1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
# Copyright Anne M. Archibald 2008
# Released under the scipy license
import numpy as np
from heapq import heappush, heappop
import scipy.sparse
def minkowski_distance_p(x,y,p=2):
"""Compute the pth power of the L**p distance between x and y
For efficiency, this function computes the L**p distance but does
not extract the pth root. If p is 1 or infinity, this is equal to
the actual L**p distance.
"""
x = np.asarray(x)
y = np.asarray(y)
if p==np.inf:
return np.amax(np.abs(y-x),axis=-1)
elif p==1:
return np.sum(np.abs(y-x),axis=-1)
else:
return np.sum(np.abs(y-x)**p,axis=-1)
def minkowski_distance(x,y,p=2):
"""Compute the L**p distance between x and y"""
x = np.asarray(x)
y = np.asarray(y)
if p==np.inf or p==1:
return minkowski_distance_p(x,y,p)
else:
return minkowski_distance_p(x,y,p)**(1./p)
class Rectangle(object):
"""Hyperrectangle class.
Represents a Cartesian product of intervals.
"""
def __init__(self, maxes, mins):
"""Construct a hyperrectangle."""
self.maxes = np.maximum(maxes,mins).astype(np.float)
self.mins = np.minimum(maxes,mins).astype(np.float)
self.m, = self.maxes.shape
def __repr__(self):
return "<Rectangle %s>" % zip(self.mins, self.maxes)
def volume(self):
"""Total volume."""
return np.prod(self.maxes-self.mins)
def split(self, d, split):
"""Produce two hyperrectangles by splitting along axis d.
In general, if you need to compute maximum and minimum
distances to the children, it can be done more efficiently
by updating the maximum and minimum distances to the parent.
""" # FIXME: do this
mid = np.copy(self.maxes)
mid[d] = split
less = Rectangle(self.mins, mid)
mid = np.copy(self.mins)
mid[d] = split
greater = Rectangle(mid, self.maxes)
return less, greater
def min_distance_point(self, x, p=2.):
"""Compute the minimum distance between x and a point in the hyperrectangle."""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)
def max_distance_point(self, x, p=2.):
"""Compute the maximum distance between x and a point in the hyperrectangle."""
return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)
def min_distance_rectangle(self, other, p=2.):
"""Compute the minimum distance between points in the two hyperrectangles."""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)
def max_distance_rectangle(self, other, p=2.):
"""Compute the maximum distance between points in the two hyperrectangles."""
return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)
class KDTree(object):
"""kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points
which can be used to rapidly look up the nearest neighbors of any
point.
The algorithm used is described in Maneewongvatana and Mount 1999.
The general idea is that the kd-tree is a binary trie, each of whose
nodes represents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their coordinate
along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the
"sliding midpoint" rule, which ensures that the cells do not all
become long and thin.
The tree can be queried for the r closest neighbors of any given point
(optionally returning only those within some maximum distance of the
point). It can also be queried, with a substantial gain in efficiency,
for the r approximate closest neighbors.
For large dimensions (20 is already large) do not expect this to run
significantly faster than brute force. High-dimensional nearest-neighbor
queries are a substantial open problem in computer science.
The tree also supports all-neighbors queries, both with arrays of points
and with other kd-trees. These do use a reasonably efficient algorithm,
but the kd-tree is not necessarily the best data structure for this
sort of calculation.
"""
def __init__(self, data, leafsize=10):
"""Construct a kd-tree.
Parameters:
===========
data : array-like, shape (n,k)
The data points to be indexed. This array is not copied, and
so modifying this data will result in bogus results.
leafsize : positive integer
The number of points at which the algorithm switches over to
brute-force.
"""
self.data = np.asarray(data)
self.n, self.m = np.shape(self.data)
self.leafsize = int(leafsize)
if self.leafsize<1:
raise ValueError("leafsize must be at least 1")
self.maxes = np.amax(self.data,axis=0)
self.mins = np.amin(self.data,axis=0)
self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
class node(object):
pass
class leafnode(node):
def __init__(self, idx):
self.idx = idx
self.children = len(idx)
class innernode(node):
def __init__(self, split_dim, split, less, greater):
self.split_dim = split_dim
self.split = split
self.less = less
self.greater = greater
self.children = less.children+greater.children
def __build(self, idx, maxes, mins):
if len(idx)<=self.leafsize:
return KDTree.leafnode(idx)
else:
data = self.data[idx]
#maxes = np.amax(data,axis=0)
#mins = np.amin(data,axis=0)
d = np.argmax(maxes-mins)
maxval = maxes[d]
minval = mins[d]
if maxval==minval:
