File: base.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (615 lines) | stat: -rw-r--r-- 18,848 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""Base class for sparse matrices"""

__all__ = ['spmatrix', 'isspmatrix', 'issparse',
        'SparseWarning','SparseEfficiencyWarning']

from warnings import warn

import numpy as np

from sputils import isdense, isscalarlike, isintlike


class SparseWarning(Warning): pass
class SparseFormatWarning(SparseWarning): pass
class SparseEfficiencyWarning(SparseWarning): pass


# The formats that we might potentially understand.
_formats = {'csc':[0, "Compressed Sparse Column"],
            'csr':[1, "Compressed Sparse Row"],
            'dok':[2, "Dictionary Of Keys"],
            'lil':[3, "LInked List"],
            'dod':[4, "Dictionary of Dictionaries"],
            'sss':[5, "Symmetric Sparse Skyline"],
            'coo':[6, "COOrdinate"],
            'lba':[7, "Linpack BAnded"],
            'egd':[8, "Ellpack-itpack Generalized Diagonal"],
            'dia':[9, "DIAgonal"],
            'bsr':[10, "Block Sparse Row"],
            'msr':[11, "Modified compressed Sparse Row"],
            'bsc':[12, "Block Sparse Column"],
            'msc':[13, "Modified compressed Sparse Column"],
            'ssk':[14, "Symmetric SKyline"],
            'nsk':[15, "Nonsymmetric SKyline"],
            'jad':[16, "JAgged Diagonal"],
            'uss':[17, "Unsymmetric Sparse Skyline"],
            'vbr':[18, "Variable Block Row"],
            'und':[19, "Undefined"]
            }


MAXPRINT = 50

class spmatrix(object):
    """ This class provides a base class for all sparse matrices.  It
    cannot be instantiated.  Most of the work is provided by subclasses.
    """

    __array_priority__ = 10.1
    ndim = 2
    def __init__(self, maxprint=MAXPRINT):
        self.format = self.__class__.__name__[:3]
        self._shape = None
        if self.format == 'spm':
            raise ValueError, "This class is not intended" \
                  " to be instantiated directly."
        self.maxprint = maxprint

    def set_shape(self,shape):
        shape = tuple(shape)

        if len(shape) != 2:
            raise ValueError("Only two-dimensional sparse arrays "
                                     "are supported.")
        try:
            shape = int(shape[0]),int(shape[1]) #floats, other weirdness
        except:
            raise TypeError('invalid shape')

        if not (shape[0] >= 1 and shape[1] >= 1):
            raise ValueError('invalid shape')

        if (self._shape != shape) and (self._shape is not None):
            try:
                self = self.reshape(shape)
            except NotImplementedError:
                raise NotImplementedError("Reshaping not implemented for %s." %
                                          self.__class__.__name__)
        self._shape = shape

    def get_shape(self):
        return self._shape

    shape = property(fget=get_shape, fset=set_shape)

    def reshape(self,shape):
        raise NotImplementedError

    def astype(self, t):
        return self.tocsr().astype(t).asformat(self.format)

    def asfptype(self):
        """Upcast matrix to a floating point format (if necessary)"""

        fp_types = ['f','d','F','D']

        if self.dtype.char in fp_types:
            return self
        else:
            for fp_type in fp_types:
                if self.dtype <= np.dtype(fp_type):
                    return self.astype(fp_type)

            raise TypeError,'cannot upcast [%s] to a floating \
                             point format' % self.dtype.name

    def __iter__(self):
        for r in xrange(self.shape[0]):
            yield self[r,:]

    def getmaxprint(self):
        try:
            maxprint = self.maxprint
        except AttributeError:
            maxprint = MAXPRINT
        return maxprint

    #def typecode(self):
    #    try:
    #        typ = self.dtype.char
    #    except AttributeError:
    #        typ = None
    #    return typ

    def getnnz(self):
        try:
            return self.nnz
        except AttributeError:
            raise AttributeError, "nnz not defined"

    def getformat(self):
        try:
            format = self.format
        except AttributeError:
            format = 'und'
        return format

    @np.deprecate
    def rowcol(self, num):
        return (None, None)

