1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
"""Sparse DIAgonal format"""
__docformat__ = "restructuredtext en"
__all__ = ['dia_matrix', 'isspmatrix_dia']
import numpy as np
from base import isspmatrix, _formats
from data import _data_matrix
from sputils import isshape, upcast, getdtype
from sparsetools import dia_matvec
class dia_matrix(_data_matrix):
"""Sparse matrix with DIAgonal storage
This can be instantiated in several ways:
dia_matrix(D)
with a dense matrix
dia_matrix(S)
with another sparse matrix S (equivalent to S.todia())
dia_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N),
dtype is optional, defaulting to dtype='d'.
dia_matrix((data, offsets), shape=(M, N))
where the ``data[k,:]`` stores the diagonal entries for
diagonal ``offsets[k]`` (See example below)
Examples
--------
>>> from scipy.sparse import *
>>> from scipy import *
>>> dia_matrix( (3,4), dtype=int8).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> data = array([[1,2,3,4]]).repeat(3,axis=0)
>>> offsets = array([0,-1,2])
>>> dia_matrix( (data,offsets), shape=(4,4)).todense()
matrix([[1, 0, 3, 0],
[1, 2, 0, 4],
[0, 2, 3, 0],
[0, 0, 3, 4]])
"""
def __init__(self, arg1, shape=None, dtype=None, copy=False):
_data_matrix.__init__(self)
if isspmatrix_dia(arg1):
if copy:
arg1 = arg1.copy()
self.data = arg1.data
self.offsets = arg1.offsets
self.shape = arg1.shape
elif isspmatrix(arg1):
if isspmatrix_dia(arg1) and copy:
A = arg1.copy()
else:
A = arg1.todia()
self.data = A.data
self.offsets = A.offsets
self.shape = A.shape
elif isinstance(arg1, tuple):
if isshape(arg1):
# It's a tuple of matrix dimensions (M, N)
# create empty matrix
self.shape = arg1 #spmatrix checks for errors here
self.data = np.zeros( (0,0), getdtype(dtype, default=float))
self.offsets = np.zeros( (0), dtype=np.intc)
else:
try:
# Try interpreting it as (data, offsets)
data, offsets = arg1
except:
raise ValueError('unrecognized form for dia_matrix constructor')
else:
if shape is None:
raise ValueError('expected a shape argument')
self.data = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy))
self.offsets = np.atleast_1d(np.array(arg1[1], dtype=np.intc, copy=copy))
self.shape = shape
else:
#must be dense, convert to COO first, then to DIA
try:
arg1 = np.asarray(arg1)
except:
raise ValueError("unrecognized form for" \
" %s_matrix constructor" % self.format)
from coo import coo_matrix
A = coo_matrix(arg1, dtype=dtype).todia()
self.data = A.data
self.offsets = A.offsets
self.shape = A.shape
if dtype is not None:
self.data = self.data.astype(dtype)
#check format
if self.offsets.ndim != 1:
raise ValueError('offsets array must have rank 1')
if self.data.ndim != 2:
raise ValueError('data array must have rank 2')
if self.data.shape[0] != len(self.offsets):
raise ValueError('number of diagonals (%d) ' \
'does not match the number of offsets (%d)' \
% (self.data.shape[0], len(self.offsets)))
if len(np.unique(self.offsets)) != len(self.offsets):
raise ValueError('offset array contains duplicate values')
def __repr__(self):
nnz = self.getnnz()
format = self.getformat()
return "<%dx%d sparse matrix of type '%s'\n" \
"\twith %d stored elements (%d diagonals) in %s format>" % \
( self.shape + (self.dtype.type, nnz, self.data.shape[0], \
_formats[format][1],) )
def getnnz(self):
"""number of nonzero values
explicit zero values are included in this number
"""
M,N = self.shape
nnz = 0
for k in self.offsets:
if k > 0:
nnz += min(M,N-k)
else:
nnz += min(M+k,N)
return nnz
nnz = property(fget=getnnz)
def _mul_vector(self, other):
x = other
y = np.zeros( self.shape[0], dtype=upcast(self.dtype,x.dtype))
L = self.data.shape[1]
M,N = self.shape
dia_matvec(M,N, len(self.offsets), L, self.offsets, self.data, x.ravel(), y.ravel())
return y
def _mul_multimatrix(self, other):
return np.hstack( [ self._mul_vector(col).reshape(-1,1) for col in other.T ] )
def todia(self,copy=False):
if copy:
return self.copy()
else:
return self
def tocsr(self):
#this could be faster
return self.tocoo().tocsr()
def tocsc(self):
#this could be faster
return self.tocoo().tocsc()
def tocoo(self):
num_data = len(self.data)
len_data = self.data.shape[1]
row = np.arange(len_data).reshape(1,-1).repeat(num_data,axis=0)
col = row.copy()
for i,k in enumerate(self.offsets):
row[i,:] -= k
row,col,data = row.ravel(),col.ravel(),self.data.ravel()
mask = (row >= 0)
mask &= (row < self.shape[0])
mask &= (col < self.shape[1])
mask &= data != 0
row,col,data = row[mask],col[mask],data[mask]
from coo import coo_matrix
return coo_matrix((data,(row,col)), shape=self.shape)
# needed by _data_matrix
def _with_data(self, data, copy=True):
"""Returns a matrix with the same sparsity structure as self,
but with different data. By default the structure arrays are copied.
"""
if copy:
return dia_matrix( (data, self.offsets.copy()), shape=self.shape)
else:
return dia_matrix( (data,self.offsets), shape=self.shape)
from sputils import _isinstance
def isspmatrix_dia(x):
return _isinstance(x, dia_matrix)
|