1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
|
## Automatically adapted for scipy Oct 05, 2005 by convertcode.py
#
# Author: Travis Oliphant, 2002
#
from numpy import *
from _cephes import *
import types
import specfun
def sinc(x):
"""Returns sin(pi*x)/(pi*x) at all points of array x.
"""
w = asarray(asarray(x)*pi)
return where(x==0, 1.0, sin(w)/w)
def diric(x,n):
"""Returns the periodic sinc function also called the dirichlet function:
diric(x) = sin(x *n / 2) / (n sin(x / 2))
where n is a positive integer.
"""
x,n = asarray(x), asarray(n)
n = asarray(n + (x-x))
x = asarray(x + (n-n))
if issubdtype(x.dtype, inexact):
ytype = x.dtype
else:
ytype = float
y = zeros(x.shape,ytype)
mask1 = (n <= 0) | (n <> floor(n))
place(y,mask1,nan)
z = asarray(x / 2.0 / pi)
mask2 = (1-mask1) & (z == floor(z))
zsub = extract(mask2,z)
nsub = extract(mask2,n)
place(y,mask2,pow(-1,zsub*(nsub-1)))
mask = (1-mask1) & (1-mask2)
xsub = extract(mask,x)
nsub = extract(mask,n)
place(y,mask,sin(nsub*xsub/2.0)/(nsub*sin(xsub/2.0)))
return y
def jnjnp_zeros(nt):
"""Compute nt (<=1200) zeros of the bessel functions Jn and Jn'
and arange them in order of their magnitudes.
Outputs (all are arrays of length nt):
zo[l-1] -- Value of the lth zero of of Jn(x) and Jn'(x)
n[l-1] -- Order of the Jn(x) or Jn'(x) associated with lth zero
m[l-1] -- Serial number of the zeros of Jn(x) or Jn'(x) associated
with lth zero.
t[l-1] -- 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero
of Jn'(x)
See jn_zeros, jnp_zeros to get separated arrays of zeros.
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt>1200):
raise ValueError, "Number must be integer <= 1200."
nt = int(nt)
n,m,t,zo = specfun.jdzo(nt)
return zo[:nt],n[:nt],m[:nt],t[:nt]
def jnyn_zeros(n,nt):
"""Compute nt zeros of the Bessel functions Jn(x), Jn'(x), Yn(x), and
Yn'(x), respectively. Returns 4 arrays of length nt.
See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.
"""
if not (isscalar(nt) and isscalar(n)):
raise ValueError, "Arguments must be scalars."
if (floor(n)!=n) or (floor(nt)!=nt):
raise ValueError, "Arguments must be integers."
if (nt <=0):
raise ValueError, "nt > 0"
return specfun.jyzo(abs(n),nt)
def jn_zeros(n,nt):
"""Compute nt zeros of the Bessel function Jn(x).
"""
return jnyn_zeros(n,nt)[0]
def jnp_zeros(n,nt):
"""Compute nt zeros of the Bessel function Jn'(x).
"""
return jnyn_zeros(n,nt)[1]
def yn_zeros(n,nt):
"""Compute nt zeros of the Bessel function Yn(x).
"""
return jnyn_zeros(n,nt)[2]
def ynp_zeros(n,nt):
"""Compute nt zeros of the Bessel function Yn'(x).
"""
return jnyn_zeros(n,nt)[3]
def y0_zeros(nt,complex=0):
"""Returns nt (complex or real) zeros of Y0(z), z0, and the value
of Y0'(z0) = -Y1(z0) at each zero.
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt <=0):
raise ValueError, "Arguments must be scalar positive integer."
kf = 0
kc = (complex != 1)
return specfun.cyzo(nt,kf,kc)
def y1_zeros(nt,complex=0):
"""Returns nt (complex or real) zeros of Y1(z), z1, and the value
of Y1'(z1) = Y0(z1) at each zero.
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt <=0):
raise ValueError, "Arguments must be scalar positive integer."
kf = 1
kc = (complex != 1)
return specfun.cyzo(nt,kf,kc)
def y1p_zeros(nt,complex=0):
"""Returns nt (complex or real) zeros of Y1'(z), z1', and the value
of Y1(z1') at each zero.
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt <=0):
raise ValueError, "Arguments must be scalar positive integer."
kf = 2
kc = (complex != 1)
return specfun.cyzo(nt,kf,kc)
def bessel_diff_formula(v, z, n, L, phase):
# from AMS55.
# L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1
# L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1
# For K, you can pull out the exp((v-k)*pi*i) into the caller
p = 1.0
s = L(v-n, z)
for i in xrange(1, n+1):
p = phase * (p * (n-i+1)) / i # = choose(k, i)
s += p*L(v-n + i*2, z)
return s / (2.**n)
def jvp(v,z,n=1):
"""Return the nth derivative of Jv(z) with respect to z.
