File: bsplines.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (369 lines) | stat: -rw-r--r-- 11,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
## Automatically adapted for scipy Oct 21, 2005 by convertcode.py

import scipy.special
from numpy import logical_and, asarray, pi, zeros_like, \
     piecewise, array, arctan2, tan, zeros, arange, floor
from numpy.core.umath import sqrt, exp, greater, less, cos, add, sin, \
     less_equal, greater_equal
from spline import *      # C-modules
from scipy.misc import comb

gamma = scipy.special.gamma
def factorial(n):
    return gamma(n+1)

def spline_filter(Iin, lmbda=5.0):
    """Smoothing spline (cubic) filtering of a rank-2 array.

    Filter an input data set, Iin, using a (cubic) smoothing spline of
    fall-off lmbda.
    """
    intype = Iin.dtype.char
    hcol = array([1.0,4.0,1.0],'f')/6.0
    if intype in ['F','D']:
        Iin = Iin.astype('F')
        ckr = cspline2d(Iin.real,lmbda)
        cki = cspline2d(Iin.imag,lmbda)
        outr = sepfir2d(ckr,hcol,hcol)
        outi = sepfir2d(cki,hcol,hcol)
        out = (outr + 1j*outi).astype(intype)
    elif intype in ['f','d']:
        ckr = cspline2d(Iin,lmbda)
        out = sepfir2d(ckr, hcol, hcol)
        out = out.astype(intype)
    else:
        raise TypeError;
    return out

_splinefunc_cache = {}

def _bspline_piecefunctions(order):
    """Returns the function defined over the left-side
    pieces for a bspline of a given order.  The 0th piece
    is the first one less than 0.  The last piece is
    a function identical to 0 (returned as the constant 0).

    (There are order//2 + 2 total pieces).

    Also returns the condition functions that when evaluated
    return boolean arrays for use with numpy.piecewise
    """
    try:
        return _splinefunc_cache[order]
    except KeyError:
        pass

    def condfuncgen(num, val1, val2):
        if num == 0:
            return lambda x: logical_and(less_equal(x, val1),
                                         greater_equal(x, val2))
        elif num == 2:
            return lambda x: less_equal(x, val2)
        else:
            return lambda x: logical_and(less(x, val1),
                                         greater_equal(x, val2))

    last = order // 2 + 2
    if order % 2:
        startbound = -1.0
    else:
        startbound = -0.5
    condfuncs = [condfuncgen(0, 0, startbound)]
    bound = startbound
    for num in xrange(1,last-1):
        condfuncs.append(condfuncgen(1, bound, bound-1))
        bound = bound-1
    condfuncs.append(condfuncgen(2, 0, -(order+1)/2.0))

    # final value of bound is used in piecefuncgen below

    # the functions to evaluate are taken from the left-hand-side
    #  in the general expression derived from the central difference
    #  operator (because they involve fewer terms).

    fval = factorial(order)
    def piecefuncgen(num):
        Mk = order // 2 - num
        if (Mk < 0): return 0  # final function is 0
        coeffs = [(1-2*(k%2))*float(comb(order+1, k, exact=1))/fval for k in xrange(Mk+1)]
        shifts = [-bound - k for k in xrange(Mk+1)]
        #print "Adding piece number %d with coeffs %s and shifts %s" % (num, str(coeffs), str(shifts))
        def thefunc(x):
            res = 0.0
            for k in range(Mk+1):
                res += coeffs[k]*(x+shifts[k])**order
            return res
        return thefunc

    funclist = [piecefuncgen(k) for k in xrange(last)]

    _splinefunc_cache[order] = (funclist, condfuncs)

    return funclist, condfuncs

def bspline(x,n):
    """bspline(x,n):  B-spline basis function of order n.
    uses numpy.piecewise and automatic function-generator.
    """
    ax = -abs(asarray(x))
    # number of pieces on the left-side is (n+1)/2
    funclist, condfuncs = _bspline_piecefunctions(n)
    condlist = [func(ax) for func in condfuncs]
    return piecewise(ax, condlist, funclist)

def gauss_spline(x,n):
    """Gaussian approximation to B-spline basis function of order n.
    """
    signsq = (n+1) / 12.0
    return 1/sqrt(2*pi*signsq) * exp(-x**2 / 2 / signsq)

