File: bsr.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (556 lines) | stat: -rw-r--r-- 18,256 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""Compressed Block Sparse Row matrix format"""

__docformat__ = "restructuredtext en"

__all__ = ['bsr_matrix', 'isspmatrix_bsr']

from warnings import warn

import numpy as np

from data import _data_matrix
from compressed import _cs_matrix
from base import isspmatrix, _formats
from sputils import isshape, getdtype, to_native, upcast
import sparsetools
from sparsetools import bsr_matvec, bsr_matvecs, csr_matmat_pass1, \
                        bsr_matmat_pass2, bsr_transpose, bsr_sort_indices

class bsr_matrix(_cs_matrix):
    """Block Sparse Row matrix

    This can be instantiated in several ways:
        bsr_matrix(D, [blocksize=(R,C)])
            with a dense matrix or rank-2 ndarray D

        bsr_matrix(S, [blocksize=(R,C)])
            with another sparse matrix S (equivalent to S.tobsr())

        bsr_matrix((M, N), [blocksize=(R,C), dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
            where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``

        bsr_matrix((data, indices, indptr), [shape=(M, N)])
            is the standard BSR representation where the block column
            indices for row i are stored in ``indices[indptr[i]:indices[i+1]]``
            and their corresponding block values are stored in
            ``data[ indptr[i]: indptr[i+1] ]``.  If the shape parameter is not
            supplied, the matrix dimensions are inferred from the index arrays.

    Notes
    -----

    Summary
        - The Block Compressed Row (BSR) format is very similar to the
          Compressed Sparse Row (CSR) format.  BSR is appropriate for
          sparse matrices with dense sub matrices like the last example
          below.  Block matrices often arise in vector-valued finite
          element discretizations.  In such cases, BSR is considerably
          more efficient than CSR and CSC for many sparse arithmetic
          operations.

    Blocksize
        - The blocksize (R,C) must evenly divide the shape of
          the matrix (M,N).  That is, R and C must satisfy the
          relationship M % R = 0 and N % C = 0.
        - If no blocksize is specified, a simple heuristic is applied
          to determine an appropriate blocksize.



    Examples
    --------

    >>> from scipy.sparse import *
    >>> from scipy import *
    >>> bsr_matrix( (3,4), dtype=int8 ).todense()
    matrix([[0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]], dtype=int8)

    >>> row  = array([0,0,1,2,2,2])
    >>> col  = array([0,2,2,0,1,2])
    >>> data = array([1,2,3,4,5,6])
    >>> bsr_matrix( (data,(row,col)), shape=(3,3) ).todense()
    matrix([[1, 0, 2],
            [0, 0, 3],
            [4, 5, 6]])

    >>> indptr  = array([0,2,3,6])
    >>> indices = array([0,2,2,0,1,2])
    >>> data    = array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
    >>> bsr_matrix( (data,indices,indptr), shape=(6,6) ).todense()
    matrix([[1, 1, 0, 0, 2, 2],
            [1, 1, 0, 0, 2, 2],
            [0, 0, 0, 0, 3, 3],
            [0, 0, 0, 0, 3, 3],
            [4, 4, 5, 5, 6, 6],
            [4, 4, 5, 5, 6, 6]])

    """
    def __init__(self, arg1, shape=None, dtype=None, copy=False, blocksize=None):
        _data_matrix.__init__(self)


        if isspmatrix(arg1):
            if isspmatrix_bsr(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.tobsr(blocksize=blocksize)
            self._set_self( arg1 )

        elif isinstance(arg1,tuple):
            if isshape(arg1):
                #it's a tuple of matrix dimensions (M,N)
                self.shape  = arg1
                M,N = self.shape
                #process blocksize
                if blocksize is None:
                    blocksize = (1,1)
                else:
                    if not isshape(blocksize):
                        raise ValueError('invalid blocksize=%s' % blocksize)
                    blocksize = tuple(blocksize)
                self.data    = np.zeros( (0,) + blocksize, getdtype(dtype, default=float) )
                self.indices = np.zeros( 0, dtype=np.intc )