# all points are identical; warn user?
return KDTree.leafnode(idx)
data = data[:,d]
# sliding midpoint rule; see Maneewongvatana and Mount 1999
# for arguments that this is a good idea.
split = (maxval+minval)/2
less_idx = np.nonzero(data<=split)[0]
greater_idx = np.nonzero(data>split)[0]
if len(less_idx)==0:
split = np.amin(data)
less_idx = np.nonzero(data<=split)[0]
greater_idx = np.nonzero(data>split)[0]
if len(greater_idx)==0:
split = np.amax(data)
less_idx = np.nonzero(data<split)[0]
greater_idx = np.nonzero(data>=split)[0]
if len(less_idx)==0:
# _still_ zero? all must have the same value
assert np.all(data==data[0]), "Troublesome data array: %s" % data
split = data[0]
less_idx = np.arange(len(data)-1)
greater_idx = np.array([len(data)-1])
lessmaxes = np.copy(maxes)
lessmaxes[d] = split
greatermins = np.copy(mins)
greatermins[d] = split
return KDTree.innernode(d, split,
self.__build(idx[less_idx],lessmaxes,mins),
self.__build(idx[greater_idx],maxes,greatermins))
def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
if p!=np.inf:
side_distances**=p
min_distance = np.sum(side_distances)
else:
min_distance = np.amax(side_distances)
# priority queue for chasing nodes
# entries are:
# minimum distance between the cell and the target
# distances between the nearest side of the cell and the target
# the head node of the cell
q = [(min_distance,
tuple(side_distances),
self.tree)]
# priority queue for the nearest neighbors
# furthest known neighbor first
# entries are (-distance**p, i)
neighbors = []
if eps==0:
epsfac=1
elif p==np.inf:
epsfac = 1/(1+eps)
else:
epsfac = 1/(1+eps)**p
if p!=np.inf and distance_upper_bound!=np.inf:
distance_upper_bound = distance_upper_bound**p
while q:
min_distance, side_distances, node = heappop(q)
if isinstance(node, KDTree.leafnode):
# brute-force
data = self.data[node.idx]
ds = minkowski_distance_p(data,x[np.newaxis,:],p)
for i in range(len(ds)):
if ds[i]<distance_upper_bound:
if len(neighbors)==k:
heappop(neighbors)
heappush(neighbors, (-ds[i], node.idx[i]))
if len(neighbors)==k:
distance_upper_bound = -neighbors[0][0]
else:
# we don't push cells that are too far onto the queue at all,
# but since the distance_upper_bound decreases, we might get
# here even if the cell's too far
if min_distance>distance_upper_bound*epsfac:
# since this is the nearest cell, we're done, bail out
break
# compute minimum distances to the children and push them on
if x[node.split_dim]<node.split:
near, far = node.less, node.greater
else:
near, far = node.greater, node.less
# near child is at the same distance as the current node
heappush(q,(min_distance, side_distances, near))
# far child is further by an amount depending only
# on the split value
sd = list(side_distances)
if p == np.inf:
min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
elif p == 1:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
else:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
# far child might be too far, if so, don't bother pushing it
if min_distance<=distance_upper_bound*epsfac:
heappush(q,(min_distance, tuple(sd), far))
if p==np.inf:
return sorted([(-d,i) for (d,i) in neighbors])
else:
return sorted([((-d)**(1./p),i) for (d,i) in neighbors])
def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
"""query the kd-tree for nearest neighbors
Parameters:
===========
x : array-like, last dimension self.m
An array of points to query.
k : integer
The number of nearest neighbors to return.
eps : nonnegative float
Return approximate nearest neighbors; the kth returned value
is guaranteed to be no further than (1+eps) times the
distance to the real kth nearest neighbor.
p : float, 1<=p<=infinity
Which Minkowski p-norm to use.
1 is the sum-of-absolute-values "Manhattan" distance
2 is the usual Euclidean distance
infinity is the maximum-coordinate-difference distance
distance_upper_bound : nonnegative float
Return only neighbors within this distance. This is used to prune
tree searches, so if you are doing a series of nearest-neighbor
queries, it may help to supply the distance to the nearest neighbor
of the most recent point.
Returns:
========
d : array of floats
The distances to the nearest neighbors.