"""
if not isinstance(n,types.IntType) or (n<0):
raise ValueError, "n must be a non-negative integer."
if n == 0:
return jv(v,z)
else:
return bessel_diff_formula(v, z, n, jv, -1)
# return (jvp(v-1,z,n-1) - jvp(v+1,z,n-1))/2.0
def yvp(v,z,n=1):
"""Return the nth derivative of Yv(z) with respect to z.
"""
if not isinstance(n,types.IntType) or (n<0):
raise ValueError, "n must be a non-negative integer."
if n == 0:
return yv(v,z)
else:
return bessel_diff_formula(v, z, n, yv, -1)
# return (yvp(v-1,z,n-1) - yvp(v+1,z,n-1))/2.0
def kvp(v,z,n=1):
"""Return the nth derivative of Kv(z) with respect to z.
"""
if not isinstance(n,types.IntType) or (n<0):
raise ValueError, "n must be a non-negative integer."
if n == 0:
return kv(v,z)
else:
return (-1)**n * bessel_diff_formula(v, z, n, kv, 1)
def ivp(v,z,n=1):
"""Return the nth derivative of Iv(z) with respect to z.
"""
if not isinstance(n,types.IntType) or (n<0):
raise ValueError, "n must be a non-negative integer."
if n == 0:
return iv(v,z)
else:
return bessel_diff_formula(v, z, n, iv, 1)
def h1vp(v,z,n=1):
"""Return the nth derivative of H1v(z) with respect to z.
"""
if not isinstance(n,types.IntType) or (n<0):
raise ValueError, "n must be a non-negative integer."
if n == 0:
return hankel1(v,z)
else:
return bessel_diff_formula(v, z, n, hankel1, -1)
# return (h1vp(v-1,z,n-1) - h1vp(v+1,z,n-1))/2.0
def h2vp(v,z,n=1):
"""Return the nth derivative of H2v(z) with respect to z.
"""
if not isinstance(n,types.IntType) or (n<0):
raise ValueError, "n must be a non-negative integer."
if n == 0:
return hankel2(v,z)
else:
return bessel_diff_formula(v, z, n, hankel2, -1)
# return (h2vp(v-1,z,n-1) - h2vp(v+1,z,n-1))/2.0
def sph_jn(n,z):
"""Compute the spherical Bessel function jn(z) and its derivative for
all orders up to and including n.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z):
nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z)
else:
nm,jn,jnp = specfun.sphj(n1,z)
return jn[:(n+1)], jnp[:(n+1)]
def sph_yn(n,z):
"""Compute the spherical Bessel function yn(z) and its derivative for
all orders up to and including n.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z) or less(z,0):
nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z)
else:
nm,yn,ynp = specfun.sphy(n1,z)
return yn[:(n+1)], ynp[:(n+1)]
def sph_jnyn(n,z):
"""Compute the spherical Bessel functions, jn(z) and yn(z) and their
derivatives for all orders up to and including n.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z) or less(z,0):
nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z)
else:
nm,yn,ynp = specfun.sphy(n1,z)
nm,jn,jnp = specfun.sphj(n1,z)
return jn[:(n+1)],jnp[:(n+1)],yn[:(n+1)],ynp[:(n+1)]
def sph_in(n,z):
"""Compute the spherical Bessel function in(z) and its derivative for
all orders up to and including n.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z):
nm,In,Inp,kn,knp = specfun.csphik(n1,z)
else:
nm,In,Inp = specfun.sphi(n1,z)
return In[:(n+1)], Inp[:(n+1)]
def sph_kn(n,z):
"""Compute the spherical Bessel function kn(z) and its derivative for
all orders up to and including n.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z) or less(z,0):
nm,In,Inp,kn,knp = specfun.csphik(n1,z)
else:
nm,kn,knp = specfun.sphk(n1,z)
return kn[:(n+1)], knp[:(n+1)]
def sph_inkn(n,z):
"""Compute the spherical Bessel functions, in(z) and kn(z) and their
derivatives for all orders up to and including n.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if iscomplex(z) or less(z,0):
nm,In,Inp,kn,knp = specfun.csphik(n,z)
else:
nm,In,Inp = specfun.sphi(n,z)
nm,kn,knp = specfun.sphk(n,z)
return In,Inp,kn,knp
def riccati_jn(n,x):
"""Compute the Ricatti-Bessel function of the first kind and its
derivative for all orders up to and including n.
"""
if not (isscalar(n) and isscalar(x)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n == 0): n1 = 1
else: n1 = n
nm,jn,jnp = specfun.rctj(n1,x)
return jn[:(n+1)],jnp[:(n+1)]
def riccati_yn(n,x):
"""Compute the Ricatti-Bessel function of the second kind and its
derivative for all orders up to and including n.
