1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
"""Compressed Sparse Row matrix format"""
__docformat__ = "restructuredtext en"
__all__ = ['csr_matrix', 'isspmatrix_csr']
from warnings import warn
import numpy as np
from sparsetools import csr_tocsc, csr_tobsr, csr_count_blocks, \
get_csr_submatrix
from sputils import upcast, isintlike
from compressed import _cs_matrix
class csr_matrix(_cs_matrix):
"""Compressed Sparse Row matrix
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csr_matrix((data, ij), [shape=(M, N)])
where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for
row i are stored in ``indices[indptr[i]:indices[i+1]]`` and their
corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
If the shape parameter is not supplied, the matrix dimensions
are inferred from the index arrays.
Notes
-----
Advantages of the CSR format
- efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
- efficient row slicing
- fast matrix vector products
Disadvantages of the CSR format
- slow column slicing operations (consider CSC)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
--------
>>> from scipy.sparse import *
>>> from scipy import *
>>> csr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
"""
def __getattr__(self, attr):
if attr == 'colind':
warn("colind attribute no longer in use. Use .indices instead",
DeprecationWarning)
return self.indices
else:
return _cs_matrix.__getattr__(self, attr)
def transpose(self, copy=False):
from csc import csc_matrix
M,N = self.shape
return csc_matrix((self.data,self.indices,self.indptr), shape=(N,M), copy=copy)
@np.deprecate
def rowcol(self, ind):
#TODO remove after 0.7
col = self.indices[ind]
row = np.searchsorted(self.indptr, ind+1)-1
return (row, col)
def tolil(self):
from lil import lil_matrix
lil = lil_matrix(self.shape,dtype=self.dtype)
self.sort_indices() #lil_matrix needs sorted column indices
ptr,ind,dat = self.indptr,self.indices,self.data
rows, data = lil.rows, lil.data
for n in xrange(self.shape[0]):
start = ptr[n]
end = ptr[n+1]
rows[n] = ind[start:end].tolist()
data[n] = dat[start:end].tolist()
return lil
def tocsr(self, copy=False):
if copy:
return self.copy()
else:
return self
def tocsc(self):
indptr = np.empty(self.shape[1] + 1, dtype=np.intc)
indices = np.empty(self.nnz, dtype=np.intc)
data = np.empty(self.nnz, dtype=upcast(self.dtype))
csr_tocsc(self.shape[0], self.shape[1], \
self.indptr, self.indices, self.data, \
indptr, indices, data)
from csc import csc_matrix
A = csc_matrix((data, indices, indptr), shape=self.shape)
A.has_sorted_indices = True
return A
def tobsr(self, blocksize=None, copy=True):
from bsr import bsr_matrix
if blocksize is None:
from spfuncs import estimate_blocksize
return self.tobsr(blocksize=estimate_blocksize(self))
elif blocksize == (1,1):
arg1 = (self.data.reshape(-1,1,1),self.indices,self.indptr)
return bsr_matrix(arg1, shape=self.shape, copy=copy )
else:
R,C = blocksize
M,N = self.shape
if R < 1 or C < 1 or M % R != 0 or N % C != 0:
raise ValueError('invalid blocksize %s' % blocksize)
blks = csr_count_blocks(M,N,R,C,self.indptr,self.indices)
indptr = np.empty(M/R + 1, dtype=np.intc)
indices = np.empty(blks, dtype=np.intc)
data = np.zeros((blks,R,C), dtype=self.dtype)
csr_tobsr(M, N, R, C, self.indptr, self.indices, self.data, \
indptr, indices, data.ravel() )
return bsr_matrix((data,indices,indptr), shape=self.shape)
# these functions are used by the parent class (_cs_matrix)
# to remove redudancy between csc_matrix and csr_matrix
def _swap(self,x):
"""swap the members of x if this is a column-oriented matrix
"""
return (x[0],x[1])
def __getitem__(self, key):
def asindices(x):
try:
x = np.asarray(x, dtype=np.intc)
except:
raise IndexError('invalid index')
else:
return x
def extractor(indices,N):
"""Return a sparse matrix P so that P*self implements
slicing of the form self[[1,2,3],:]
"""
indices = asindices(indices)
max_indx = indices.max()
if max_indx >= N:
raise IndexError('index (%d) out of range' % max_indx)
min_indx = indices.min()
if min_indx < -N:
raise IndexError('index (%d) out of range' % (N + min_indx))
if min_indx < 0:
indices = indices.copy()
indices[indices < 0] += N
indptr = np.arange(len(indices) + 1, dtype=np.intc)
data = np.ones(len(indices), dtype=self.dtype)
shape = (len(indices),N)
return csr_matrix((data,indices,indptr), shape=shape)
if isinstance(key, tuple):
row = key[0]
col = key[1]
if isintlike(row):
#[1,??]
