File: csc.h

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (183 lines) | stat: -rw-r--r-- 4,834 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#ifndef __CSC_H__
#define __CSC_H__


#include "csr.h"


/*
 * Compute Y += A*X for CSC matrix A and dense vectors X,Y
 *
 *
 * Input Arguments:
 *   I  n_row         - number of rows in A
 *   I  n_col         - number of columns in A
 *   I  Ap[n_row+1]   - column pointer
 *   I  Ai[nnz(A)]    - row indices
 *   T  Ax[n_col]     - nonzeros 
 *   T  Xx[n_col]     - input vector
 *
 * Output Arguments:
 *   T  Yx[n_row]     - output vector 
 *
 * Note:
 *   Output array Yx must be preallocated
 *   
 *   Complexity: Linear.  Specifically O(nnz(A) + n_col)
 * 
 */
template <class I, class T>
void csc_matvec(const I n_row,
	            const I n_col, 
	            const I Ap[], 
	            const I Ai[], 
	            const T Ax[],
	            const T Xx[],
	                  T Yx[])
{ 
    for(I j = 0; j < n_col; j++){
        I col_start = Ap[j];
        I col_end   = Ap[j+1];

        for(I ii = col_start; ii < col_end; ii++){
            I i    = Ai[ii];
            Yx[i] += Ax[ii] * Xx[j];
        }
    }
}


/*
 * Compute Y += A*X for CSC matrix A and dense block vectors X,Y
 *
 *
 * Input Arguments:
 *   I  n_row            - number of rows in A
 *   I  n_col            - number of columns in A
 *   I  n_vecs           - number of column vectors in X and Y
 *   I  Ap[n_row+1]      - row pointer
 *   I  Aj[nnz(A)]       - column indices
 *   T  Ax[nnz(A)]       - nonzeros
 *   T  Xx[n_col,n_vecs] - input vector
 *
 * Output Arguments:
 *   T  Yx[n_row,n_vecs] - output vector
 *
 * Note:
 *   Output array Yx must be preallocated
 * 
 */
template <class I, class T>
void csc_matvecs(const I n_row,
	             const I n_col, 
                 const I n_vecs,
	             const I Ap[], 
	             const I Ai[], 
	             const T Ax[],
	             const T Xx[],
	                   T Yx[])
{
    for(I j = 0; j < n_col; j++){
        for(I ii = Ap[j]; ii < Ap[j+1]; ii++){
            const I i = Ai[ii];
            axpy(n_vecs, Ax[ii], Xx + n_vecs * j, Yx + n_vecs * i);
        }
    }
}




/*
 * Derived methods
 */
template <class I, class T>
void csc_diagonal(const I n_row,
                  const I n_col, 
	              const I Ap[], 
	              const I Aj[], 
	              const T Ax[],
	                    T Yx[])
{ csr_diagonal(n_col, n_row, Ap, Aj, Ax, Yx); }


template <class I, class T>
void csc_tocsr(const I n_row,
               const I n_col, 
               const I Ap[], 
               const I Ai[], 
               const T Ax[],
                     I Bp[],
                     I Bj[],
                     T Bx[])
{ csr_tocsc<I,T>(n_col, n_row, Ap, Ai, Ax, Bp, Bj, Bx); }

    
template <class I>
void csc_matmat_pass1(const I n_row,
                      const I n_col, 
                      const I Ap[], 
                      const I Ai[], 
                      const I Bp[],
                      const I Bi[],
                            I Cp[])
{ csr_matmat_pass1(n_col, n_row, Bp, Bi, Ap, Ai, Cp); }
    
template <class I, class T>
void csc_matmat_pass2(const I n_row,
      	              const I n_col, 
      	              const I Ap[], 
      	              const I Ai[], 
      	              const T Ax[],
      	              const I Bp[],
      	              const I Bi[],
      	              const T Bx[],
      	                    I Cp[],
      	                    I Ci[],
      	                    T Cx[])
{ csr_matmat_pass2(n_col, n_row, Bp, Bi, Bx, Ap, Ai, Ax, Cp, Ci, Cx); }





template <class I, class T>
void csc_elmul_csc(const I n_row, const I n_col, 
                   const I Ap[], const I Ai[], const T Ax[],
                   const I Bp[], const I Bi[], const T Bx[],
                         I Cp[],       I Ci[],       T Cx[])
{
    csr_elmul_csr(n_col, n_row, Ap, Ai, Ax, Bp, Bi, Bx, Cp, Ci, Cx);
}

template <class I, class T>
void csc_eldiv_csc(const I n_row, const I n_col, 
                   const I Ap[], const I Ai[], const T Ax[],
                   const I Bp[], const I Bi[], const T Bx[],
                         I Cp[],       I Ci[],       T Cx[])
{
    csr_eldiv_csr(n_col, n_row, Ap, Ai, Ax, Bp, Bi, Bx, Cp, Ci, Cx);
}


template <class I, class T>
void csc_plus_csc(const I n_row, const I n_col, 
                  const I Ap[], const I Ai[], const T Ax[],
                  const I Bp[], const I Bi[], const T Bx[],
                        I Cp[],       I Ci[],       T Cx[])
{
    csr_plus_csr(n_col, n_row, Ap, Ai, Ax, Bp, Bi, Bx, Cp, Ci, Cx);
}

template <class I, class T>
void csc_minus_csc(const I n_row, const I n_col, 
                   const I Ap[], const I Ai[], const T Ax[],
                   const I Bp[], const I Bi[], const T Bx[],
                         I Cp[],       I Ci[],       T Cx[])
{
    csr_minus_csr(n_col, n_row, Ap, Ai, Ax, Bp, Bi, Bx, Cp, Ci, Cx);
}



#endif