File: lobpcg.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (572 lines) | stat: -rw-r--r-- 17,996 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
"""
Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate
Gradient Method (LOBPCG), see
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/

License: BSD

Authors: Robert Cimrman, Andrew Knyazev

Examples in tests directory contributed by Nils Wagner.
"""

import numpy as np
import scipy as sp

from scipy.sparse.linalg import aslinearoperator, LinearOperator

__all__ = ['lobpcg']

## try:
##     from symeig import symeig
## except:
##     raise ImportError('lobpcg requires symeig')

def symeig( mtxA, mtxB = None, eigenvectors = True, select = None ):
    import scipy.linalg as sla
    import scipy.lib.lapack as ll
    if select is None:
        if np.iscomplexobj( mtxA ):
            if mtxB is None:
                fun = ll.get_lapack_funcs( ['heev'], arrays = (mtxA,) )[0]
            else:
                fun = ll.get_lapack_funcs( ['hegv'], arrays = (mtxA,) )[0]
        else:
            if mtxB is None:
                fun = ll.get_lapack_funcs( ['syev'], arrays = (mtxA,) )[0]
            else:
                fun = ll.get_lapack_funcs( ['sygv'], arrays = (mtxA,) )[0]
##         print fun
        if mtxB is None:
            out = fun( mtxA )
        else:
            out = fun( mtxA, mtxB )
##         print w
##         print v
##         print info
##         from symeig import symeig
##         print symeig( mtxA, mtxB )
    else:
        out = sla.eig( mtxA, mtxB, right = eigenvectors )
        w = out[0]
        ii = np.argsort( w )
        w = w[slice( *select )]
        if eigenvectors:
            v = out[1][:,ii]
            v = v[:,slice( *select )]
            out = w, v, 0
        else:
            out = w, 0

    return out[:-1]

def pause():
    raw_input()

def save( ar, fileName ):
    from scipy.io import write_array
    write_array( fileName, ar, precision = 8 )

##
# 21.05.2007, c
def as2d( ar ):
    """
    If the input array is 2D return it, if it is 1D, append a dimension,
    making it a column vector.
    """
    if ar.ndim == 2:
        return ar
    else: # Assume 1!
        aux = np.array( ar, copy = False )
        aux.shape = (ar.shape[0], 1)
        return aux

def makeOperator( operatorInput, expectedShape ):
    """Internal. Takes a dense numpy array or a sparse matrix or
    a function and makes an operator performing matrix * blockvector
    products.

    Example
    -------

    >>> A = makeOperator( arrayA, (n, n) )
    >>> vectorB = A( vectorX )

    """
    if operatorInput is None:
        def ident(x):
            return x
        operator = LinearOperator(expectedShape, ident, matmat=ident)
    else:
        operator = aslinearoperator(operatorInput)

    if operator.shape != expectedShape:
        raise ValueError('operator has invalid shape')

    operator.__call__ = operator.matmat

    return operator



def applyConstraints( blockVectorV, factYBY, blockVectorBY, blockVectorY ):
    """Internal. Changes blockVectorV in place."""
    gramYBV = sp.dot( blockVectorBY.T, blockVectorV )
    import scipy.linalg as sla
    tmp = sla.cho_solve( factYBY, gramYBV )
    blockVectorV -= sp.dot( blockVectorY, tmp )


def b_orthonormalize( B, blockVectorV,
                      blockVectorBV = None, retInvR = False ):
    """Internal."""
    import scipy.linalg as sla
    if blockVectorBV is None:
        if B is not None:
            blockVectorBV = B( blockVectorV )
        else:
            blockVectorBV = blockVectorV # Shared data!!!
    gramVBV = sp.dot( blockVectorV.T, blockVectorBV )
    gramVBV = sla.cholesky( gramVBV )
    sla.inv( gramVBV, overwrite_a = True )
    # gramVBV is now R^{-1}.
    blockVectorV = sp.dot( blockVectorV, gramVBV )
    if B is not None:
        blockVectorBV = sp.dot( blockVectorBV, gramVBV )

    if retInvR:
        return blockVectorV, blockVectorBV, gramVBV
    else:
        return blockVectorV, blockVectorBV

def lobpcg( A, X,
            B=None, M=None, Y=None,
            tol= None, maxiter=20,
            largest = True, verbosityLevel = 0,
            retLambdaHistory = False, retResidualNormsHistory = False ):
    """Solve symmetric partial eigenproblems with optional preconditioning

    This function implements the Locally Optimal Block Preconditioned
    Conjugate Gradient Method (LOBPCG).