def cubic(x):
    """Special case of bspline.  Equivalent to bspline(x,3).
    """
    ax = abs(asarray(x))
    res = zeros_like(ax)
    cond1 = less(ax, 1)
    if cond1.any():
        ax1 = ax[cond1]
        res[cond1] = 2.0/3 - 1.0/2*ax1**2 * (2-ax1)
    cond2 = ~cond1 & less(ax, 2)
    if cond2.any():
        ax2 = ax[cond2]
        res[cond2] = 1.0/6*(2-ax2)**3
    return res

def quadratic(x):
    """Special case of bspline. Equivalent to bspline(x,2).
    """
    ax = abs(asarray(x))
    res = zeros_like(ax)
    cond1 = less(ax, 0.5)
    if cond1.any():
        ax1 = ax[cond1]
        res[cond1] = 0.75-ax1**2
    cond2 = ~cond1 & less(ax, 1.5)
    if cond2.any():
        ax2 = ax[cond2]
        res[cond2] = (ax2-1.5)**2 / 2.0
    return res

def c0_P(order):
    # values taken from Unser, et.al. 1993 IEEE
    if order == 0:
        c0 = 1
        P = array([1])
    elif order == 1:
        c0 = 1
        P = array([0,1])
    elif order == 2:
        c0 = 8
        P = array([1,6,1])
    elif order == 3:
        c0 = 6
        P = array([1,4,1])
    elif order == 4:
        c0 = 384
        P = array([1,76,230,76,1])
    elif order == 5:
        c0 = 120
        P = array([1,26,66,26,1])
    elif order == 6:
        c0 = 46080
        P = array([1,722,10543,23548, 10543, 722, 1])
    elif order == 7:
        c0 = 5040
        P = array([1,120,1191,2416,1191, 120, 1])
    else:
        raise ValueError, "Unknown order."

def _coeff_smooth(lam):
    xi = 1 - 96*lam + 24*lam * sqrt(3 + 144*lam)
    omeg = arctan2(sqrt(144*lam-1),sqrt(xi))
    rho = (24*lam - 1 - sqrt(xi)) / (24*lam)
    rho = rho * sqrt((48*lam + 24*lam * sqrt(3+144*lam))/xi)
    return rho,omeg

def _hc(k,cs,rho,omega):
    return cs / sin(omega) * (rho**k)*sin(omega*(k+1))*(greater(k,-1))

def _hs(k,cs,rho,omega):
    c0 = cs*cs * (1 + rho*rho) / (1 - rho*rho) / (1-2*rho*rho*cos(2*omega) + rho**4)
    gamma = (1-rho*rho) / (1+rho*rho) / tan(omega)
    ak = abs(k)
    return c0 * rho**ak * (cos(omega*ak) + gamma*sin(omega*ak))

def _cubic_smooth_coeff(signal,lamb):
    rho, omega = _coeff_smooth(lamb)
    cs = 1-2*rho*cos(omega) + rho*rho
    K = len(signal)
    yp = zeros((K,),signal.dtype.char)
    k = arange(K)
    yp[0] = _hc(0,cs,rho,omega)*signal[0] + \
            add.reduce(_hc(k+1,cs,rho,omega)*signal)

    yp[1] = _hc(0,cs,rho,omega)*signal[0] + \
            _hc(1,cs,rho,omega)*signal[1] + \
            add.reduce(_hc(k+2,cs,rho,omega)*signal)

    for n in range(2,K):
        yp[n] = cs * signal[n] + 2*rho*cos(omega)*yp[n-1] - rho*rho*yp[n-2]

    y = zeros((K,),signal.dtype.char)

    y[K-1] = add.reduce((_hs(k,cs,rho,omega) + _hs(k+1,cs,rho,omega))*signal[::-1])
    y[K-2] = add.reduce((_hs(k-1,cs,rho,omega) + _hs(k+2,cs,rho,omega))*signal[::-1])

    for n in range(K-3,-1,-1):
        y[n] = cs*yp[n] + 2*rho*cos(omega)*y[n+1] - rho*rho*y[n+2]

    return y

def _cubic_coeff(signal):
    zi = -2 + sqrt(3)
    K = len(signal)
    yplus = zeros((K,),signal.dtype.char)
    powers = zi**arange(K)
    yplus[0] = signal[0] + zi*add.reduce(powers*signal)
    for k in range(1,K):
        yplus[k] = signal[k] + zi*yplus[k-1]
    output = zeros((K,),signal.dtype)
    output[K-1] = zi / (zi-1)*yplus[K-1]
    for k in range(K-2,-1,-1):
        output[k] = zi*(output[k+1]-yplus[k])
    return output*6.0

