File: lil.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (450 lines) | stat: -rw-r--r-- 14,389 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""LInked List sparse matrix class
"""

__docformat__ = "restructuredtext en"

__all__ = ['lil_matrix','isspmatrix_lil']

from bisect import bisect_left

import numpy as np

from base import spmatrix, isspmatrix
from sputils import getdtype, isshape, issequence, isscalarlike

class lil_matrix(spmatrix):
    """Row-based linked list sparse matrix

    This is an efficient structure for constructing sparse
    matrices incrementally.

    This can be instantiated in several ways:
        lil_matrix(D)
            with a dense matrix or rank-2 ndarray D

        lil_matrix(S)
            with another sparse matrix S (equivalent to S.tocsc())

        lil_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

    Notes
    -----

    Advantages of the LIL format
        - supports flexible slicing
        - changes to the matrix sparsity structure are efficient

    Disadvantages of the LIL format
        - arithmetic operations LIL + LIL are slow (consider CSR or CSC)
        - slow column slicing (consider CSC)
        - slow matrix vector products (consider CSR or CSC)

    Intended Usage
        - LIL is a convenient format for constructing sparse matrices
        - once a matrix has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - consider using the COO format when constructing large matrices

    Data Structure
        - An array (``self.rows``) of rows, each of which is a sorted
          list of column indices of non-zero elements.
        - The corresponding nonzero values are stored in similar
          fashion in ``self.data``.


    """

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        spmatrix.__init__(self)
        self.dtype = getdtype(dtype, arg1, default=float)

        # First get the shape
        if isspmatrix(arg1):
            if isspmatrix_lil(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.tolil()

            if dtype is not None:
                A = A.astype(dtype)

            self.shape = A.shape
            self.dtype = A.dtype
            self.rows  = A.rows
            self.data  = A.data
        elif isinstance(arg1,tuple):
            if isshape(arg1):
                if shape is not None:
                    raise ValueError('invalid use of shape parameter')
                M, N = arg1
                self.shape = (M,N)
                self.rows = np.empty((M,), dtype=object)
                self.data = np.empty((M,), dtype=object)
                for i in range(M):
                    self.rows[i] = []
                    self.data[i] = []
            else:
                raise TypeError('unrecognized lil_matrix constructor usage')
        else:
            #assume A is dense
            try:
                A = np.asmatrix(arg1)
            except TypeError:
                raise TypeError('unsupported matrix type')
            else:
                from csr import csr_matrix
                A = csr_matrix(A, dtype=dtype).tolil()

                self.shape = A.shape
                self.dtype = A.dtype
                self.rows  = A.rows
                self.data  = A.data

    def __iadd__(self,other):
        self[:,:] = self + other
        return self

    def __isub__(self,other):
        self[:,:] = self - other
        return self

    def __imul__(self,other):
        if isscalarlike(other):
            self[:,:] = self * other
            return self
        else:
            raise NotImplementedError

    def __itruediv__(self,other):
        if isscalarlike(other):
            self[:,:] = self / other
            return self
        else:
            raise NotImplementedError

    # Whenever the dimensions change, empty lists should be created for each
    # row

    def getnnz(self):
        return sum([len(rowvals) for rowvals in self.data])
    nnz = property(fget=getnnz)

    def __str__(self):
        val = ''
        for i, row in enumerate(self.rows):
            for pos, j in enumerate(row):
                val += "  %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
        return val[:-1]

    def getrowview(self, i):
        """Returns a view of the 'i'th row (without copying).
        """
        new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
        new.rows[0] = self.rows[i]
        new.data[0] = self.data[i]
        return new

    def getrow(self, i):
        """Returns a copy of the 'i'th row.
        """
        new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
        new.rows[0] = self.rows[i][:]
        new.data[0] = self.data[i][:]
        return new

    def _get1(self, i, j):

        if i < 0:
            i += self.shape[0]
        if i < 0 or i >= self.shape[0]:
            raise IndexError('row index out of bounds')

        if j < 0:
            j += self.shape[1]
        if j < 0 or j >= self.shape[1]:
            raise IndexError('column index out of bounds')

        row  = self.rows[i]
        data = self.data[i]