    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The symmetric linear operator of the problem, usually a
        sparse matrix.  Often called the "stiffness matrix".
    X : array_like
        Initial approximation to the k eigenvectors. If A has
        shape=(n,n) then X should have shape shape=(n,k).

    Returns
    -------
    w : array
        Array of k eigenvalues
    v : array
        An array of k eigenvectors.  V has the same shape as X.


    Optional Parameters
    -------------------
    B : {dense matrix, sparse matrix, LinearOperator}
        the right hand side operator in a generalized eigenproblem.
        by default, B = Identity
        often called the "mass matrix"
    M : {dense matrix, sparse matrix, LinearOperator}
        preconditioner to A; by default M = Identity
        M should approximate the inverse of A
    Y : array_like
        n-by-sizeY matrix of constraints, sizeY < n
        The iterations will be performed in the B-orthogonal complement
        of the column-space of Y. Y must be full rank.

    Other Parameters
    ----------------
    tol : scalar
        Solver tolerance (stopping criterion)
        by default: tol=n*sqrt(eps)
    maxiter: integer
        maximum number of iterations
        by default: maxiter=min(n,20)
    largest : boolean
        when True, solve for the largest eigenvalues, otherwise the smallest
    verbosityLevel : integer
        controls solver output.  default: verbosityLevel = 0.
    retLambdaHistory : boolean
        whether to return eigenvalue history
    retResidualNormsHistory : boolean
        whether to return history of residual norms


    Notes
    -----
    If both retLambdaHistory and retResidualNormsHistory are True, the
    return tuple has the following format
    (lambda, V, lambda history, residual norms history)

    """
    failureFlag = True
    import scipy.linalg as sla

    blockVectorX = X
    blockVectorY = Y
    residualTolerance = tol
    maxIterations = maxiter

    if blockVectorY is not None:
        sizeY = blockVectorY.shape[1]
    else:
        sizeY = 0

    # Block size.
    if len(blockVectorX.shape) != 2:
        raise ValueError('expected rank-2 array for argument X')

    n, sizeX = blockVectorX.shape
    if sizeX > n:
        raise ValueError('X column dimension exceeds the row dimension')

    A = makeOperator(A, (n,n))
    B = makeOperator(B, (n,n))
    M = makeOperator(M, (n,n))

    if (n - sizeY) < (5 * sizeX):
        #warn('The problem size is small compared to the block size.' \
        #        ' Using dense eigensolver instead of LOBPCG.')

        if blockVectorY is not None:
            raise NotImplementedError('symeig does not support constraints')

        if largest:
            lohi = (n - sizeX, n)
        else:
            lohi = (1, sizeX)

        A_dense = A(np.eye(n))

        if B is not None:
            B_dense = B(np.eye(n))
            _lambda, eigBlockVector = symeig(A_dense, B_dense, select=lohi )
        else:
            _lambda, eigBlockVector = symeig(A_dense, select=lohi )

        return _lambda, eigBlockVector


    if residualTolerance is None:
        residualTolerance = np.sqrt( 1e-15 ) * n

    maxIterations = min( n, maxIterations )

    if verbosityLevel:
        aux = "Solving "
        if B is None:
            aux += "standard"
        else:
            aux += "generalized"
        aux += " eigenvalue problem with"
        if M is None:
            aux += "out"
        aux += " preconditioning\n\n"
        aux += "matrix size %d\n" % n
        aux += "block size %d\n\n" % sizeX
        if blockVectorY is None:
            aux += "No constraints\n\n"
        else:
            if sizeY > 1:
                aux += "%d constraints\n\n" % sizeY
            else:
                aux += "%d constraint\n\n" % sizeY
        print aux

    ##
    # Apply constraints to X.
    if blockVectorY is not None:

        if B is not None:
            blockVectorBY = B( blockVectorY )
        else:
            blockVectorBY = blockVectorY

        # gramYBY is a dense array.
        gramYBY = sp.dot( blockVectorY.T, blockVectorBY )
        try:
            # gramYBY is a Cholesky factor from now on...
            gramYBY = sla.cho_factor( gramYBY )
        except:
            raise ValueError('cannot handle linearly dependent constraints')

        applyConstraints( blockVectorX, gramYBY, blockVectorBY, blockVectorY )

    ##
    # B-orthonormalize X.
    blockVectorX, blockVectorBX = b_orthonormalize( B, blockVectorX )

    ##
    # Compute the initial Ritz vectors: solve the eigenproblem.
    blockVectorAX = A( blockVectorX )
    gramXAX = sp.dot( blockVectorX.T, blockVectorAX )
    # gramXBX is X^T * X.
    gramXBX = sp.dot( blockVectorX.T, blockVectorX )

