dtype)
output[K-1] = zi / (zi-1)*yplus[K-1]
for k in range(K-2,-1,-1):
output[k] = zi*(output[k+1]-yplus[k])
return output*6.0
def _quadratic_coeff(signal):
zi = -3 + 2*sqrt(2.0)
K = len(signal)
yplus = zeros((K,),signal.dtype.char)
powers = zi**arange(K)
yplus[0] = signal[0] + zi*add.reduce(powers*signal)
for k in range(1,K):
yplus[k] = signal[k] + zi*yplus[k-1]
output = zeros((K,),signal.dtype.char)
output[K-1] = zi / (zi-1)*yplus[K-1]
for k in range(K-2,-1,-1):
output[k] = zi*(output[k+1]-yplus[k])
return output*8.0
def cspline1d(signal,lamb=0.0):
"""Compute cubic spline coefficients for rank-1 array.
Description:
Find the cubic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from
the spline representation mirror-symmetric-convolve these coefficients
with a length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .
Inputs:
signal -- a rank-1 array representing samples of a signal.
lamb -- smoothing coefficient (default = 0.0)
Output:
c -- cubic spline coefficients.
"""
if lamb != 0.0:
return _cubic_smooth_coeff(signal,lamb)
else:
return _cubic_coeff(signal)
def qspline1d(signal,lamb=0.0):
"""Compute quadratic spline coefficients for rank-1 array.
Description:
Find the quadratic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from
the spline representation mirror-symmetric-convolve these coefficients
with a length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .
Inputs:
signal -- a rank-1 array representing samples of a signal.
lamb -- smoothing coefficient (must be zero for now.)
Output:
c -- cubic spline coefficients.
"""
if lamb != 0.0:
raise ValueError, "Smoothing quadratic splines not supported yet."
else:
return _quadratic_coeff(signal)
def cspline1d_eval(cj, newx, dx=1.0, x0=0):
"""Evaluate a spline at the new set of points.
dx is the old sample-spacing while x0 was the old origin.
In other-words the old-sample points (knot-points) for which the cj
represent spline coefficients were at equally-spaced points of
oldx = x0 + j*dx j=0...N-1
N=len(cj)
edges are handled using mirror-symmetric boundary conditions.
"""
newx = (asarray(newx)-x0)/float(dx)
res = zeros_like(newx)
if (res.size == 0):
return res
N = len(cj)
cond1 = newx < 0
cond2 = newx > (N-1)
cond3 = ~(cond1 | cond2)
# handle general mirror-symmetry
res[cond1] = cspline1d_eval(cj, -newx[cond1])
res[cond2] = cspline1d_eval(cj, 2*(N-1)-newx[cond2])
newx = newx[cond3]
if newx.size == 0:
return res
result = zeros_like(newx)
jlower = floor(newx-2).astype(int)+1
for i in range(4):
thisj = jlower + i
indj = thisj.clip(0,N-1) # handle edge cases
result += cj[indj] * cubic(newx - thisj)
res[cond3] = result
return res
def qspline1d_eval(cj, newx, dx=1.0, x0=0):
"""Evaluate a quadratic spline at the new set of points.
dx is the old sample-spacing while x0 was the old origin.
In other-words the old-sample points (knot-points) for which the cj
represent spline coefficients were at equally-spaced points of
oldx = x0 + j*dx j=0...N-1
N=len(cj)
edges are handled using mirror-symmetric boundary conditions.
"""
newx = (asarray(newx)-x0)/dx
res = zeros_like(newx)
if (res.size == 0):
return res
N = len(cj)
cond1 = newx < 0
cond2 = newx > (N-1)
cond3 = ~(cond1 | cond2)
# handle general mirror-symmetry
res[cond1] = qspline1d_eval(cj, -newx[cond1])
res[cond2] = qspline1d_eval(cj, 2*(N-1)-newx[cond2])
newx = newx[cond3]
if newx.size == 0:
return res
result = zeros_like(newx)
jlower = floor(newx-1.5).astype(int)+1
for i in range(3):
thisj = jlower + i
indj = thisj.clip(0,N-1) # handle edge cases
result += cj[indj] * quadratic(newx - thisj)
res[cond3] = result
return res
|