1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
# Copyright Anne M. Archibald 2008
# Released under the scipy license
from numpy.testing import *
import numpy as np
from scipy.spatial import KDTree, Rectangle, distance_matrix, cKDTree
from scipy.spatial import minkowski_distance as distance
class ConsistencyTests:
def test_nearest(self):
x = self.x
d, i = self.kdtree.query(x, 1)
assert_almost_equal(d**2,np.sum((x-self.data[i])**2))
eps = 1e-8
assert np.all(np.sum((self.data-x[np.newaxis,:])**2,axis=1)>d**2-eps)
def test_m_nearest(self):
x = self.x
m = self.m
dd, ii = self.kdtree.query(x, m)
d = np.amax(dd)
i = ii[np.argmax(dd)]
assert_almost_equal(d**2,np.sum((x-self.data[i])**2))
eps = 1e-8
assert_equal(np.sum(np.sum((self.data-x[np.newaxis,:])**2,axis=1)<d**2+eps),m)
def test_points_near(self):
x = self.x
d = self.d
dd, ii = self.kdtree.query(x, k=self.kdtree.n, distance_upper_bound=d)
eps = 1e-8
hits = 0
for near_d, near_i in zip(dd,ii):
if near_d==np.inf:
continue
hits += 1
assert_almost_equal(near_d**2,np.sum((x-self.data[near_i])**2))
assert near_d<d+eps, "near_d=%g should be less than %g" % (near_d,d)
assert_equal(np.sum(np.sum((self.data-x[np.newaxis,:])**2,axis=1)<d**2+eps),hits)
def test_points_near_l1(self):
x = self.x
d = self.d
dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=1, distance_upper_bound=d)
eps = 1e-8
hits = 0
for near_d, near_i in zip(dd,ii):
if near_d==np.inf:
continue
hits += 1
assert_almost_equal(near_d,distance(x,self.data[near_i],1))
assert near_d<d+eps, "near_d=%g should be less than %g" % (near_d,d)
assert_equal(np.sum(distance(self.data,x,1)<d+eps),hits)
def test_points_near_linf(self):
x = self.x
d = self.d
dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=np.inf, distance_upper_bound=d)
eps = 1e-8
hits = 0
for near_d, near_i in zip(dd,ii):
if near_d==np.inf:
continue
hits += 1
assert_almost_equal(near_d,distance(x,self.data[near_i],np.inf))
assert near_d<d+eps, "near_d=%g should be less than %g" % (near_d,d)
assert_equal(np.sum(distance(self.data,x,np.inf)<d+eps),hits)
def test_approx(self):
x = self.x
k = self.k
eps = 0.1
d_real, i_real = self.kdtree.query(x, k)
d, i = self.kdtree.query(x, k, eps=eps)
assert np.all(d<=d_real*(1+eps))
class test_random(ConsistencyTests):
def setUp(self):
self.n = 100
self.m = 4
self.data = np.random.randn(self.n, self.m)
self.kdtree = KDTree(self.data,leafsize=2)
self.x = np.random.randn(self.m)
self.d = 0.2
self.k = 10
class test_random_far(test_random):
def setUp(self):
test_random.setUp(self)
self.x = np.random.randn(self.m)+10
class test_small(ConsistencyTests):
def setUp(self):
self.data = np.array([[0,0,0],
[0,0,1],
[0,1,0],
[0,1,1],
[1,0,0],
[1,0,1],
[1,1,0],
[1,1,1]])
self.kdtree = KDTree(self.data)
self.n = self.kdtree.n
self.m = self.kdtree.m
self.x = np.random.randn(3)
self.d = 0.5
self.k = 4
def test_nearest(self):
assert_array_equal(
self.kdtree.query((0,0,0.1), 1),
(0.1,0))
def test_nearest_two(self):
assert_array_equal(
self.kdtree.query((0,0,0.1), 2),
([0.1,0.9],[0,1]))
class test_small_nonleaf(test_small):
def setUp(self):
test_small.setUp(self)
self.kdtree = KDTree(self.data,leafsize=1)
class test_small_compiled(test_small):
def setUp(self):
test_small.setUp(self)
self.kdtree = cKDTree(self.data)
class test_small_nonleaf_compiled(test_small):
def setUp(self):
test_small.setUp(self)
self.kdtree = cKDTree(self.data,leafsize=1)
