1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
"""Compressed Sparse Column matrix format"""
__docformat__ = "restructuredtext en"
__all__ = ['csc_matrix', 'isspmatrix_csc']
from warnings import warn
import numpy as np
from sparsetools import csc_tocsr
from sputils import upcast, isintlike
from compressed import _cs_matrix
class csc_matrix(_cs_matrix):
"""Compressed Sparse Column matrix
This can be instantiated in several ways:
csc_matrix(D)
with a dense matrix or rank-2 ndarray D
csc_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())
csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csc_matrix((data, ij), [shape=(M, N)])
where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``
csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for
column i are stored in ``indices[indptr[i]:indices[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.
Notes
-----
Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)
Disadvantages of the CSC format
-------------------------------
- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
========
>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
"""
def __getattr__(self, attr):
if attr == 'rowind':
warn("rowind attribute no longer in use. Use .indices instead",
DeprecationWarning)
return self.indices
else:
return _cs_matrix.__getattr__(self, attr)
def transpose(self, copy=False):
from csr import csr_matrix
M,N = self.shape
return csr_matrix((self.data,self.indices,self.indptr),(N,M),copy=copy)
def __iter__(self):
csr = self.tocsr()
for r in xrange(self.shape[0]):
yield csr[r,:]
@np.deprecate
def rowcol(self, ind):
#TODO remove after 0.7
row = self.indices[ind]
col = np.searchsorted(self.indptr, ind+1) - 1
return (row, col)
def tocsc(self, copy=False):
if copy:
return self.copy()
else:
return self
def tocsr(self):
M,N = self.shape
indptr = np.empty(M + 1, dtype=np.intc)
indices = np.empty(self.nnz, dtype=np.intc)
data = np.empty(self.nnz, dtype=upcast(self.dtype))
csc_tocsr(M, N, \
self.indptr, self.indices, self.data, \
indptr, indices, data)
from csr import csr_matrix
A = csr_matrix((data, indices, indptr), shape=self.shape)
A.has_sorted_indices = True
return A
def __getitem__(self, key):
# use CSR to implement fancy indexing
if isinstance(key, tuple):
row = key[0]
col = key[1]
if isintlike(row) or isinstance(row, slice):
return self.T[col,row].T
else:
#[[1,2],??] or [[[1],[2]],??]
if isintlike(col) or isinstance(col,slice):
return self.T[col,row].T
else:
row = np.asarray(row, dtype=np.intc)
col = np.asarray(col, dtype=np.intc)
if len(row.shape) == 1:
return self.T[col,row]
elif len(row.shape) == 2:
row = row.reshape(-1)
col = col.reshape(-1,1)
return self.T[col,row].T
else:
raise NotImplementedError('unsupported indexing')
return self.T[col,row].T
elif isintlike(key) or isinstance(key,slice):
return self.T[:,key].T #[i] or [1:2]
else:
return self.T[:,key].T #[[1,2]]
# these functions are used by the parent class (_cs_matrix)
# to remove redudancy between csc_matrix and csr_matrix
def _swap(self,x):
"""swap the members of x if this is a column-oriented matrix
"""
return (x[1],x[0])
from sputils import _isinstance
def isspmatrix_csc(x):
return _isinstance(x, csc_matrix)
|