                R,C = blocksize
                if (M % R) != 0 or (N % C) != 0:
                    raise ValueError, 'shape must be multiple of blocksize'

                self.indptr  = np.zeros(M/R + 1, dtype=np.intc )

            elif len(arg1) == 2:
                # (data,(row,col)) format
                from coo import coo_matrix
                self._set_self( coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize) )

            elif len(arg1) == 3:
                # (data,indices,indptr) format
                (data, indices, indptr) = arg1
                self.indices = np.array(indices, copy=copy)
                self.indptr  = np.array(indptr,  copy=copy)
                self.data    = np.array(data,    copy=copy, dtype=getdtype(dtype, data))
            else:
                raise ValueError('unrecognized bsr_matrix constructor usage')
        else:
            #must be dense
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError("unrecognized form for" \
                        " %s_matrix constructor" % self.format)
            from coo import coo_matrix
            arg1 = coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize)
            self._set_self( arg1 )

        if shape is not None:
            self.shape = shape   # spmatrix will check for errors
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    M = len(self.indptr) - 1
                    N = self.indices.max() + 1
                except:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    R,C = self.blocksize
                    self.shape = (M*R,N*C)

        if self.shape is None:
            if shape is None:
                #TODO infer shape here
                raise ValueError('need to infer shape')
            else:
                self.shape = shape

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self.check_format(full_check=False)

    def check_format(self, full_check=True):
        """check whether the matrix format is valid

            *Parameters*:
                full_check:
                    True  - rigorous check, O(N) operations : default
                    False - basic check, O(1) operations

        """
        M,N = self.shape
        R,C = self.blocksize

        # index arrays should have integer data types
        if self.indptr.dtype.kind != 'i':
            warn("indptr array has non-integer dtype (%s)" \
                    % self.indptr.dtype.name )
        if self.indices.dtype.kind != 'i':
            warn("indices array has non-integer dtype (%s)" \
                    % self.indices.dtype.name )

        # only support 32-bit ints for now
        self.indptr  = np.asarray(self.indptr, np.intc)
        self.indices = np.asarray(self.indices, np.intc)
        self.data    = to_native(self.data)

        # check array shapes
        if np.rank(self.indices) != 1 or np.rank(self.indptr) != 1:
            raise ValueError,"indices, and indptr should be rank 1"
        if np.rank(self.data) != 3:
            raise ValueError,"data should be rank 3"

        # check index pointer
        if (len(self.indptr) != M/R + 1 ):
            raise ValueError, \
                "index pointer size (%d) should be (%d)" % \
                 (len(self.indptr), M/R + 1)
        if (self.indptr[0] != 0):
            raise ValueError,"index pointer should start with 0"

        # check index and data arrays
        if (len(self.indices) != len(self.data)):
            raise ValueError,"indices and data should have the same size"
        if (self.indptr[-1] > len(self.indices)):
            raise ValueError, \
                  "Last value of index pointer should be less than "\
                  "the size of index and data arrays"

        self.prune()

        if full_check:
            #check format validity (more expensive)
            if self.nnz > 0:
                if self.indices.max() >= N/C:
                    print "max index",self.indices.max()
                    raise ValueError, "column index values must be < %d" % (N/C)
                if self.indices.min() < 0:
                    raise ValueError, "column index values must be >= 0"
                if diff(self.indptr).min() < 0:
                    raise ValueError,'index pointer values must form a " \
                                        "non-decreasing sequence'

        #if not self.has_sorted_indices():
        #    warn('Indices were not in sorted order. Sorting indices.')
        #    self.sort_indices(check_first=False)

    def _get_blocksize(self):
        return self.data.shape[1:]
    blocksize = property(fget=_get_blocksize)

    def getnnz(self):
        R,C = self.blocksize
        return self.indptr[-1] * R * C
    nnz = property(fget=getnnz)

    def __repr__(self):
        nnz = self.getnnz()
        format = self.getformat()
        return "<%dx%d sparse matrix of type '%s'\n" \
               "\twith %d stored elements (blocksize = %dx%d) in %s format>" % \
               ( self.shape + (self.dtype.type, nnz) + self.blocksize + \
                 (_formats[format][1],) )


    def diagonal(self):
        """Returns the main diagonal of the matrix
        """
        M,N = self.shape
        R,C = self.blocksize
        y = np.empty(min(M,N), dtype=upcast(self.dtype))
        sparsetools.bsr_diagonal(M/R, N/C, R, C, \
                self.indptr, self.indices, np.ravel(self.data), y)
        return y

