1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* These are sparsetools functions that are not currently used
*
*/
/*
* Compute C = A*B for CSR matrices A,B
*
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in B (hence C is n_row by n_col)
* I Ap[n_row+1] - row pointer
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
* I Bp[?] - row pointer
* I Bj[nnz(B)] - column indices
* T Bx[nnz(B)] - nonzeros
* Output Arguments:
* vec<I> Cp - row pointer
* vec<I> Cj - column indices
* vec<T> Cx - nonzeros
*
* Note:
* Output arrays Cp, Cj, and Cx will be allocated within in the method
*
* Note:
* Input: A and B column indices *are not* assumed to be in sorted order
* Output: C column indices *are not* assumed to be in sorted order
* Cx will not contain any zero entries
*
* Complexity: O(n_row*K^2 + max(n_row,n_col))
* where K is the maximum nnz in a row of A
* and column of B.
*
*
* This implementation closely follows the SMMP algorithm:
*
* "Sparse Matrix Multiplication Package (SMMP)"
* Randolph E. Bank and Craig C. Douglas
*
* http://citeseer.ist.psu.edu/445062.html
* http://www.mgnet.org/~douglas/ccd-codes.html
*
*/
template <class I, class T>
void csrmucsr(const I n_row,
const I n_col,
const I Ap[],
const I Aj[],
const T Ax[],
const I Bp[],
const I Bj[],
const T Bx[],
std::vector<I>* Cp,
std::vector<I>* Cj,
std::vector<T>* Cx)
{
Cp->resize(n_row+1,0);
std::vector<I> next(n_col,-1);
std::vector<T> sums(n_col, 0);
for(I i = 0; i < n_row; i++){
I head = -2;
I length = 0;
I jj_start = Ap[i];
I jj_end = Ap[i+1];
for(I jj = jj_start; jj < jj_end; jj++){
I j = Aj[jj];
I kk_start = Bp[j];
I kk_end = Bp[j+1];
for(I kk = kk_start; kk < kk_end; kk++){
I k = Bj[kk];
sums[k] += Ax[jj]*Bx[kk];
if(next[k] == -1){
next[k] = head;
head = k;
length++;
}
}
}
for(I jj = 0; jj < length; jj++){
if(sums[head] != 0){
Cj->push_back(head);
Cx->push_back(sums[head]);
}
I temp = head;
head = next[head];
next[temp] = -1; //clear arrays
sums[temp] = 0;
}
(*Cp)[i+1] = Cx->size();
}
}
/*
* Compute M = A for CSR matrix A, dense matrix M
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* I Ap[n_row+1] - row pointer
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
* T Mx[n_row*n_col] - dense matrix
*
* Note:
* Output array Mx is assumed to be allocated and
* initialized to 0 by the caller.
*
*/
template <class I, class T>
void csr_todense(const I n_row,
const I n_col,
const I Ap[],
const I Aj[],
const T Ax[],
T Mx[])
{
I row_base = 0;
for(I i = 0; i < n_row; i++){
I row_start = Ap[i];
I row_end = Ap[i+1];
for(I jj = row_start; jj < row_end; jj++){
I j = Aj[jj];
Mx[row_base + j] = Ax[jj];
}
row_base += n_col;
}
}
/*
* Compute B = A for CSR matrix A, COO matrix B
*
* Also, with the appropriate arguments can also be used to:
* - convert CSC->COO
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* I Ap[n_row+1] - row pointer
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
*
* Output Arguments:
* vec<I> Bi - row indices
* vec<I> Bj - column indices
* vec<T> Bx - nonzeros
*
* Note:
* Output arrays Bi, Bj, Bx will be allocated within in the method
*
* Note:
* Complexity: Linear.