    _lambda, eigBlockVector = symeig( gramXAX )
    ii = np.argsort( _lambda )[:sizeX]
    if largest:
        ii = ii[::-1]
    _lambda = _lambda[ii]

    eigBlockVector = np.asarray( eigBlockVector[:,ii] )
    blockVectorX  = sp.dot( blockVectorX,  eigBlockVector )
    blockVectorAX = sp.dot( blockVectorAX, eigBlockVector )
    if B is not None:
        blockVectorBX = sp.dot( blockVectorBX, eigBlockVector )

    ##
    # Active index set.
    activeMask = np.ones( (sizeX,), dtype = np.bool )

    lambdaHistory = [_lambda]
    residualNormsHistory = []

    previousBlockSize = sizeX
    ident  = np.eye( sizeX, dtype = A.dtype )
    ident0 = np.eye( sizeX, dtype = A.dtype )

    ##
    # Main iteration loop.
    for iterationNumber in xrange( maxIterations ):
        if verbosityLevel > 0:
            print 'iteration %d' %  iterationNumber

        aux = blockVectorBX * _lambda[np.newaxis,:]
        blockVectorR = blockVectorAX - aux

        aux = np.sum( blockVectorR.conjugate() * blockVectorR, 0 )
        residualNorms = np.sqrt( aux )

        residualNormsHistory.append( residualNorms )

        ii = np.where( residualNorms > residualTolerance, True, False )
        activeMask = activeMask & ii
        if verbosityLevel > 2:
            print activeMask

        currentBlockSize = activeMask.sum()
        if currentBlockSize != previousBlockSize:
            previousBlockSize = currentBlockSize
            ident = np.eye( currentBlockSize, dtype = A.dtype )

        if currentBlockSize == 0:
            failureFlag = False # All eigenpairs converged.
            break

        if verbosityLevel > 0:
            print 'current block size:', currentBlockSize
            print 'eigenvalue:', _lambda
            print 'residual norms:', residualNorms
        if verbosityLevel > 10:
            print eigBlockVector

        activeBlockVectorR = as2d( blockVectorR[:,activeMask] )

        if iterationNumber > 0:
            activeBlockVectorP  = as2d( blockVectorP [:,activeMask] )
            activeBlockVectorAP = as2d( blockVectorAP[:,activeMask] )
            activeBlockVectorBP = as2d( blockVectorBP[:,activeMask] )

        if M is not None:
            # Apply preconditioner T to the active residuals.
            activeBlockVectorR = M( activeBlockVectorR )

        ##
        # Apply constraints to the preconditioned residuals.
        if blockVectorY is not None:
            applyConstraints( activeBlockVectorR,
                              gramYBY, blockVectorBY, blockVectorY )

        ##
        # B-orthonormalize the preconditioned residuals.

        aux = b_orthonormalize( B, activeBlockVectorR )
        activeBlockVectorR, activeBlockVectorBR = aux

        activeBlockVectorAR = A( activeBlockVectorR )

        if iterationNumber > 0:
            aux = b_orthonormalize( B, activeBlockVectorP,
                                    activeBlockVectorBP, retInvR = True )
            activeBlockVectorP, activeBlockVectorBP, invR = aux
            activeBlockVectorAP = sp.dot( activeBlockVectorAP, invR )

        ##
        # Perform the Rayleigh Ritz Procedure:
        # Compute symmetric Gram matrices:

        xaw = sp.dot( blockVectorX.T,       activeBlockVectorAR )
        waw = sp.dot( activeBlockVectorR.T, activeBlockVectorAR )
        xbw = sp.dot( blockVectorX.T,       activeBlockVectorBR )

        if iterationNumber > 0:
            xap = sp.dot( blockVectorX.T,       activeBlockVectorAP )
            wap = sp.dot( activeBlockVectorR.T, activeBlockVectorAP )
            pap = sp.dot( activeBlockVectorP.T, activeBlockVectorAP )
            xbp = sp.dot( blockVectorX.T,       activeBlockVectorBP )
            wbp = sp.dot( activeBlockVectorR.T, activeBlockVectorBP )

            gramA = np.bmat( [[np.diag( _lambda ),   xaw,  xap],
                              [             xaw.T,   waw,  wap],
                              [             xap.T, wap.T,  pap]] )

            gramB = np.bmat( [[ident0,    xbw,    xbp],
                              [ xbw.T,  ident,    wbp],
                              [ xbp.T,  wbp.T,  ident]] )
        else:
            gramA = np.bmat( [[np.diag( _lambda ),  xaw],
                              [             xaw.T,  waw]] )
            gramB = np.bmat( [[ident0,    xbw],
                              [ xbw.T,  ident]] )

        try:
            assert np.allclose( gramA.T, gramA )
        except:
            print gramA.T - gramA
            raise

        try:
            assert np.allclose( gramB.T, gramB )
        except:
            print gramB.T - gramB
            raise

        if verbosityLevel > 10:
            save( gramA, 'gramA' )
            save( gramB, 'gramB' )