    ##########################
    # NotImplemented methods #
    ##########################

    def getdata(self,ind):
        raise NotImplementedError

    def __getitem__(self,key):
        raise NotImplementedError

    def __setitem__(self,key,val):
        raise NotImplementedError

    ######################
    # Arithmetic methods #
    ######################

    def matvec(self, other):
        return self * other

    def matmat(self, other):
        return self * other

    def _mul_vector(self, other):
        M,N = self.shape
        R,C = self.blocksize

        result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))

        bsr_matvec(M/R, N/C, R, C, \
            self.indptr, self.indices, self.data.ravel(),
            other, result)

        return result

    def _mul_multivector(self,other):
        R,C = self.blocksize
        M,N = self.shape
        n_vecs = other.shape[1] #number of column vectors

        result = np.zeros((M,n_vecs), dtype=upcast(self.dtype,other.dtype))

        bsr_matvecs(M/R, N/C, n_vecs, R, C, \
                self.indptr, self.indices, self.data.ravel(), \
                other.ravel(), result.ravel())

        return result

    def _mul_sparse_matrix(self, other):
        M, K1 = self.shape
        K2, N = other.shape

        indptr = np.empty_like( self.indptr )

        R,n = self.blocksize

        #convert to this format
        if isspmatrix_bsr(other):
            C = other.blocksize[1]
        else:
            C = 1

        from csr import isspmatrix_csr

        if isspmatrix_csr(other) and n == 1:
            other = other.tobsr(blocksize=(n,C), copy=False) #lightweight conversion
        else:
            other = other.tobsr(blocksize=(n,C))

        csr_matmat_pass1( M/R, N/C, \
                self.indptr,  self.indices, \
                other.indptr, other.indices, \
                indptr)

        bnnz = indptr[-1]
        indices = np.empty(bnnz, dtype=np.intc)
        data    = np.empty(R*C*bnnz, dtype=upcast(self.dtype,other.dtype))

        bsr_matmat_pass2( M/R, N/C, R, C, n, \
                self.indptr,  self.indices,  np.ravel(self.data), \
                other.indptr, other.indices, np.ravel(other.data), \
                indptr,       indices,       data)

        data = data.reshape(-1,R,C)

        #TODO eliminate zeros

        return bsr_matrix((data,indices,indptr),shape=(M,N),blocksize=(R,C))




    ######################
    # Conversion methods #
    ######################

    def tobsr(self,blocksize=None,copy=False):
        if blocksize not in [None, self.blocksize]:
            return self.tocsr().tobsr(blocksize=blocksize)
        if copy:
            return self.copy()
        else:
            return self

    def tocsr(self):
        return self.tocoo(copy=False).tocsr()
        #TODO make this more efficient

    def tocsc(self):
        return self.tocoo(copy=False).tocsc()

    def tocoo(self,copy=True):
        """Convert this matrix to COOrdinate format.

        When copy=False the data array will be shared between
        this matrix and the resultant coo_matrix.
        """

        M,N = self.shape
        R,C = self.blocksize

        row  = (R * np.arange(M/R)).repeat(np.diff(self.indptr))
        row  = row.repeat(R*C).reshape(-1,R,C)
        row += np.tile(np.arange(R).reshape(-1,1), (1,C))
        row  = row.reshape(-1)

        col  = (C * self.indices).repeat(R*C).reshape(-1,R,C)
        col += np.tile(np.arange(C), (R,1))
        col  = col.reshape(-1)

        data = self.data.reshape(-1)

        if copy:
            data = data.copy()

        from coo import coo_matrix
        return coo_matrix((data,(row,col)), shape=self.shape)


    def transpose(self):