If x has shape tuple+(self.m,), then d has shape tuple if
k is one, or tuple+(k,) if k is larger than one. Missing
neighbors are indicated with infinite distances. If k is None,
then d is an object array of shape tuple, containing lists
of distances. In either case the hits are sorted by distance
(nearest first).
i : array of integers
The locations of the neighbors in self.data. i is the same
shape as d.
"""
x = np.asarray(x)
if np.shape(x)[-1] != self.m:
raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
if p<1:
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
retshape = np.shape(x)[:-1]
if retshape!=():
if k>1:
dd = np.empty(retshape+(k,),dtype=np.float)
dd.fill(np.inf)
ii = np.empty(retshape+(k,),dtype=np.int)
ii.fill(self.n)
elif k==1:
dd = np.empty(retshape,dtype=np.float)
dd.fill(np.inf)
ii = np.empty(retshape,dtype=np.int)
ii.fill(self.n)
elif k is None:
dd = np.empty(retshape,dtype=np.object)
ii = np.empty(retshape,dtype=np.object)
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
for c in np.ndindex(retshape):
hits = self.__query(x[c], k=k, p=p, distance_upper_bound=distance_upper_bound)
if k>1:
for j in range(len(hits)):
dd[c+(j,)], ii[c+(j,)] = hits[j]
elif k==1:
if len(hits)>0:
dd[c], ii[c] = hits[0]
else:
dd[c] = np.inf
ii[c] = self.n
elif k is None:
dd[c] = [d for (d,i) in hits]
ii[c] = [i for (d,i) in hits]
return dd, ii
else:
hits = self.__query(x, k=k, p=p, distance_upper_bound=distance_upper_bound)
if k==1:
if len(hits)>0:
return hits[0]
else:
return np.inf, self.n
elif k>1:
dd = np.empty(k,dtype=np.float)
dd.fill(np.inf)
ii = np.empty(k,dtype=np.int)
ii.fill(self.n)
for j in range(len(hits)):
dd[j], ii[j] = hits[j]
return dd, ii
elif k is None:
return [d for (d,i) in hits], [i for (d,i) in hits]
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
def __query_ball_point(self, x, r, p=2., eps=0):
R = Rectangle(self.maxes, self.mins)
def traverse_checking(node, rect):
if rect.min_distance_point(x,p)>=r/(1.+eps):
return []
elif rect.max_distance_point(x,p)<r*(1.+eps):
return traverse_no_checking(node)
elif isinstance(node, KDTree.leafnode):
d = self.data[node.idx]
return node.idx[minkowski_distance(d,x,p)<=r].tolist()
else:
less, greater = rect.split(node.split_dim, node.split)
return traverse_checking(node.less, less)+traverse_checking(node.greater, greater)
def traverse_no_checking(node):
if isinstance(node, KDTree.leafnode):
return node.idx.tolist()
else:
return traverse_no_checking(node.less)+traverse_no_checking(node.greater)
return traverse_checking(self.tree, R)
def query_ball_point(self, x, r, p=2., eps=0):
"""Find all points within r of x
Parameters
==========
x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of
r : positive float
The radius of points to return
p : float 1<=p<=infinity
Which Minkowski p-norm to use
eps : nonnegative float
Approximate search. Branches of the tree are not explored
if their nearest points are further than r/(1+eps), and branches
are added in bulk if their furthest points are nearer than r*(1+eps).
Returns
=======
results : list or array of lists
If x is a single point, returns a list of the indices of the neighbors
of x. If x is an array of points, returns an object array of shape tuple
containing lists of neighbors.
Note: if you have many points whose neighbors you want to find, you may save
substantial amounts of time by putting them in a KDTree and using query_ball_tree.
"""
x = np.asarray(x)
if x.shape[-1]!=self.m:
raise ValueError("Searching for a %d-dimensional point in a %d-dimensional KDTree" % (x.shape[-1],self.m))
if len(x.shape)==1:
return self.__query_ball_point(x,r,p,eps)
else:
retshape = x.shape[:-1]
result = np.empty(retshape,dtype=np.object)
for c in np.ndindex(retshape):
result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
return result
def query_ball_tree(self, other, r, p=2., eps=0):
"""Find all pairs of points whose distance is at most r
Parameters
==========
other : KDTree
The tree containing points to search against
r : positive float
The maximum distance
p : float 1<=p<=infinity
Which Minkowski norm to use
eps : nonnegative float
Approximate search. Branches of the tree are not explored
if their nearest points are further than r/(1+eps), and branches
are added in bulk if their furthest points are nearer than r*(1+eps).