class test_random_compiled(test_random):
def setUp(self):
test_random.setUp(self)
self.kdtree = cKDTree(self.data)
class test_random_far_compiled(test_random_far):
def setUp(self):
test_random_far.setUp(self)
self.kdtree = cKDTree(self.data)
class test_vectorization:
def setUp(self):
self.data = np.array([[0,0,0],
[0,0,1],
[0,1,0],
[0,1,1],
[1,0,0],
[1,0,1],
[1,1,0],
[1,1,1]])
self.kdtree = KDTree(self.data)
def test_single_query(self):
d, i = self.kdtree.query([0,0,0])
assert isinstance(d,float)
assert isinstance(i,int)
def test_vectorized_query(self):
d, i = self.kdtree.query(np.zeros((2,4,3)))
assert_equal(np.shape(d),(2,4))
assert_equal(np.shape(i),(2,4))
def test_single_query_multiple_neighbors(self):
s = 23
kk = self.kdtree.n+s
d, i = self.kdtree.query([0,0,0],k=kk)
assert_equal(np.shape(d),(kk,))
assert_equal(np.shape(i),(kk,))
assert np.all(~np.isfinite(d[-s:]))
assert np.all(i[-s:]==self.kdtree.n)
def test_vectorized_query_multiple_neighbors(self):
s = 23
kk = self.kdtree.n+s
d, i = self.kdtree.query(np.zeros((2,4,3)),k=kk)
assert_equal(np.shape(d),(2,4,kk))
assert_equal(np.shape(i),(2,4,kk))
assert np.all(~np.isfinite(d[:,:,-s:]))
assert np.all(i[:,:,-s:]==self.kdtree.n)
def test_single_query_all_neighbors(self):
d, i = self.kdtree.query([0,0,0],k=None,distance_upper_bound=1.1)
assert isinstance(d,list)
assert isinstance(i,list)
def test_vectorized_query_all_neighbors(self):
d, i = self.kdtree.query(np.zeros((2,4,3)),k=None,distance_upper_bound=1.1)
assert_equal(np.shape(d),(2,4))
assert_equal(np.shape(i),(2,4))
assert isinstance(d[0,0],list)
assert isinstance(i[0,0],list)
class test_vectorization_compiled:
def setUp(self):
self.data = np.array([[0,0,0],
[0,0,1],
[0,1,0],
[0,1,1],
[1,0,0],
[1,0,1],
[1,1,0],
[1,1,1]])
self.kdtree = KDTree(self.data)
def test_single_query(self):
d, i = self.kdtree.query([0,0,0])
assert isinstance(d,float)
assert isinstance(i,int)
def test_vectorized_query(self):
d, i = self.kdtree.query(np.zeros((2,4,3)))
assert_equal(np.shape(d),(2,4))
assert_equal(np.shape(i),(2,4))
def test_single_query_multiple_neighbors(self):
s = 23
kk = self.kdtree.n+s
d, i = self.kdtree.query([0,0,0],k=kk)
assert_equal(np.shape(d),(kk,))
assert_equal(np.shape(i),(kk,))
assert np.all(~np.isfinite(d[-s:]))
assert np.all(i[-s:]==self.kdtree.n)
def test_vectorized_query_multiple_neighbors(self):
s = 23
kk = self.kdtree.n+s
d, i = self.kdtree.query(np.zeros((2,4,3)),k=kk)
assert_equal(np.shape(d),(2,4,kk))
assert_equal(np.shape(i),(2,4,kk))
assert np.all(~np.isfinite(d[:,:,-s:]))
assert np.all(i[:,:,-s:]==self.kdtree.n)
class ball_consistency:
def test_in_ball(self):
l = self.T.query_ball_point(self.x, self.d, p=self.p, eps=self.eps)
for i in l:
assert distance(self.data[i],self.x,self.p)<=self.d*(1.+self.eps)
def test_found_all(self):
c = np.ones(self.T.n,dtype=np.bool)
l = self.T.query_ball_point(self.x, self.d, p=self.p, eps=self.eps)
c[l] = False
assert np.all(distance(self.data[c],self.x,self.p)>=self.d/(1.+self.eps))
class test_random_ball(ball_consistency):
def setUp(self):
n = 100
m = 4
self.data = np.random.randn(n,m)
self.T = KDTree(self.data,leafsize=2)
self.x = np.random.randn(m)
self.p = 2.
self.eps = 0
self.d = 0.2
class test_random_ball_approx(test_random_ball):
def setUp(self):
test_random_ball.setUp(self)
self.eps = 0.1
class test_random_ball_far(test_random_ball):
def setUp(self):
test_random_ball.setUp(self)
self.d = 2.