if isintlike(col):
return self._get_single_element(row, col) #[i,j]
elif isinstance(col, slice):
return self._get_row_slice(row, col) #[i,1:2]
else:
P = extractor(col,self.shape[1]).T #[i,[1,2]]
return self[row,:]*P
elif isinstance(row, slice):
#[1:2,??]
if isintlike(col) or isinstance(col, slice):
return self._get_submatrix(row, col) #[1:2,j]
else:
P = extractor(col,self.shape[1]).T #[1:2,[1,2]]
return self[row,:]*P
else:
#[[1,2],??] or [[[1],[2]],??]
if isintlike(col) or isinstance(col,slice):
P = extractor(row, self.shape[0]) #[[1,2],j] or [[1,2],1:2]
return (P*self)[:,col]
else:
row = asindices(row)
col = asindices(col)
if len(row.shape) == 1:
if len(row) != len(col): #[[1,2],[1,2]]
raise IndexError('number of row and column indices differ')
val = []
for i,j in zip(row,col):
val.append(self._get_single_element(i,j))
return np.asmatrix(val)
elif len(row.shape) == 2:
row = np.ravel(row) #[[[1],[2]],[1,2]]
P = extractor(row, self.shape[0])
return (P*self)[:,col]
else:
raise NotImplementedError('unsupported indexing')
elif isintlike(key) or isinstance(key,slice):
return self[key,:] #[i] or [1:2]
else:
return self[asindices(key),:] #[[1,2]]
def _get_single_element(self,row,col):
"""Returns the single element self[row, col]
"""
M, N = self.shape
if (row < 0):
row += M
if (col < 0):
col += N
if not (0<=row<M) or not (0<=col<N):
raise IndexError("index out of bounds")
#TODO make use of sorted indices (if present)
start = self.indptr[row]
end = self.indptr[row+1]
indxs = np.where(col == self.indices[start:end])[0]
num_matches = len(indxs)
if num_matches == 0:
# entry does not appear in the matrix
return self.dtype.type(0)
elif num_matches == 1:
return self.data[start:end][indxs[0]]
else:
raise ValueError('nonzero entry (%d,%d) occurs more than once' % (row,col) )
def _get_row_slice(self, i, cslice):
"""Returns a copy of row self[i, cslice]
"""
if i < 0:
i += self.shape[0]
if i < 0 or i >= self.shape[0]:
raise IndexError('index (%d) out of range' % i )
start, stop, stride = cslice.indices(self.shape[1])
if stride != 1:
raise ValueError, "slicing with step != 1 not supported"
if stop <= start:
raise ValueError, "slice width must be >= 1"
#TODO make [i,:] faster
#TODO implement [i,x:y:z]
indices = []
for ind in xrange(self.indptr[i], self.indptr[i+1]):
if self.indices[ind] >= start and self.indices[ind] < stop:
indices.append(ind)
index = self.indices[indices] - start
data = self.data[indices]
indptr = np.array([0, len(indices)])
return csr_matrix( (data, index, indptr), shape=(1, stop-start) )
def _get_submatrix( self, row_slice, col_slice ):
"""Return a submatrix of this matrix (new matrix is created)."""
M,N = self.shape
def process_slice( sl, num ):
if isinstance( sl, slice ):
i0, i1 = sl.start, sl.stop
if i0 is None:
i0 = 0
elif i0 < 0:
i0 = num + i0
if i1 is None:
i1 = num
elif i1 < 0:
i1 = num + i1
return i0, i1
elif isintlike( sl ):
if sl < 0:
sl += num
return sl, sl + 1
else:
raise TypeError('expected slice or scalar')
def check_bounds( i0, i1, num ):
if not (0<=i0<num) or not (0<i1<=num) or not (i0<i1):
raise IndexError( \
"index out of bounds: 0<=%d<%d, 0<=%d<%d, %d<%d" %\
(i0, num, i1, num, i0, i1) )
i0, i1 = process_slice( row_slice, M )
j0, j1 = process_slice( col_slice, N )
check_bounds( i0, i1, M )
check_bounds( j0, j1, N )
indptr, indices, data = get_csr_submatrix( M, N, \
self.indptr, self.indices, self.data, \
int(i0), int(i1), int(j0), int(j1) )
shape = (i1 - i0, j1 - j0)
return self.__class__( (data,indices,indptr), shape=shape )
from sputils import _isinstance
def isspmatrix_csr(x):
return _isinstance(x, csr_matrix)
|