*
*/
template <class I, class T>
void csr_tocoo(const I n_row,
const I n_col,
const I Ap[],
const I Aj[],
const T Ax[],
std::vector<I>* Bi,
std::vector<I>* Bj,
std::vector<T>* Bx)
{
I nnz = Ap[n_row];
Bi->reserve(nnz);
Bi->reserve(nnz);
Bx->reserve(nnz);
for(I i = 0; i < n_row; i++){
I row_start = Ap[i];
I row_end = Ap[i+1];
for(I jj = row_start; jj < row_end; jj++){
Bi->push_back(i);
Bj->push_back(Aj[jj]);
Bx->push_back(Ax[jj]);
}
}
}
/*
* Construct CSC matrix A from diagonals
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* I n_diags - number of diagonals
* I diags_indx[n_diags] - where to place each diagonal
* T diags[n_diags][min(n_row,n_col)] - diagonals
*
* Output Arguments:
* vec<I> Ap - row pointer
* vec<I> Aj - column indices
* vec<T> Ax - nonzeros
*
* Note:
* Output arrays Ap, Aj, Ax will be allocated within in the method
*
* Note:
* Output: row indices are not in sorted order
*
* Complexity: Linear
*
*/
template <class I, class T>
void spdiags(const I n_row,
const I n_col,
const I n_diag,
const I offsets[],
const T diags[],
std::vector<I> * Ap,
std::vector<I> * Ai,
std::vector<T> * Ax)
{
const I diags_length = std::min(n_row,n_col);
Ap->push_back(0);
for(I i = 0; i < n_col; i++){
for(I j = 0; j < n_diag; j++){
if(offsets[j] <= 0){ //sub-diagonal
I row = i - offsets[j];
if (row >= n_row){ continue; }
Ai->push_back(row);
Ax->push_back(diags[j*diags_length + i]);
} else { //super-diagonal
I row = i - offsets[j];
if (row < 0 || row >= n_row){ continue; }
Ai->push_back(row);
Ax->push_back(diags[j*diags_length + row]);
}
}
Ap->push_back(Ai->size());
}
}
template <class I, class T, int R, int C, class bin_op>
void bsr_binop_bsr_fixed(const I n_brow, const I n_bcol,
const I Ap[], const I Aj[], const T Ax[],
const I Bp[], const I Bj[], const T Bx[],
I Cp[], I Cj[], T Cx[],
const bin_op& op)
{
//Method that works for unsorted indices
const I RC = R*C;
T zeros[RC] = {0};
Cp[0] = 0;
I nnz = 0;
std::cout << "using bsr_ fixed" << std::endl;
for(I i = 0; i < n_brow; i++){
I A_pos = Ap[i];
I B_pos = Bp[i];
I A_end = Ap[i+1];
I B_end = Bp[i+1];
I A_j = Aj[A_pos];
I B_j = Bj[B_pos];
//while not finished with either row
while(A_pos < A_end && B_pos < B_end){
if(A_j == B_j){
Cj[nnz] = A_j;
vec_binop_vec<RC> (Ax + RC*A_pos, Bx + RC*B_pos, Cx + RC*nnz, op);
if( is_nonzero_block(Cx + RC*nnz,RC) ){
nnz++;
}
A_j = Aj[++A_pos];
B_j = Bj[++B_pos];
} else if (A_j < B_j) {
Cj[nnz] = A_j;
vec_binop_vec<RC> (Ax + RC*A_pos, zeros, Cx + RC*nnz, op);
if( is_nonzero_block(Cx + RC*nnz,RC) ){
nnz++;
}
A_j = Aj[++A_pos];
} else {
//B_j < A_j
Cj[nnz] = B_j;
vec_binop_vec<RC> (zeros, Bx + RC*A_pos, Cx + RC*nnz, op);
if( is_nonzero_block(Cx + RC*nnz,RC) ){
nnz++;
}
B_j = Bj[++B_pos];
}
}
//tail
while(A_pos < A_end){
Cj[nnz] = A_j;
vec_binop_vec<RC> (Ax + RC*A_pos, zeros, Cx + RC*nnz, op);
if( is_nonzero_block(Cx + RC*nnz,RC) ){
nnz++;
}
A_j = Aj[++A_pos];
}
while(B_pos < B_end){
Cj[nnz] = B_j;
vec_binop_vec<RC> (zeros, Bx + RC*A_pos, Cx + RC*nnz, op);
if( is_nonzero_block(Cx + RC*nnz,RC) ){
nnz++;
}
B_j = Bj[++B_pos];
}
Cp[i+1] = nnz;
}
}
|