"""
if not (isscalar(n) and isscalar(x)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n == 0): n1 = 1
else: n1 = n
nm,jn,jnp = specfun.rcty(n1,x)
return jn[:(n+1)],jnp[:(n+1)]
def _sph_harmonic(m,n,theta,phi):
"""Compute spherical harmonics.
This is a ufunc and may take scalar or array arguments like any other ufunc.
The inputs will be broadcasted against each other.
:Parameters:
- `m` : int |m| <= n
The order of the harmonic.
- `n` : int >= 0
The degree of the harmonic.
- `theta` : float [0, 2*pi]
The azimuthal (longitudinal) coordinate.
- `phi` : float [0, pi]
The polar (colatitudinal) coordinate.
:Returns:
- `y_mn` : complex float
The harmonic $Y^m_n$ sampled at `theta` and `phi`.
"""
x = cos(phi)
m,n = int(m), int(n)
Pmn,Pmnd = lpmn(m,n,x)
val = Pmn[-1, -1]
val *= sqrt((2*n+1)/4.0/pi)
val *= exp(0.5*(gammaln(n-m+1)-gammaln(n+m+1)))
val *= exp(1j*m*theta)
return val
sph_harm = vectorize(_sph_harmonic,'D')
def erfinv(y):
return ndtri((y+1)/2.0)/sqrt(2)
def erfcinv(y):
return ndtri((2-y)/2.0)/sqrt(2)
def erf_zeros(nt):
"""Compute nt complex zeros of the error function erf(z).
"""
if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
raise ValueError, "Argument must be positive scalar integer."
return specfun.cerzo(nt)
def fresnelc_zeros(nt):
"""Compute nt complex zeros of the cosine fresnel integral C(z).
"""
if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
raise ValueError, "Argument must be positive scalar integer."
return specfun.fcszo(1,nt)
def fresnels_zeros(nt):
"""Compute nt complex zeros of the sine fresnel integral S(z).
"""
if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
raise ValueError, "Argument must be positive scalar integer."
return specfun.fcszo(2,nt)
def fresnel_zeros(nt):
"""Compute nt complex zeros of the sine and cosine fresnel integrals
S(z) and C(z).
"""
if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
raise ValueError, "Argument must be positive scalar integer."
return specfun.fcszo(2,nt), specfun.fcszo(1,nt)
def hyp0f1(v,z):
"""Confluent hypergeometric limit function 0F1.
Limit as q->infinity of 1F1(q;a;z/q)
"""
z = asarray(z)
if issubdtype(z.dtype, complexfloating):
arg = 2*sqrt(abs(z))
num = where(z>=0, iv(v-1,arg), jv(v-1,arg))
den = abs(z)**((v-1.0)/2)
else:
num = iv(v-1,2*sqrt(z))
den = z**((v-1.0)/2.0)
num *= gamma(v)
return where(z==0,1.0,num/ asarray(den))
def assoc_laguerre(x,n,k=0.0):
gam = gamma
fac = gam(k+1+n)/gam(k+1)/gam(n+1)
return fac*hyp1f1(-n,k+1,x)
digamma = psi
def polygamma(n, x):
"""Polygamma function which is the nth derivative of the digamma (psi)
function."""
n, x = asarray(n), asarray(x)
cond = (n==0)
fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1,x)
if sometrue(cond,axis=0):
return where(cond, psi(x), fac2)
return fac2
def mathieu_even_coef(m,q):
"""Compute expansion coefficients for even mathieu functions and
modified mathieu functions.
"""
if not (isscalar(m) and isscalar(q)):
raise ValueError, "m and q must be scalars."
if (q < 0):
raise ValueError, "q >=0"
if (m != floor(m)) or (m<0):
raise ValueError, "m must be an integer >=0."
if (q <= 1):
qm = 7.5+56.1*sqrt(q)-134.7*q+90.7*sqrt(q)*q
else:
qm=17.0+3.1*sqrt(q)-.126*q+.0037*sqrt(q)*q
km = int(qm+0.5*m)
if km > 251:
print "Warning, too many predicted coefficients."
kd = 1
m = int(floor(m))
if m % 2:
kd = 2
a = mathieu_a(m,q)
fc = specfun.fcoef(kd,m,q,a)
return fc[:km]
def mathieu_odd_coef(m,q):
"""Compute expansion coefficients for even mathieu functions and
modified mathieu functions.