        pos = bisect_left(row, j)
        if pos != len(data) and row[pos] == j:
            return data[pos]
        else:
            return 0

    def _slicetoseq(self, j, shape):
        if j.start is not None and j.start < 0:
            start =  shape + j.start
        elif j.start is None:
            start = 0
        else:
            start = j.start
        if j.stop is not None and j.stop < 0:
            stop = shape + j.stop
        elif j.stop is None:
            stop = shape
        else:
            stop = j.stop
        j = range(start, stop, j.step or 1)
        return j


    def __getitem__(self, index):
        """Return the element(s) index=(i, j), where j may be a slice.
        This always returns a copy for consistency, since slices into
        Python lists return copies.
        """
        try:
            i, j = index
        except (AssertionError, TypeError):
            raise IndexError('invalid index')

        if np.isscalar(i):
            if np.isscalar(j):
                return self._get1(i, j)
            if isinstance(j, slice):
                j = self._slicetoseq(j, self.shape[1])
            if issequence(j):
                return self.__class__([[self._get1(i, jj) for jj in j]])
        elif issequence(i) and issequence(j):
            return self.__class__([[self._get1(ii, jj) for (ii, jj) in zip(i, j)]])
        elif issequence(i) or isinstance(i, slice):
            if isinstance(i, slice):
                i = self._slicetoseq(i, self.shape[0])
            if np.isscalar(j):
                return self.__class__([[self._get1(ii, j)] for ii in i])
            if isinstance(j, slice):
                j = self._slicetoseq(j, self.shape[1])
            if issequence(j):
                return self.__class__([[self._get1(ii, jj) for jj in j] for ii in i])
        else:
            raise IndexError


    def _insertat(self, i, j, x):
        """ helper for __setitem__: insert a value at (i,j) where i, j and x
        are all scalars """
        row = self.rows[i]
        data = self.data[i]
        self._insertat2(row, data, j, x)

    def _insertat2(self, row, data, j, x):
        """ helper for __setitem__: insert a value in the given row/data at
        column j. """

        if j < 0: #handle negative column indices
            j += self.shape[1]

        if j < 0 or j >= self.shape[1]:
            raise IndexError('column index out of bounds')
            
        
        if not np.isscalar(x):
            raise ValueError('setting an array element with a sequence')

        try:
            x = self.dtype.type(x)
        except:
            raise TypeError('Unable to convert value (%s) to dtype [%s]' % (x,self.dtype.name))

        pos = bisect_left(row, j)
        if x != 0:
            if pos == len(row):
                row.append(j)
                data.append(x)
            elif row[pos] != j:
                row.insert(pos, j)
                data.insert(pos, x)
            else:
                data[pos] = x
        else:
            if pos < len(row) and row[pos] == j:
                del row[pos]
                del data[pos]


    def _insertat3(self, row, data, j, x):
        """ helper for __setitem__ """
        if isinstance(j, slice):
            j = self._slicetoseq(j, self.shape[1])
        if issequence(j):
            if isinstance(x, spmatrix):
                x = x.todense()
            x = np.asarray(x).squeeze()
            if np.isscalar(x) or x.size == 1:
                for jj in j:
                    self._insertat2(row, data, jj, x)
            else:
                # x must be one D. maybe check these things out
                for jj, xx in zip(j, x):
                    self._insertat2(row, data, jj, xx)
        elif np.isscalar(j):
            self._insertat2(row, data, j, x)
        else:
            raise ValueError('invalid column value: %s' % str(j))


    def __setitem__(self, index, x):
        if np.isscalar(x):
            x = self.dtype.type(x)
        elif not isinstance(x, spmatrix):
            x = lil_matrix(x)

        try:
            i, j = index
        except (ValueError, TypeError):
            raise IndexError('invalid index')

        if isspmatrix(x):
            if (isinstance(i, slice) and (i == slice(None))) and \
               (isinstance(j, slice) and (j == slice(None))):
                # self[:,:] = other_sparse
                x = lil_matrix(x)
                self.rows = x.rows
                self.data = x.data
                return

