File: zbiry.f

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (364 lines) | stat: -rw-r--r-- 14,255 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
      SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
C***BEGIN PROLOGUE  ZBIRY
C***DATE WRITTEN   830501   (YYMMDD)
C***REVISION DATE  890801   (YYMMDD)
C***CATEGORY NO.  B5K
C***KEYWORDS  AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE  TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C                      ***A DOUBLE PRECISION ROUTINE***
C         ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
C         ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C         KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
C         DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
C         BOTH THE LEFT AND RIGHT HALF PLANES WHERE
C         ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
C         DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C         MATHEMATICAL FUNCTIONS (REF. 1).
C
C         INPUT      ZR,ZI ARE DOUBLE PRECISION
C           ZR,ZI  - Z=CMPLX(ZR,ZI)
C           ID     - ORDER OF DERIVATIVE, ID=0 OR ID=1
C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
C                    KODE= 1  RETURNS
C                             BI=BI(Z)                 ON ID=0 OR
C                             BI=DBI(Z)/DZ             ON ID=1
C                        = 2  RETURNS
C                             BI=CEXP(-AXZTA)*BI(Z)     ON ID=0 OR
C                             BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
C                             ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
C                             AND AXZTA=ABS(XZTA)
C
C         OUTPUT     BIR,BII ARE DOUBLE PRECISION
C           BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C                    KODE
C           IERR   - ERROR FLAG
C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C                    IERR=1, INPUT ERROR   - NO COMPUTATION
C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z)
C                            TOO LARGE ON KODE=1
C                    IERR=3, CABS(Z) LARGE      - COMPUTATION COMPLETED
C                            LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C                            PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C                    IERR=4, CABS(Z) TOO LARGE  - NO COMPUTATION
C                            COMPLETE LOSS OF ACCURACY BY ARGUMENT
C                            REDUCTION
C                    IERR=5, ERROR              - NO COMPUTATION,
C                            ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C         BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
C         FUNCTIONS BY
C
C                BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
C               DBI(Z)=C *  Z  * ( I(-2/3,ZTA) + I(2/3,ZTA) )
C                               C=1.0/SQRT(3.0)
C                             ZTA=(2/3)*Z**(3/2)
C
C         WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
C
C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C         OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C         THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C         THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C         FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C         ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C         ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C         FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C         LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C         MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C         AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C         PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C         PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C         ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C         NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C         DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C         EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C         NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C         PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C         MACHINES.
C
C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C         OR -PI/2+P.
C
C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C                 COMMERCE, 1955.
C
C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C                 1018, MAY, 1985
C
C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C                 MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED  ZBINU,AZABS,ZDIV,AZSQRT,D1MACH,I1MACH
C***END PROLOGUE  ZBIRY
C     COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
      DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
     * BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
     * DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
     * SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
     * TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS
      INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
      DIMENSION CYR(2), CYI(2)
      DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
     * 6.14926627446000736D-01,4.48288357353826359D-01,
     * 5.77350269189625765D-01,3.14159265358979324D+00/
      DATA CONER, CONEI /1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT  ZBIRY
      IERR = 0
      NZ=0
      IF (ID.LT.0 .OR. ID.GT.1) IERR=1
      IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
      IF (IERR.NE.0) RETURN
      AZ = AZABS(ZR,ZI)
      TOL = DMAX1(D1MACH(4),1.0D-18)
      FID = DBLE(FLOAT(ID))
      IF (AZ.GT.1.0E0) GO TO 70
C-----------------------------------------------------------------------
C     POWER SERIES FOR CABS(Z).LE.1.
C-----------------------------------------------------------------------