Returns
=======
results : list of lists
For each element self.data[i] of this tree, results[i] is a list of the
indices of its neighbors in other.data.
"""
results = [[] for i in range(self.n)]
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p)>r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p)<r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
d = other.data[node2.idx]
for i in node1.idx:
results[i] += node2.idx[minkowski_distance(d,self.data[i],p)<=r].tolist()
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
results[i] += node2.idx.tolist()
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return results
def count_neighbors(self, other, r, p=2.):
"""Count how many nearby pairs can be formed.
Count the number of pairs (x1,x2) can be formed, with x1 drawn
from self and x2 drawn from other, and where distance(x1,x2,p)<=r.
This is the "two-point correlation" described in Gray and Moore 2000,
"N-body problems in statistical learning", and the code here is based
on their algorithm.
Parameters
==========
other : KDTree
r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with a single
tree traversal.
p : float, 1<=p<=infinity
Which Minkowski p-norm to use
Returns
=======
result : integer or one-dimensional array of integers
The number of pairs. Note that this is internally stored in a numpy int,
and so may overflow if very large (two billion).
"""
def traverse(node1, rect1, node2, rect2, idx):
min_r = rect1.min_distance_rectangle(rect2,p)
max_r = rect1.max_distance_rectangle(rect2,p)
c_greater = r[idx]>max_r
result[idx[c_greater]] += node1.children*node2.children
idx = idx[(min_r<=r[idx]) & (r[idx]<=max_r)]
if len(idx)==0:
return
if isinstance(node1,KDTree.leafnode):
if isinstance(node2,KDTree.leafnode):
ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
other.data[node2.idx][np.newaxis,:,:],
p).ravel()
ds.sort()
result[idx] += np.searchsorted(ds,r[idx],side='right')
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1, rect1, node2.less, less, idx)
traverse(node1, rect1, node2.greater, greater, idx)
else:
if isinstance(node2,KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less, less, node2, rect2, idx)
traverse(node1.greater, greater, node2, rect2, idx)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2,idx)
traverse(node1.less,less1,node2.greater,greater2,idx)
traverse(node1.greater,greater1,node2.less,less2,idx)
traverse(node1.greater,greater1,node2.greater,greater2,idx)
R1 = Rectangle(self.maxes, self.mins)
R2 = Rectangle(other.maxes, other.mins)
if np.shape(r) == ():
r = np.array([r])
result = np.zeros(1,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(1))
return result[0]
elif len(np.shape(r))==1:
r = np.asarray(r)
n, = r.shape
result = np.zeros(n,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(n))
return result
else:
raise ValueError("r must be either a single value or a one-dimensional array of values")
def sparse_distance_matrix(self, other, max_distance, p=2.):
"""Compute a sparse distance matrix
Computes a distance matrix between two KDTrees, leaving as zero
any distance greater than max_distance.
Parameters
==========
other : KDTree
max_distance : positive float
Returns
=======
result : dok_matrix
Sparse matrix representing the results in "dictionary of keys" format.
"""
result = scipy.sparse.dok_matrix((self.n,other.n))
def traverse(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p)>max_distance:
return
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
for j in node2.idx:
d = minkowski_distance(self.data[i],other.data[j],p)
if d<=max_distance:
result[i,j] = d
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1,rect1,node2.less,less)
traverse(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less,less,node2,rect2)
traverse(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2)
traverse(node1.less,less1,node2.greater,greater2)
traverse(node1.greater,greater1,node2.less,less2)
traverse(node1.greater,greater1,node2.greater,greater2)
traverse(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return result
def distance_matrix(x,y,p=2,threshold=1000000):
"""Compute the distance matrix.
Computes the matrix of all pairwise distances.
Parameters
==========
x : array-like, m by k
y : array-like, n by k
p : float 1<=p<=infinity
Which Minkowski p-norm to use.
threshold : positive integer
If m*n*k>threshold use a python loop instead of creating
a very large temporary.
Returns
=======
result : array-like, m by n
"""
x = np.asarray(x)
m, k = x.shape
y = np.asarray(y)
n, kk = y.shape
if k != kk:
raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))
if m*n*k <= threshold:
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
else:
result = np.empty((m,n),dtype=np.float) #FIXME: figure out the best dtype
if m<n:
for i in range(m):
result[i,:] = minkowski_distance(x[i],y,p)
else:
for j in range(n):
result[:,j] = minkowski_distance(x,y[j],p)
return result
|