    @np.deprecate
    def getdata(self, num):
        return None

    @np.deprecate
    def listprint(self, start, stop):
        """Provides a way to print over a single index.
        """
        return '\n'.join(['  %s\t%s' % (self.rowcol(ind), self.getdata(ind))
                         for ind in xrange(start,stop)]) + '\n'

    def __repr__(self):
        nnz = self.getnnz()
        format = self.getformat()
        return "<%dx%d sparse matrix of type '%s'\n" \
               "\twith %d stored elements in %s format>" % \
               (self.shape + (self.dtype.type, nnz, _formats[format][1]))

    def __str__(self):
        maxprint = self.getmaxprint()

        A   = self.tocoo()
        nnz = self.getnnz()

        # helper function, outputs "(i,j)  v"
        def tostr(row,col,data):
            triples = zip(zip(row,col),data)
            return '\n'.join( [ ('  %s\t%s' % t) for t in triples] )

        if nnz > maxprint:
            half = maxprint // 2
            out  = tostr(A.row[:half], A.col[:half], A.data[:half])
            out += "\n  :\t:\n"
            half = maxprint - maxprint//2
            out += tostr(A.row[-half:], A.col[-half:], A.data[-half:])
        else:
            out  = tostr(A.row, A.col, A.data)

        return out

    def __nonzero__(self):  # Simple -- other ideas?
        return self.getnnz() > 0

    # What should len(sparse) return? For consistency with dense matrices,
    # perhaps it should be the number of rows?  But for some uses the number of
    # non-zeros is more important.  For now, raise an exception!
    def __len__(self):
        # return self.getnnz()
        raise TypeError, "sparse matrix length is ambiguous; use getnnz()" \
                         " or shape[0]"

    def asformat(self, format):
        """Return this matrix in a given sparse format

        Parameters
        ----------
        format : {string, None}
            desired sparse matrix format
                - None for no format conversion
                - "csr" for csr_matrix format
                - "csc" for csc_matrix format
                - "lil" for lil_matrix format
                - "dok" for dok_matrix format and so on

        """

        if format is None or format == self.format:
            return self
        else:
            return getattr(self,'to' + format)()

    ###################################################################
    #  NOTE: All arithmetic operations use csr_matrix by default.
    # Therefore a new sparse matrix format just needs to define a
    # .tocsr() method to provide arithmetic support.  Any of these
    # methods can be overridden for efficiency.
    ####################################################################

    def multiply(self, other):
        """Point-wise multiplication by another matrix
        """
        return self.tocsr().multiply(other)

    def __abs__(self):
        return abs(self.tocsr())

    def __add__(self, other):   # self + other
        return self.tocsr().__add__(other)

    def __radd__(self, other):  # other + self
        return self.tocsr().__radd__(other)

    def __sub__(self, other):   # self - other
        #note: this can't be replaced by self + (-other) for unsigned types
        return self.tocsr().__sub__(other)

    def __rsub__(self, other):  # other - self
        return self.tocsr().__rsub__(other)

    # old __mul__ interfaces
    @np.deprecate
    def matvec(self,other):
        return self * other

    @np.deprecate
    def matmat(self,other):
        return self * other

    @np.deprecate
    def dot(self, other):
        return self * other

    @np.deprecate
    def rmatvec(self, other, conjugate=True):
        """Multiplies the vector 'other' by the sparse matrix, returning a
        dense vector as a result.

        If 'conjugate' is True:
            - returns A.transpose().conj() * other
        Otherwise:
            - returns A.transpose() * other.

        """
        if conjugate:
            return self.conj().transpose() * other
        else:
            return self.transpose() * other

    def __mul__(self, other):
        """interpret other and call one of the following

        self._mul_scalar()
        self._mul_vector()
        self._mul_multivector()
        self._mul_sparse_matrix()
        """