        if np.isscalar(i):
            row = self.rows[i]
            data = self.data[i]
            self._insertat3(row, data, j, x)
        elif issequence(i) and issequence(j):
            if np.isscalar(x):
                for ii, jj in zip(i, j):
                    self._insertat(ii, jj, x)
            else:
                for ii, jj, xx in zip(i, j, x):
                    self._insertat(ii, jj, xx)
        elif isinstance(i, slice) or issequence(i):
            rows = self.rows[i]
            datas = self.data[i]
            if np.isscalar(x):
                for row, data in zip(rows, datas):
                    self._insertat3(row, data, j, x)
            else:
                for row, data, xx in zip(rows, datas, x):
                    self._insertat3(row, data, j, xx)
        else:
            raise ValueError('invalid index value: %s' % str((i, j)))

    def _mul_scalar(self, other):
        if other == 0:
            # Multiply by zero: return the zero matrix
            new = lil_matrix(self.shape, dtype=self.dtype)
        else:
            new = self.copy()
            # Multiply this scalar by every element.
            new.data = np.array([[val*other for val in rowvals] for
                                  rowvals in new.data], dtype=object)
        return new

    def __truediv__(self, other):           # self / other
        if isscalarlike(other):
            new = self.copy()
            # Divide every element by this scalar
            new.data = np.array([[val/other for val in rowvals] for
                                  rowvals in new.data], dtype=object)
            return new
        else:
            return self.tocsr() / other

## This code doesn't work with complex matrices
#    def multiply(self, other):
#        """Point-wise multiplication by another lil_matrix.
#
#        """
#        if np.isscalar(other):
#            return self.__mul__(other)
#
#        if isspmatrix_lil(other):
#            reference,target = self,other
#
#            if reference.shape != target.shape:
#                raise ValueError("Dimensions do not match.")
#
#            if len(reference.data) > len(target.data):
#                reference,target = target,reference
#
#            new = lil_matrix(reference.shape)
#            for r,row in enumerate(reference.rows):
#                tr = target.rows[r]
#                td = target.data[r]
#                rd = reference.data[r]
#                L = len(tr)
#                for c,column in enumerate(row):
#                    ix = bisect_left(tr,column)
#                    if ix < L and tr[ix] == column:
#                        new.rows[r].append(column)
#                        new.data[r].append(rd[c] * td[ix])
#            return new
#        else:
#            raise ValueError("Point-wise multiplication only allowed "
#                             "with another lil_matrix.")

    def copy(self):
        from copy import deepcopy
        new = lil_matrix(self.shape, dtype=self.dtype)
        new.data = deepcopy(self.data)
        new.rows = deepcopy(self.rows)
        return new

    def reshape(self,shape):
        new = lil_matrix(shape, dtype=self.dtype)
        j_max = self.shape[1]
        for i,row in enumerate(self.rows):
            for col,j in enumerate(row):
                new_r,new_c = np.unravel_index(i*j_max + j,shape)
                new[new_r,new_c] = self[i,j]
        return new

    def toarray(self):
        d = np.zeros(self.shape, dtype=self.dtype)
        for i, row in enumerate(self.rows):
            for pos, j in enumerate(row):
                d[i, j] = self.data[i][pos]
        return d

    def transpose(self):
        return self.tocsr().transpose().tolil()

    def tolil(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    def tocsr(self):
        """ Return Compressed Sparse Row format arrays for this matrix.
        """

        indptr = np.asarray([len(x) for x in self.rows], dtype=np.intc)
        indptr = np.concatenate( (np.array([0], dtype=np.intc), np.cumsum(indptr)) )

        nnz = indptr[-1]

        indices = []
        for x in self.rows:
            indices.extend(x)
        indices = np.asarray(indices, dtype=np.intc)

        data = []
        for x in self.data:
            data.extend(x)
        data = np.asarray(data, dtype=self.dtype)

        from csr import csr_matrix
        return csr_matrix((data, indices, indptr), shape=self.shape)

    def tocsc(self):
        """ Return Compressed Sparse Column format arrays for this matrix.
        """
        return self.tocsr().tocsc()


from sputils import _isinstance

def isspmatrix_lil( x ):
    return _isinstance(x, lil_matrix)