1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
"""LInked List sparse matrix class
"""
__docformat__ = "restructuredtext en"
__all__ = ['lil_matrix','isspmatrix_lil']
from bisect import bisect_left
import numpy as np
from base import spmatrix, isspmatrix
from sputils import getdtype, isshape, issequence, isscalarlike
class lil_matrix(spmatrix):
"""Row-based linked list sparse matrix
This is an efficient structure for constructing sparse
matrices incrementally.
This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
Notes
-----
Advantages of the LIL format
- supports flexible slicing
- changes to the matrix sparsity structure are efficient
Disadvantages of the LIL format
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)
Intended Usage
- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices
Data Structure
- An array (``self.rows``) of rows, each of which is a sorted
list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar
fashion in ``self.data``.
"""
def __init__(self, arg1, shape=None, dtype=None, copy=False):
spmatrix.__init__(self)
self.dtype = getdtype(dtype, arg1, default=float)
# First get the shape
if isspmatrix(arg1):
if isspmatrix_lil(arg1) and copy:
A = arg1.copy()
else:
A = arg1.tolil()
if dtype is not None:
A = A.astype(dtype)
self.shape = A.shape
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
elif isinstance(arg1,tuple):
if isshape(arg1):
if shape is not None:
raise ValueError('invalid use of shape parameter')
M, N = arg1
self.shape = (M,N)
self.rows = np.empty((M,), dtype=object)
self.data = np.empty((M,), dtype=object)
for i in range(M):
self.rows[i] = []
self.data[i] = []
else:
raise TypeError('unrecognized lil_matrix constructor usage')
else:
#assume A is dense
try:
A = np.asmatrix(arg1)
except TypeError:
raise TypeError('unsupported matrix type')
else:
from csr import csr_matrix
A = csr_matrix(A, dtype=dtype).tolil()
self.shape = A.shape
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
def __iadd__(self,other):
self[:,:] = self + other
return self
def __isub__(self,other):
self[:,:] = self - other
return self
def __imul__(self,other):
if isscalarlike(other):
self[:,:] = self * other
return self
else:
raise NotImplementedError
def __itruediv__(self,other):
if isscalarlike(other):
self[:,:] = self / other
return self
else:
raise NotImplementedError
# Whenever the dimensions change, empty lists should be created for each
# row
def getnnz(self):
return sum([len(rowvals) for rowvals in self.data])
nnz = property(fget=getnnz)
def __str__(self):
val = ''
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
val += " %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
return val[:-1]
def getrowview(self, i):
"""Returns a view of the 'i'th row (without copying).
"""
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i]
new.data[0] = self.data[i]
return new
def getrow(self, i):
"""Returns a copy of the 'i'th row.
"""
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i][:]
new.data[0] = self.data[i][:]
return new
def _get1(self, i, j):
if i < 0:
i += self.shape[0]
if i < 0 or i >= self.shape[0]:
raise IndexError('row index out of bounds')
if j < 0:
j += self.shape[1]
if j < 0 or j >= self.shape[1]:
raise IndexError('column index out of bounds')
row = self.rows[i]
data = self.data[i]
pos = bisect_left(row, j)
if pos != len(data) and row[pos] == j:
return data[pos]
else:
return 0
def _slicetoseq(self, j, shape):
if j.start is not None and j.start < 0:
start = shape + j.start
elif j.start is None:
start = 0
else:
start = j.start
if j.stop is not None and j.stop < 0:
stop = shape + j.stop
elif j.stop is None:
stop = shape
else:
stop = j.stop
j = range(start, stop, j.step or 1)
return j
def __getitem__(self, index):
"""Return the element(s) index=(i, j), where j may be a slice.
This always returns a copy for consistency, since slices into
Python lists return copies.
"""
try:
i, j = index
except (AssertionError, TypeError):
raise IndexError('invalid index')
if np.isscalar(i):
if np.isscalar(j):
return self._get1(i, j)
if isinstance(j, slice):
j = self._slicetoseq(j, self.shape[1])
if issequence(j):
return self.__class__([[self._get1(i, jj) for jj in j]])
elif issequence(i) and issequence(j):
return self.__class__([[self._get1(ii, jj) for (ii, jj) in zip(i, j)]])
elif issequence(i) or isinstance(i, slice):
if isinstance(i, slice):
i = self._slicetoseq(i, self.shape[0])
if np.isscalar(j):
return self.__class__([[self._get1(ii, j)] for ii in i])
if isinstance(j, slice):
j = self._slicetoseq(j, self.shape[1])
if issequence(j):
return self.__class__([[self._get1(ii, jj) for jj in j] for ii in i])
else:
raise IndexError
def _insertat(self, i, j, x):
""" helper for __setitem__: insert a value at (i,j) where i, j and x
are all scalars """
row = self.rows[i]
data = self.data[i]
self._insertat2(row, data, j, x)
def _insertat2(self, row, data, j, x):
""" helper for __setitem__: insert a value in the given row/data at
column j. """