        M,N = self.shape

        if isscalarlike(other):
            # scalar value
            return self._mul_scalar(other)

        if issparse(other):
            if self.shape[1] != other.shape[0]:
                raise ValueError('dimension mismatch')
            return self._mul_sparse_matrix(other)

        try:
            other.shape
        except AttributeError:
            # If it's a list or whatever, treat it like a matrix
            other = np.asanyarray(other)

        other = np.asanyarray(other)

        if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1:
            # dense row or column vector
            if other.shape != (N,) and other.shape != (N,1):
                raise ValueError('dimension mismatch')

            result = self._mul_vector(np.ravel(other))

            if isinstance(other, np.matrix):
                result = np.asmatrix(result)

            if other.ndim == 2 and other.shape[1] == 1:
                # If 'other' was an (nx1) column vector, reshape the result
                result = result.reshape(-1,1)

            return result

        elif other.ndim == 2:
            ##
            # dense 2D array or matrix ("multivector")

            if other.shape[0] != self.shape[1]:
                raise ValueError('dimension mismatch')

            result = self._mul_multivector(np.asarray(other))

            if isinstance(other, np.matrix):
                result = np.asmatrix(result)

            return result
        else:
            raise ValueError('could not interpret dimensions')

    # by default, use CSR for __mul__ handlers
    def _mul_scalar(self, other):
        return self.tocsr()._mul_scalar(other)

    def _mul_vector(self, other):
        return self.tocsr()._mul_vector(other)

    def _mul_multivector(self, other):
        return self.tocsr()._mul_multivector(other)

    def _mul_sparse_matrix(self, other):
        return self.tocsr()._mul_sparse_matrix(other)

    def __rmul__(self, other): # other * self
        if isscalarlike(other):
            return self.__mul__(other)
        else:
            # Don't use asarray unless we have to
            try:
                tr = other.transpose()
            except AttributeError:
                tr = np.asarray(other).transpose()
            return (self.transpose() * tr).transpose()

    ####################
    # Other Arithmetic #
    ####################

    def __truediv__(self, other):
        if isscalarlike(other):
            return self * (1./other)
        else:
            return self.tocsr().__truediv__(other)

    def __div__(self, other):
        # Always do true division
        return self.__truediv__(other)

    def __neg__(self):
        return -self.tocsr()

    def __iadd__(self, other):
        raise NotImplementedError

    def __isub__(self, other):
        raise NotImplementedError

    def __imul__(self, other):
        raise NotImplementedError

    def __idiv__(self, other):
        return self.__itruediv__(other)

    def __itruediv__(self, other):
        raise NotImplementedError

    def __pow__(self, other):
        if self.shape[0] != self.shape[1]:
            raise TypeError('matrix is not square')

        if isintlike(other):
            other = int(other)
            if other < 0:
                raise ValueError('exponent must be >= 0')

            if other == 0:
                from construct import identity
                return identity( self.shape[0], dtype=self.dtype )
            elif other == 1:
                return self.copy()
            else:
                result = self
                for i in range(1,other):
                    result = result*self
                return result
        elif isscalarlike(other):
            raise ValueError('exponent must be an integer')
        elif isspmatrix(other):
            warn('Using ** for elementwise multiplication is deprecated.'\
                    'Use .multiply() instead', DeprecationWarning)
            return self.multiply(other)
        else:
            raise NotImplementedError


    def __getattr__(self, attr):
        if attr == 'A':
            return self.toarray()
        elif attr == 'T':
            return self.transpose()
        elif attr == 'H':
            return self.getH()
        elif attr == 'real':
            return self._real()
        elif attr == 'imag':
            return self._imag()
        elif attr == 'size':
            return self.getnnz()
        else:
            raise AttributeError, attr + " not found"

    def transpose(self):
        return self.tocsr().transpose()

    def conj(self):
        return self.tocsr().conj()

    def conjugate(self):
        return self.conj()

    # Renamed conjtranspose() -> getH() for compatibility with dense matrices
    def getH(self):
        return self.transpose().conj()

    def _real(self):
        return self.tocsr()._real()

    def _imag(self):
        return self.tocsr()._imag()


    def nonzero(self):
        """nonzero indices

        Returns a tuple of arrays (row,col) containing the indices
        of the non-zero elements of the matrix.