class test_random_ball_l1(test_random_ball):
def setUp(self):
test_random_ball.setUp(self)
self.p = 1
class test_random_ball_linf(test_random_ball):
def setUp(self):
test_random_ball.setUp(self)
self.p = np.inf
def test_random_ball_vectorized():
n = 20
m = 5
T = KDTree(np.random.randn(n,m))
r = T.query_ball_point(np.random.randn(2,3,m),1)
assert_equal(r.shape,(2,3))
assert isinstance(r[0,0],list)
class two_trees_consistency:
def test_all_in_ball(self):
r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps)
for i, l in enumerate(r):
for j in l:
assert distance(self.data1[i],self.data2[j],self.p)<=self.d*(1.+self.eps)
def test_found_all(self):
r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps)
for i, l in enumerate(r):
c = np.ones(self.T2.n,dtype=np.bool)
c[l] = False
assert np.all(distance(self.data2[c],self.data1[i],self.p)>=self.d/(1.+self.eps))
class test_two_random_trees(two_trees_consistency):
def setUp(self):
n = 50
m = 4
self.data1 = np.random.randn(n,m)
self.T1 = KDTree(self.data1,leafsize=2)
self.data2 = np.random.randn(n,m)
self.T2 = KDTree(self.data2,leafsize=2)
self.p = 2.
self.eps = 0
self.d = 0.2
class test_two_random_trees_far(test_two_random_trees):
def setUp(self):
test_two_random_trees.setUp(self)
self.d = 2
class test_two_random_trees_linf(test_two_random_trees):
def setUp(self):
test_two_random_trees.setUp(self)
self.p = np.inf
class test_rectangle:
def setUp(self):
self.rect = Rectangle([0,0],[1,1])
def test_min_inside(self):
assert_almost_equal(self.rect.min_distance_point([0.5,0.5]),0)
def test_min_one_side(self):
assert_almost_equal(self.rect.min_distance_point([0.5,1.5]),0.5)
def test_min_two_sides(self):
assert_almost_equal(self.rect.min_distance_point([2,2]),np.sqrt(2))
def test_max_inside(self):
assert_almost_equal(self.rect.max_distance_point([0.5,0.5]),1/np.sqrt(2))
def test_max_one_side(self):
assert_almost_equal(self.rect.max_distance_point([0.5,1.5]),np.hypot(0.5,1.5))
def test_max_two_sides(self):
assert_almost_equal(self.rect.max_distance_point([2,2]),2*np.sqrt(2))
def test_split(self):
less, greater = self.rect.split(0,0.1)
assert_array_equal(less.maxes,[0.1,1])
assert_array_equal(less.mins,[0,0])
assert_array_equal(greater.maxes,[1,1])
assert_array_equal(greater.mins,[0.1,0])
def test_distance_l2():
assert_almost_equal(distance([0,0],[1,1],2),np.sqrt(2))
def test_distance_l1():
assert_almost_equal(distance([0,0],[1,1],1),2)
def test_distance_linf():
assert_almost_equal(distance([0,0],[1,1],np.inf),1)
def test_distance_vectorization():
x = np.random.randn(10,1,3)
y = np.random.randn(1,7,3)
assert_equal(distance(x,y).shape,(10,7))
class test_count_neighbors:
def setUp(self):
n = 50
m = 2
self.T1 = KDTree(np.random.randn(n,m),leafsize=2)
self.T2 = KDTree(np.random.randn(n,m),leafsize=2)
def test_one_radius(self):
r = 0.2
assert_equal(self.T1.count_neighbors(self.T2, r),
np.sum([len(l) for l in self.T1.query_ball_tree(self.T2,r)]))
def test_large_radius(self):
r = 1000
assert_equal(self.T1.count_neighbors(self.T2, r),
np.sum([len(l) for l in self.T1.query_ball_tree(self.T2,r)]))
def test_multiple_radius(self):
rs = np.exp(np.linspace(np.log(0.01),np.log(10),3))
results = self.T1.count_neighbors(self.T2, rs)
assert np.all(np.diff(results)>=0)
for r,result in zip(rs, results):
assert_equal(self.T1.count_neighbors(self.T2, r), result)
class test_sparse_distance_matrix:
def setUp(self):
n = 50
m = 4
self.T1 = KDTree(np.random.randn(n,m),leafsize=2)
self.T2 = KDTree(np.random.randn(n,m),leafsize=2)
self.r = 0.3
def test_consistency_with_neighbors(self):
M = self.T1.sparse_distance_matrix(self.T2, self.r)
r = self.T1.query_ball_tree(self.T2, self.r)
for i,l in enumerate(r):
for j in l:
assert_equal(M[i,j],distance(self.T1.data[i],self.T2.data[j]))
for ((i,j),d) in M.items():
assert j in r[i]
def test_distance_matrix():
m = 10
n = 11
k = 4
xs = np.random.randn(m,k)
ys = np.random.randn(n,k)
ds = distance_matrix(xs,ys)
assert_equal(ds.shape, (m,n))
for i in range(m):
for j in range(n):
assert_almost_equal(distance(xs[i],ys[j]),ds[i,j])
def test_distance_matrix_looping():
m = 10
n = 11
k = 4
xs = np.random.randn(m,k)
ys = np.random.randn(n,k)
ds = distance_matrix(xs,ys)
dsl = distance_matrix(xs,ys,threshold=1)
assert_equal(ds,dsl)
if __name__=="__main__":
run_module_suite()
|