if j < 0: #handle negative column indices
j += self.shape[1]
if j < 0 or j >= self.shape[1]:
raise IndexError('column index out of bounds')
if not np.isscalar(x):
raise ValueError('setting an array element with a sequence')
try:
x = self.dtype.type(x)
except:
raise TypeError('Unable to convert value (%s) to dtype [%s]' % (x,self.dtype.name))
pos = bisect_left(row, j)
if x != 0:
if pos == len(row):
row.append(j)
data.append(x)
elif row[pos] != j:
row.insert(pos, j)
data.insert(pos, x)
else:
data[pos] = x
else:
if pos < len(row) and row[pos] == j:
del row[pos]
del data[pos]
def _insertat3(self, row, data, j, x):
""" helper for __setitem__ """
if isinstance(j, slice):
j = self._slicetoseq(j, self.shape[1])
if issequence(j):
if isinstance(x, spmatrix):
x = x.todense()
x = np.asarray(x).squeeze()
if np.isscalar(x) or x.size == 1:
for jj in j:
self._insertat2(row, data, jj, x)
else:
# x must be one D. maybe check these things out
for jj, xx in zip(j, x):
self._insertat2(row, data, jj, xx)
elif np.isscalar(j):
self._insertat2(row, data, j, x)
else:
raise ValueError('invalid column value: %s' % str(j))
def __setitem__(self, index, x):
if np.isscalar(x):
x = self.dtype.type(x)
elif not isinstance(x, spmatrix):
x = lil_matrix(x)
try:
i, j = index
except (ValueError, TypeError):
raise IndexError('invalid index')
if isspmatrix(x):
if (isinstance(i, slice) and (i == slice(None))) and \
(isinstance(j, slice) and (j == slice(None))):
# self[:,:] = other_sparse
x = lil_matrix(x)
self.rows = x.rows
self.data = x.data
return
if np.isscalar(i):
row = self.rows[i]
data = self.data[i]
self._insertat3(row, data, j, x)
elif issequence(i) and issequence(j):
if np.isscalar(x):
for ii, jj in zip(i, j):
self._insertat(ii, jj, x)
else:
for ii, jj, xx in zip(i, j, x):
self._insertat(ii, jj, xx)
elif isinstance(i, slice) or issequence(i):
rows = self.rows[i]
datas = self.data[i]
if np.isscalar(x):
for row, data in zip(rows, datas):
self._insertat3(row, data, j, x)
else:
for row, data, xx in zip(rows, datas, x):
self._insertat3(row, data, j, xx)
else:
raise ValueError('invalid index value: %s' % str((i, j)))
def _mul_scalar(self, other):
if other == 0:
# Multiply by zero: return the zero matrix
new = lil_matrix(self.shape, dtype=self.dtype)
else:
new = self.copy()
# Multiply this scalar by every element.
new.data = np.array([[val*other for val in rowvals] for
rowvals in new.data], dtype=object)
return new
def __truediv__(self, other): # self / other
if isscalarlike(other):
new = self.copy()
# Divide every element by this scalar
new.data = np.array([[val/other for val in rowvals] for
rowvals in new.data], dtype=object)
return new
else:
return self.tocsr() / other
## This code doesn't work with complex matrices
# def multiply(self, other):
# """Point-wise multiplication by another lil_matrix.
#
# """
# if np.isscalar(other):
# return self.__mul__(other)
#
# if isspmatrix_lil(other):
# reference,target = self,other
#
# if reference.shape != target.shape:
# raise ValueError("Dimensions do not match.")
#
# if len(reference.data) > len(target.data):
# reference,target = target,reference
#
# new = lil_matrix(reference.shape)
# for r,row in enumerate(reference.rows):
# tr = target.rows[r]
# td = target.data[r]
# rd = reference.data[r]
# L = len(tr)
# for c,column in enumerate(row):
# ix = bisect_left(tr,column)
# if ix < L and tr[ix] == column:
# new.rows[r].append(column)
# new.data[r].append(rd[c] * td[ix])
# return new
# else:
# raise ValueError("Point-wise multiplication only allowed "
# "with another lil_matrix.")
def copy(self):
from copy import deepcopy
new = lil_matrix(self.shape, dtype=self.dtype)
new.data = deepcopy(self.data)
new.rows = deepcopy(self.rows)
return new
def reshape(self,shape):
new = lil_matrix(shape, dtype=self.dtype)
j_max = self.shape[1]
for i,row in enumerate(self.rows):
for col,j in enumerate(row):
new_r,new_c = np.unravel_index(i*j_max + j,shape)
new[new_r,new_c] = self[i,j]
return new
def toarray(self):
d = np.zeros(self.shape, dtype=self.dtype)
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
d[i, j] = self.data[i][pos]
return d
def transpose(self):
return self.tocsr().transpose().tolil()
def tolil(self, copy=False):
if copy:
return self.copy()
else:
return self
def tocsr(self):
""" Return Compressed Sparse Row format arrays for this matrix.
"""
indptr = np.asarray([len(x) for x in self.rows], dtype=np.intc)
indptr = np.concatenate( (np.array([0], dtype=np.intc), np.cumsum(indptr)) )
nnz = indptr[-1]
indices = []
for x in self.rows:
indices.extend(x)
indices = np.asarray(indices, dtype=np.intc)
data = []
for x in self.data:
data.extend(x)
data = np.asarray(data, dtype=self.dtype)
from csr import csr_matrix
return csr_matrix((data, indices, indptr), shape=self.shape)
def tocsc(self):
""" Return Compressed Sparse Column format arrays for this matrix.
"""
return self.tocsr().tocsc()
from sputils import _isinstance
def isspmatrix_lil( x ):
return _isinstance(x, lil_matrix)
|