        R,C = self.blocksize
        M,N = self.shape
        NBLK = self.nnz/(R*C)

        if self.nnz == 0:
            return bsr_matrix((N,M), blocksize=(C,R))

        indptr  = np.empty( N/C + 1,    dtype=self.indptr.dtype)
        indices = np.empty( NBLK,       dtype=self.indices.dtype)
        data    = np.empty( (NBLK,C,R), dtype=self.data.dtype)

        bsr_transpose(M/R, N/C, R, C, \
                      self.indptr, self.indices, self.data.ravel(), \
                      indptr,      indices,      data.ravel())

        return bsr_matrix((data,indices,indptr), shape=(N,M))


    ##############################################################
    # methods that examine or modify the internal data structure #
    ##############################################################

    def eliminate_zeros(self):
        R,C = self.blocksize
        M,N = self.shape

        mask = (self.data != 0).reshape(-1,R*C).sum(axis=1) #nonzero blocks

        nonzero_blocks = mask.nonzero()[0]

        if len(nonzero_blocks) == 0:
            return #nothing to do

        self.data[:len(nonzero_blocks)] = self.data[nonzero_blocks]

        from csr import csr_matrix

        # modifies self.indptr and self.indices *in place*
        proxy = csr_matrix((mask,self.indices,self.indptr),shape=(M/R,N/C))
        proxy.eliminate_zeros()

        self.prune()


    def sum_duplicates(self):
        raise NotImplementedError

    def sort_indices(self):
        """Sort the indices of this matrix *in place*
        """
        if self.has_sorted_indices:
            return

        R,C = self.blocksize
        M,N = self.shape

        bsr_sort_indices(M/R, N/C, R, C, self.indptr, self.indices, self.data.ravel())

        self.has_sorted_indices = True

    def prune(self):
        """ Remove empty space after all non-zero elements.
        """

        R,C = self.blocksize
        M,N = self.shape

        if len(self.indptr) != M/R + 1:
            raise ValueError, "index pointer has invalid length"

        bnnz = self.indptr[-1]

        if len(self.indices) < bnnz:
            raise ValueError, "indices array has too few elements"
        if len(self.data) < bnnz:
            raise ValueError, "data array has too few elements"

        self.data    = self.data[:bnnz]
        self.indices = self.indices[:bnnz]

    # utility functions
    def _binopt(self, other, op, in_shape=None, out_shape=None):
        """apply the binary operation fn to two sparse matrices"""
        other = self.__class__(other,blocksize=self.blocksize)

        if in_shape is None:
            in_shape = self.shape
        if out_shape is None:
            out_shape = self.shape

        self.sort_indices()
        other.sort_indices()

        # e.g. bsr_plus_bsr, etc.
        fn = getattr(sparsetools, self.format + op + self.format)

        R,C = self.blocksize

        max_bnnz = len(self.data) + len(other.data)
        indptr  = np.empty_like(self.indptr)
        indices = np.empty(max_bnnz, dtype=np.intc)
        data    = np.empty(R*C*max_bnnz, dtype=upcast(self.dtype,other.dtype))

        fn(in_shape[0]/R, in_shape[1]/C, R, C, \
                self.indptr,  self.indices,  np.ravel(self.data),
                other.indptr, other.indices, np.ravel(other.data),
                indptr,       indices,       data)

        actual_bnnz = indptr[-1]
        indices = indices[:actual_bnnz]
        data    = data[:R*C*actual_bnnz]

        if actual_bnnz < max_bnnz/2:
            indices = indices.copy()
            data    = data.copy()

        data = data.reshape(-1,R,C)

        return self.__class__((data, indices, indptr), shape=out_shape)

    # needed by _data_matrix
    def _with_data(self,data,copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the structure arrays
        (i.e. .indptr and .indices) are copied.
        """
        if copy:
            return self.__class__((data,self.indices.copy(),self.indptr.copy()), \
                                   shape=self.shape,dtype=data.dtype)
        else:
            return self.__class__((data,self.indices,self.indptr), \
                                   shape=self.shape,dtype=data.dtype)



#    # these functions are used by the parent class
#    # to remove redudancy between bsc_matrix and bsr_matrix
#    def _swap(self,x):
#        """swap the members of x if this is a column-oriented matrix
#        """
#        return (x[0],x[1])


from sputils import _isinstance

def isspmatrix_bsr(x):
    return _isinstance(x, bsr_matrix)