        ##
        # Solve the generalized eigenvalue problem.
#        _lambda, eigBlockVector = la.eig( gramA, gramB )
        _lambda, eigBlockVector = symeig( gramA, gramB )
        ii = np.argsort( _lambda )[:sizeX]
        if largest:
            ii = ii[::-1]
        if verbosityLevel > 10:
            print ii

        _lambda = _lambda[ii].astype( np.float64 )
        eigBlockVector = np.asarray( eigBlockVector[:,ii].astype( np.float64 ) )

        lambdaHistory.append( _lambda )

        if verbosityLevel > 10:
            print 'lambda:', _lambda
##         # Normalize eigenvectors!
##         aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 )
##         eigVecNorms = np.sqrt( aux )
##         eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis,:]
#        eigBlockVector, aux = b_orthonormalize( B, eigBlockVector )

        if verbosityLevel > 10:
            print eigBlockVector
            pause()

        ##
        # Compute Ritz vectors.
        if iterationNumber > 0:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
            eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]

            pp  = sp.dot( activeBlockVectorR, eigBlockVectorR )
            pp += sp.dot( activeBlockVectorP, eigBlockVectorP )

            app  = sp.dot( activeBlockVectorAR, eigBlockVectorR )
            app += sp.dot( activeBlockVectorAP, eigBlockVectorP )

            bpp  = sp.dot( activeBlockVectorBR, eigBlockVectorR )
            bpp += sp.dot( activeBlockVectorBP, eigBlockVectorP )
        else:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:]

            pp  = sp.dot( activeBlockVectorR,  eigBlockVectorR )
            app = sp.dot( activeBlockVectorAR, eigBlockVectorR )
            bpp = sp.dot( activeBlockVectorBR, eigBlockVectorR )

        if verbosityLevel > 10:
            print pp
            print app
            print bpp
            pause()

        blockVectorX  = sp.dot( blockVectorX, eigBlockVectorX )  + pp
        blockVectorAX = sp.dot( blockVectorAX, eigBlockVectorX ) + app
        blockVectorBX = sp.dot( blockVectorBX, eigBlockVectorX ) + bpp

        blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp

    aux = blockVectorBX * _lambda[np.newaxis,:]
    blockVectorR = blockVectorAX - aux

    aux = np.sum( blockVectorR.conjugate() * blockVectorR, 0 )
    residualNorms = np.sqrt( aux )


    if verbosityLevel > 0:
        print 'final eigenvalue:', _lambda
        print 'final residual norms:', residualNorms

    if retLambdaHistory:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
        else:
            return _lambda, blockVectorX, lambdaHistory
    else:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, residualNormsHistory
        else:
            return _lambda, blockVectorX

###########################################################################
if __name__ == '__main__':
    from scipy.sparse import spdiags, speye, issparse
    import time

##     def B( vec ):
##         return vec

    n = 100
    vals = [np.arange( n, dtype = np.float64 ) + 1]
    A = spdiags( vals, 0, n, n )
    B = speye( n, n )
#    B[0,0] = 0
    B = np.eye( n, n )
    Y = np.eye( n, 3 )


#    X = sp.rand( n, 3 )
    xfile = {100 : 'X.txt', 1000 : 'X2.txt', 10000 : 'X3.txt'}
    X = np.fromfile( xfile[n], dtype = np.float64, sep = ' ' )
    X.shape = (n, 3)

    ivals = [1./vals[0]]
    def precond( x ):
        invA = spdiags( ivals, 0, n, n )
        y = invA  * x
        if issparse( y ):
            y = y.toarray()

        return as2d( y )

    precond = spdiags( ivals, 0, n, n )
#    precond = None
    tt = time.clock()
#    B = None
    eigs, vecs = lobpcg( X, A, B, blockVectorY = Y,
                         M = precond,
                         residualTolerance = 1e-4, maxIterations = 40,
                         largest = False, verbosityLevel = 1 )
    print 'solution time:', time.clock() - tt

    print vecs
    print eigs