      S1R = CONER
      S1I = CONEI
      S2R = CONER
      S2I = CONEI
      IF (AZ.LT.TOL) GO TO 130
      AA = AZ*AZ
      IF (AA.LT.TOL/AZ) GO TO 40
      TRM1R = CONER
      TRM1I = CONEI
      TRM2R = CONER
      TRM2I = CONEI
      ATRM = 1.0D0
      STR = ZR*ZR - ZI*ZI
      STI = ZR*ZI + ZI*ZR
      Z3R = STR*ZR - STI*ZI
      Z3I = STR*ZI + STI*ZR
      AZ3 = AZ*AA
      AK = 2.0D0 + FID
      BK = 3.0D0 - FID - FID
      CK = 4.0D0 - FID
      DK = 3.0D0 + FID + FID
      D1 = AK*DK
      D2 = BK*CK
      AD = DMIN1(D1,D2)
      AK = 24.0D0 + 9.0D0*FID
      BK = 30.0D0 - 9.0D0*FID
      DO 30 K=1,25
        STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
        TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
        TRM1R = STR
        S1R = S1R + TRM1R
        S1I = S1I + TRM1I
        STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
        TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
        TRM2R = STR
        S2R = S2R + TRM2R
        S2I = S2I + TRM2I
        ATRM = ATRM*AZ3/AD
        D1 = D1 + AK
        D2 = D2 + BK
        AD = DMIN1(D1,D2)
        IF (ATRM.LT.TOL*AD) GO TO 40
        AK = AK + 18.0D0
        BK = BK + 18.0D0
   30 CONTINUE
   40 CONTINUE
      IF (ID.EQ.1) GO TO 50
      BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
      BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
      IF (KODE.EQ.1) RETURN
      CALL AZSQRT(ZR, ZI, STR, STI)
      ZTAR = TTH*(ZR*STR-ZI*STI)
      ZTAI = TTH*(ZR*STI+ZI*STR)
      AA = ZTAR
      AA = -DABS(AA)
      EAA = DEXP(AA)
      BIR = BIR*EAA
      BII = BII*EAA
      RETURN
   50 CONTINUE
      BIR = S2R*C2
      BII = S2I*C2
      IF (AZ.LE.TOL) GO TO 60
      CC = C1/(1.0D0+FID)
      STR = S1R*ZR - S1I*ZI
      STI = S1R*ZI + S1I*ZR
      BIR = BIR + CC*(STR*ZR-STI*ZI)
      BII = BII + CC*(STR*ZI+STI*ZR)
   60 CONTINUE
      IF (KODE.EQ.1) RETURN
      CALL AZSQRT(ZR, ZI, STR, STI)
      ZTAR = TTH*(ZR*STR-ZI*STI)
      ZTAI = TTH*(ZR*STI+ZI*STR)
      AA = ZTAR
      AA = -DABS(AA)
      EAA = DEXP(AA)
      BIR = BIR*EAA
      BII = BII*EAA
      RETURN
C-----------------------------------------------------------------------
C     CASE FOR CABS(Z).GT.1.0
C-----------------------------------------------------------------------
   70 CONTINUE
      FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
      K1 = I1MACH(15)
      K2 = I1MACH(16)
      R1M5 = D1MACH(5)
      K = MIN0(IABS(K1),IABS(K2))
      ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
      K1 = I1MACH(14) - 1
      AA = R1M5*DBLE(FLOAT(K1))
      DIG = DMIN1(AA,18.0D0)
      AA = AA*2.303D0
      ALIM = ELIM + DMAX1(-AA,-41.45D0)
      RL = 1.2D0*DIG + 3.0D0
      FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------
C     TEST FOR RANGE
C-----------------------------------------------------------------------
      AA=0.5D0/TOL
      BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
      AA=DMIN1(AA,BB)
      AA=AA**TTH
      IF (AZ.GT.AA) GO TO 260
      AA=DSQRT(AA)
      IF (AZ.GT.AA) IERR=3
      CALL AZSQRT(ZR, ZI, CSQR, CSQI)
      ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
      ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C     RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
      SFAC = 1.0D0
      AK = ZTAI
      IF (ZR.GE.0.0D0) GO TO 80
      BK = ZTAR
      CK = -DABS(BK)
      ZTAR = CK
      ZTAI = AK
   80 CONTINUE
      IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
      ZTAR = 0.0D0
      ZTAI = AK
   90 CONTINUE
      AA = ZTAR
      IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C     OVERFLOW TEST
C-----------------------------------------------------------------------
      BB = DABS(AA)
      IF (BB.LT.ALIM) GO TO 100
      BB = BB + 0.25D0*DLOG(AZ)
      SFAC = TOL
      IF (BB.GT.ELIM) GO TO 190
  100 CONTINUE
      FMR = 0.0D0
      IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
      FMR = PI
      IF (ZI.LT.0.0D0) FMR = -PI
      ZTAR = -ZTAR
      ZTAI = -ZTAI
  110 CONTINUE
C-----------------------------------------------------------------------
C     AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
C     KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
C-----------------------------------------------------------------------
      CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
     * ELIM, ALIM)
      IF (NZ.LT.0) GO TO 200
      AA = FMR*FNU
      Z3R = SFAC
      STR = DCOS(AA)
      STI = DSIN(AA)
      S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
      S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
      FNU = (2.0D0-FID)/3.0D0
      CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
     * ELIM, ALIM)
      CYR(1) = CYR(1)*Z3R
      CYI(1) = CYI(1)*Z3R
      CYR(2) = CYR(2)*Z3R
      CYI(2) = CYI(2)*Z3R
C-----------------------------------------------------------------------
C     BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
C-----------------------------------------------------------------------
      CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
      S2R = (FNU+FNU)*STR + CYR(2)
      S2I = (FNU+FNU)*STI + CYI(2)
      AA = FMR*(FNU-1.0D0)
      STR = DCOS(AA)
      STI = DSIN(AA)
      S1R = COEF*(S1R+S2R*STR-S2I*STI)
      S1I = COEF*(S1I+S2R*STI+S2I*STR)
      IF (ID.EQ.1) GO TO 120
      STR = CSQR*S1R - CSQI*S1I
      S1I = CSQR*S1I + CSQI*S1R
      S1R = STR
      BIR = S1R/SFAC
      BII = S1I/SFAC
      RETURN
  120 CONTINUE
      STR = ZR*S1R - ZI*S1I
      S1I = ZR*S1I + ZI*S1R
      S1R = STR
      BIR = S1R/SFAC
      BII = S1I/SFAC
      RETURN
  130 CONTINUE
      AA = C1*(1.0D0-FID) + FID*C2
      BIR = AA
      BII = 0.0D0
      RETURN
  190 CONTINUE
      IERR=2
      NZ=0
      RETURN
  200 CONTINUE
      IF(NZ.EQ.(-1)) GO TO 190
      NZ=0
      IERR=5
      RETURN
  260 CONTINUE
      IERR=4
      NZ=0
      RETURN
      END