def _quadratic_coeff(signal):
    zi = -3 + 2*sqrt(2.0)
    K = len(signal)
    yplus = zeros((K,),signal.dtype.char)
    powers = zi**arange(K)
    yplus[0] = signal[0] + zi*add.reduce(powers*signal)
    for k in range(1,K):
        yplus[k] = signal[k] + zi*yplus[k-1]
    output = zeros((K,),signal.dtype.char)
    output[K-1] = zi / (zi-1)*yplus[K-1]
    for k in range(K-2,-1,-1):
        output[k] = zi*(output[k+1]-yplus[k])
    return output*8.0

def cspline1d(signal,lamb=0.0):
    """Compute cubic spline coefficients for rank-1 array.

    Description:

      Find the cubic spline coefficients for a 1-D signal assuming
      mirror-symmetric boundary conditions.   To obtain the signal back from
      the spline representation mirror-symmetric-convolve these coefficients
      with a length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .

    Inputs:

      signal -- a rank-1 array representing samples of a signal.
      lamb -- smoothing coefficient (default = 0.0)

    Output:

      c -- cubic spline coefficients.
    """
    if lamb != 0.0:
        return _cubic_smooth_coeff(signal,lamb)
    else:
        return _cubic_coeff(signal)


def qspline1d(signal,lamb=0.0):
    """Compute quadratic spline coefficients for rank-1 array.

    Description:

      Find the quadratic spline coefficients for a 1-D signal assuming
      mirror-symmetric boundary conditions.   To obtain the signal back from
      the spline representation mirror-symmetric-convolve these coefficients
      with a length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .

    Inputs:

      signal -- a rank-1 array representing samples of a signal.
      lamb -- smoothing coefficient (must be zero for now.)

    Output:

      c -- cubic spline coefficients.
    """
    if lamb != 0.0:
        raise ValueError, "Smoothing quadratic splines not supported yet."
    else:
        return _quadratic_coeff(signal)


def cspline1d_eval(cj, newx, dx=1.0, x0=0):
    """Evaluate a spline at the new set of points.
    dx is the old sample-spacing while x0 was the old origin.

    In other-words the old-sample points (knot-points) for which the cj
    represent spline coefficients were at equally-spaced points of

    oldx = x0 + j*dx  j=0...N-1

    N=len(cj)

    edges are handled using mirror-symmetric boundary conditions.
    """
    newx = (asarray(newx)-x0)/float(dx)
    res = zeros_like(newx)
    if (res.size == 0):
        return res
    N = len(cj)
    cond1 = newx < 0
    cond2 = newx > (N-1)
    cond3 = ~(cond1 | cond2)
    # handle general mirror-symmetry
    res[cond1] = cspline1d_eval(cj, -newx[cond1])
    res[cond2] = cspline1d_eval(cj, 2*(N-1)-newx[cond2])
    newx = newx[cond3]
    if newx.size == 0:
        return res
    result = zeros_like(newx)
    jlower = floor(newx-2).astype(int)+1
    for i in range(4):
        thisj = jlower + i
        indj = thisj.clip(0,N-1) # handle edge cases
        result += cj[indj] * cubic(newx - thisj)
    res[cond3] = result
    return res

def qspline1d_eval(cj, newx, dx=1.0, x0=0):
    """Evaluate a quadratic spline at the new set of points.
    dx is the old sample-spacing while x0 was the old origin.

    In other-words the old-sample points (knot-points) for which the cj
    represent spline coefficients were at equally-spaced points of

    oldx = x0 + j*dx  j=0...N-1

    N=len(cj)

    edges are handled using mirror-symmetric boundary conditions.
    """
    newx = (asarray(newx)-x0)/dx
    res = zeros_like(newx)
    if (res.size == 0):
        return res
    N = len(cj)
    cond1 = newx < 0
    cond2 = newx > (N-1)
    cond3 = ~(cond1 | cond2)
    # handle general mirror-symmetry
    res[cond1] = qspline1d_eval(cj, -newx[cond1])
    res[cond2] = qspline1d_eval(cj, 2*(N-1)-newx[cond2])
    newx = newx[cond3]
    if newx.size == 0:
        return res
    result = zeros_like(newx)
    jlower = floor(newx-1.5).astype(int)+1
    for i in range(3):
        thisj = jlower + i
        indj = thisj.clip(0,N-1) # handle edge cases
        result += cj[indj] * quadratic(newx - thisj)
    res[cond3] = result
    return res