        Example
        -------

        >>> from scipy.sparse import csr_matrix
        >>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]])
        >>> A.nonzero()
        (array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2]))

        """

        # convert to COOrdinate format
        A = self.tocoo()
        nz_mask = A.data != 0
        return (A.row[nz_mask],A.col[nz_mask])


    def getcol(self, j):
        """Returns a copy of column j of the matrix, as an (m x 1) sparse
        matrix (column vector).
        """
        # Spmatrix subclasses should override this method for efficiency.
        # Post-multiply by a (n x 1) column vector 'a' containing all zeros
        # except for a_j = 1
        from csc import csc_matrix
        n = self.shape[1]
        a = csc_matrix((n, 1), dtype=self.dtype)
        a[j, 0] = 1
        return self * a

    def getrow(self, i):
        """Returns a copy of row i of the matrix, as a (1 x n) sparse
        matrix (row vector).
        """
        # Spmatrix subclasses should override this method for efficiency.
        # Pre-multiply by a (1 x m) row vector 'a' containing all zeros
        # except for a_i = 1
        from csr import csr_matrix
        m = self.shape[0]
        a = csr_matrix((1, m), dtype=self.dtype)
        a[0, i] = 1
        return a * self

    #def __array__(self):
    #    return self.toarray()

    def todense(self):
        return np.asmatrix(self.toarray())

    def toarray(self):
        return self.tocoo().toarray()

    def todok(self):
        return self.tocoo().todok()

    def tocoo(self):
        return self.tocsr().tocoo()

    def tolil(self):
        return self.tocsr().tolil()

    def todia(self):
        return self.tocoo().todia()

    def tobsr(self, blocksize=None):
        return self.tocsr().tobsr(blocksize=blocksize)

    def copy(self):
        return self.__class__(self,copy=True)

    def sum(self, axis=None):
        """Sum the matrix over the given axis.  If the axis is None, sum
        over both rows and columns, returning a scalar.
        """
        # We use multiplication by an array of ones to achieve this.
        # For some sparse matrix formats more efficient methods are
        # possible -- these should override this function.
        m, n = self.shape
        if axis == 0:
            # sum over columns
            return np.asmatrix(np.ones((1, m), dtype=self.dtype)) * self
        elif axis == 1:
            # sum over rows
            return self * np.asmatrix(np.ones((n, 1), dtype=self.dtype))
        elif axis is None:
            # sum over rows and columns
            return ( self * np.asmatrix(np.ones((n, 1), dtype=self.dtype)) ).sum()
        else:
            raise ValueError, "axis out of bounds"

    def mean(self, axis=None):
        """Average the matrix over the given axis.  If the axis is None,
        average over both rows and columns, returning a scalar.
        """
        if axis == 0:
            mean = self.sum(0)
            mean *= 1.0 / self.shape[0]
            return mean
        elif axis == 1:
            mean = self.sum(1)
            mean *= 1.0 / self.shape[1]
            return mean
        elif axis is None:
            return self.sum(None) * 1.0 / (self.shape[0]*self.shape[1])
        else:
            raise ValueError, "axis out of bounds"

    def diagonal(self):
        """Returns the main diagonal of the matrix
        """
        #TODO support k != 0
        return self.tocsr().diagonal()

    def setdiag(self, values, k=0):
        """Fills the diagonal elements {a_ii} with the values from the
        given sequence.  If k != 0, fills the off-diagonal elements
        {a_{i,i+k}} instead.

        values may have any length.  If the diagonal is longer than values,
        then the remaining diagonal entries will not be set.  If values if
        longer than the diagonal, then the remaining values are ignored.
        """
        M, N = self.shape
        if (k > 0 and k >= N) or (k < 0 and -k >= M):
            raise ValueError, "k exceedes matrix dimensions"
        if k < 0:
            max_index = min(M+k, N, len(values))
            for i,v in enumerate(values[:max_index]):
                self[i - k, i] = v
        else:
            max_index = min(M, N-k, len(values))
            for i,v in enumerate(values[:max_index]):
                self[i, i + k] = v

    def save(self, file_name, format = '%d %d %f\n'):
        #deprecated on Dec 14 2007
        #remove after 0.7 release
        warn('save() is deprecated, consider using mmwrite() or savemat()' \
                ' provided by scipy.io instead',
                DeprecationWarning)
        try:
            fd = open(file_name, 'w')
        except Exception, e:
            raise e, file_name

        fd.write('%d %d\n' % self.shape)
        fd.write('%d\n' % self.size)
        for ii in xrange(self.size):
            ir, ic = self.rowcol(ii)
            data = self.getdata(ii)
            fd.write(format % (ir, ic, data))
        fd.close()


from sputils import _isinstance

def isspmatrix(x):
    return _isinstance(x, spmatrix)

issparse = isspmatrix