1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
#!/usr/bin/env python
__usage__ = """
To run tests locally:
python tests/test_arpack.py [-l<int>] [-v<int>]
"""
from numpy.testing import *
from numpy import array, finfo, argsort, dot, round, conj, random
from scipy.sparse.linalg.eigen.arpack import eigen_symmetric, eigen
def assert_almost_equal_cc(actual,desired,decimal=7,err_msg='',verbose=True):
# almost equal or complex conjugates almost equal
try:
assert_almost_equal(actual,desired,decimal,err_msg,verbose)
except:
assert_almost_equal(actual,conj(desired),decimal,err_msg,verbose)
def assert_array_almost_equal_cc(actual,desired,decimal=7,
err_msg='',verbose=True):
# almost equal or complex conjugates almost equal
try:
assert_array_almost_equal(actual,desired,decimal,err_msg,verbose)
except:
assert_array_almost_equal(actual,conj(desired),decimal,err_msg,verbose)
# precision for tests
_ndigits = {'f':4, 'd':12, 'F':4, 'D':12}
class TestArpack(TestCase):
def setUp(self):
self.symmetric=[]
self.nonsymmetric=[]
S1={}
S1['mat']=\
array([[ 2., 0., 0., -1., 0., -1.],
[ 0., 2., 0., -1., 0., -1.],
[ 0., 0., 2., -1., 0., -1.],
[-1., -1., -1., 4., 0., -1.],
[ 0., 0., 0., 0., 1., -1.],
[-1., -1., -1., -1., -1., 5.]])
S1['eval']=array([0,1,2,2,5,6])
self.symmetric.append(S1)
N1={}
N1['mat']=\
array([[-2., -8., 1., 2., -5.],
[ 6., 6., 0., 2., 1.],
[ 0., 4., -2., 11., 0.],
[ 1., 6., 1., 0., -4.],
[ 2., -6., 4., 9., -3]])
N1['eval']=\
array([ -5.4854094033782888+0.0j,
-2.2169058544873783+8.5966096591588261j,
-2.2169058544873783-8.5966096591588261j,
4.4596105561765107+3.8007839204319454j,
4.4596105561765107-3.8007839204319454j],'D')
self.nonsymmetric.append(N1)
class TestEigenSymmetric(TestArpack):
def get_exact_eval(self,d,typ,k,which):
eval=d['eval'].astype(typ)
ind=argsort(eval)
eval=eval[ind]
if which=='LM':
return eval[-k:]
if which=='SM':
return eval[:k]
if which=='BE':
# one ev from each end - if k is odd, extra ev on high end
l=k/2
h=k/2+k%2
low=range(len(eval))[:l]
high=range(len(eval))[-h:]
return eval[low+high]
def eval_evec(self,d,typ,k,which,**kwds):
a=d['mat'].astype(typ)
exact_eval=self.get_exact_eval(d,typ,k,which)
eval,evec=eigen_symmetric(a,k,which=which,**kwds)
# check eigenvalues
assert_array_almost_equal(eval,exact_eval,decimal=_ndigits[typ])
# check eigenvectors A*evec=eval*evec
for i in range(k):
assert_array_almost_equal(dot(a,evec[:,i]),
eval[i]*evec[:,i],
decimal=_ndigits[typ])
def test_symmetric_modes(self):
k=2
for typ in 'fd':
for which in ['LM','SM','BE']:
self.eval_evec(self.symmetric[0],typ,k,which)
def test_starting_vector(self):
k=2
for typ in 'fd':
A=self.symmetric[0]['mat']
n=A.shape[0]
v0 = random.rand(n).astype(typ)
self.eval_evec(self.symmetric[0],typ,k,which='LM',v0=v0)
class TestEigenComplexSymmetric(TestArpack):
def sort_choose(self,eval,typ,k,which):
# sort and choose the eigenvalues and eigenvectors
# both for the exact answer and that returned from ARPACK
reval=round(eval,decimals=_ndigits[typ])
ind=argsort(reval)
if which=='LM' or which=='LR':
return ind[-k:]
if which=='SM' or which=='SR':
return ind[:k]
def eval_evec(self,d,typ,k,which):
a=d['mat'].astype(typ)
# get exact eigenvalues
exact_eval=d['eval'].astype(typ)
ind=self.sort_choose(exact_eval,typ,k,which)
exact_eval=exact_eval[ind]
# compute eigenvalues
eval,evec=eigen(a,k,which=which)
ind=self.sort_choose(eval,typ,k,which)
eval=eval[ind]
evec=evec[:,ind]
# check eigenvalues
assert_array_almost_equal(eval,exact_eval,decimal=_ndigits[typ])
# check eigenvectors A*evec=eval*evec
for i in range(k):
assert_array_almost_equal(dot(a,evec[:,i]),
eval[i]*evec[:,i],
decimal=_ndigits[typ])
def test_complex_symmetric_modes(self):
k=2
for typ in 'FD':
for which in ['LM','SM','LR','SR']:
self.eval_evec(self.symmetric[0],typ,k,which)
class TestEigenNonSymmetric(TestArpack):
def sort_choose(self,eval,typ,k,which):
reval=round(eval,decimals=_ndigits[typ])
if which in ['LR','SR']:
ind=argsort(reval.real)
elif which in ['LI','SI']:
# for LI,SI ARPACK returns largest,smallest abs(imaginary) why?
ind=argsort(abs(reval.imag))
else:
ind=argsort(abs(reval))
if which in ['LR','LM','LI']:
return ind[-k:]
if which in ['SR','SM','SI']:
return ind[:k]
def eval_evec(self,d,typ,k,which,**kwds):
a=d['mat'].astype(typ)
# get exact eigenvalues
exact_eval=d['eval'].astype(typ.upper())
ind=self.sort_choose(exact_eval,typ,k,which)
exact_eval=exact_eval[ind]
# compute eigenvalues
eval,evec=eigen(a,k,which=which,**kwds)
ind=self.sort_choose(eval,typ,k,which)
eval=eval[ind]
evec=evec[:,ind]
# check eigenvalues
# check eigenvectors A*evec=eval*evec
for i in range(k):
assert_almost_equal_cc(eval[i],exact_eval[i],decimal=_ndigits[typ])
assert_array_almost_equal_cc(dot(a,evec[:,i]),
eval[i]*evec[:,i],
decimal=_ndigits[typ])
def test_nonsymmetric_modes(self):
k=2
for typ in 'fd':
for which in ['LI','LR','LM','SM','SR','SI']:
for m in self.nonsymmetric:
self.eval_evec(m,typ,k,which)
def test_starting_vector(self):
k=2
for typ in 'fd':
A=self.symmetric[0]['mat']
n=A.shape[0]
v0 = random.rand(n).astype(typ)
self.eval_evec(self.symmetric[0],typ,k,which='LM',v0=v0)
class TestEigenComplexNonSymmetric(TestArpack):
def sort_choose(self,eval,typ,k,which):
eps=finfo(typ).eps
reval=round(eval,decimals=_ndigits[typ])
if which in ['LR','SR']:
ind=argsort(reval)
elif which in ['LI','SI']:
ind=argsort(reval.imag)
else:
ind=argsort(abs(reval))
if which in ['LR','LI','LM']:
return ind[-k:]
if which in ['SR','SI','SM']:
return ind[:k]
def eval_evec(self,d,typ,k,which):
a=d['mat'].astype(typ)
# get exact eigenvalues
exact_eval=d['eval'].astype(typ.upper())
ind=self.sort_choose(exact_eval,typ,k,which)
exact_eval=exact_eval[ind]
if verbose >= 3:
print "exact"
print exact_eval
# compute eigenvalues
eval,evec=eigen(a,k,which=which)
ind=self.sort_choose(eval,typ,k,which)
eval=eval[ind]
evec=evec[:,ind]
if verbose >= 3:
print eval
# check eigenvalues
# check eigenvectors A*evec=eval*evec
for i in range(k):
assert_almost_equal_cc(eval[i],exact_eval[i],decimal=_ndigits[typ])
assert_array_almost_equal_cc(dot(a,evec[:,i]),
eval[i]*evec[:,i],
decimal=_ndigits[typ])
def test_complex_nonsymmetric_modes(self):
k=2
for typ in 'FD':
for which in ['LI','LR','LM','SI','SR','SM']:
for m in self.nonsymmetric:
self.eval_evec(m,typ,k,which)
if __name__ == "__main__":
run_module_suite()
|