"""
if not (isscalar(m) and isscalar(q)):
raise ValueError, "m and q must be scalars."
if (q < 0):
raise ValueError, "q >=0"
if (m != floor(m)) or (m<=0):
raise ValueError, "m must be an integer > 0"
if (q <= 1):
qm = 7.5+56.1*sqrt(q)-134.7*q+90.7*sqrt(q)*q
else:
qm=17.0+3.1*sqrt(q)-.126*q+.0037*sqrt(q)*q
km = int(qm+0.5*m)
if km > 251:
print "Warning, too many predicted coefficients."
kd = 4
m = int(floor(m))
if m % 2:
kd = 3
b = mathieu_b(m,q)
fc = specfun.fcoef(kd,m,q,b)
return fc[:km]
def lpmn(m,n,z):
"""Associated Legendre functions of the first kind, Pmn(z) and its
derivative, Pmn'(z) of order m and degree n. Returns two
arrays of size (m+1,n+1) containing Pmn(z) and Pmn'(z) for
all orders from 0..m and degrees from 0..n.
z can be complex.
"""
if not isscalar(m) or (abs(m)>n):
raise ValueError, "m must be <= n."
if not isscalar(n) or (n<0):
raise ValueError, "n must be a non-negative integer."
if not isscalar(z):
raise ValueError, "z must be scalar."
if (m < 0):
mp = -m
mf,nf = mgrid[0:mp+1,0:n+1]
sv = errprint(0)
fixarr = where(mf>nf,0.0,(-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
sv = errprint(sv)
else:
mp = m
if iscomplex(z):
p,pd = specfun.clpmn(mp,n,real(z),imag(z))
else:
p,pd = specfun.lpmn(mp,n,z)
if (m < 0):
p = p * fixarr
pd = pd * fixarr
return p,pd
def lqmn(m,n,z):
"""Associated Legendre functions of the second kind, Qmn(z) and its
derivative, Qmn'(z) of order m and degree n. Returns two
arrays of size (m+1,n+1) containing Qmn(z) and Qmn'(z) for
all orders from 0..m and degrees from 0..n.
z can be complex.
"""
if not isscalar(m) or (m<0):
raise ValueError, "m must be a non-negative integer."
if not isscalar(n) or (n<0):
raise ValueError, "n must be a non-negative integer."
if not isscalar(z):
raise ValueError, "z must be scalar."
m = int(m)
n = int(n)
# Ensure neither m nor n == 0
mm = max(1,m)
nn = max(1,n)
if iscomplex(z):
q,qd = specfun.clqmn(mm,nn,z)
else:
q,qd = specfun.lqmn(mm,nn,z)
return q[:(m+1),:(n+1)],qd[:(m+1),:(n+1)]
def bernoulli(n):
"""Return an array of the Bernoulli numbers B0..Bn
"""
if not isscalar(n) or (n<0):
raise ValueError, "n must be a non-negative integer."
n = int(n)
if (n < 2): n1 = 2
else: n1 = n
return specfun.bernob(int(n1))[:(n+1)]
def euler(n):
"""Return an array of the Euler numbers E0..En (inclusive)
"""
if not isscalar(n) or (n<0):
raise ValueError, "n must be a non-negative integer."
n = int(n)
if (n < 2): n1 = 2
else: n1 = n
return specfun.eulerb(n1)[:(n+1)]
def lpn(n,z):
"""Compute sequence of Legendre functions of the first kind (polynomials),
Pn(z) and derivatives for all degrees from 0 to n (inclusive).
See also special.legendre for polynomial class.
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z):
pn,pd = specfun.clpn(n1,z)
else:
pn,pd = specfun.lpn(n1,z)
return pn[:(n+1)],pd[:(n+1)]
## lpni
def lqn(n,z):
"""Compute sequence of Legendre functions of the second kind,
Qn(z) and derivatives for all degrees from 0 to n (inclusive).
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (n!= floor(n)) or (n<0):
raise ValueError, "n must be a non-negative integer."
if (n < 1): n1 = 1
else: n1 = n
if iscomplex(z):
qn,qd = specfun.clqn(n1,z)
else:
qn,qd = specfun.lqnb(n1,z)
return qn[:(n+1)],qd[:(n+1)]
def ai_zeros(nt):
"""Compute the zeros of Airy Functions Ai(x) and Ai'(x), a and a'
respectively, and the associated values of Ai(a') and Ai'(a).
Outputs:
a[l-1] -- the lth zero of Ai(x)
ap[l-1] -- the lth zero of Ai'(x)
ai[l-1] -- Ai(ap[l-1])
aip[l-1] -- Ai'(a[l-1])
"""
kf = 1
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be a positive integer scalar."
return specfun.airyzo(nt,kf)
def bi_zeros(nt):
"""Compute the zeros of Airy Functions Bi(x) and Bi'(x), b and b'
respectively, and the associated values of Ai(b') and Ai'(b).
Outputs:
b[l-1] -- the lth zero of Bi(x)
bp[l-1] -- the lth zero of Bi'(x)
bi[l-1] -- Bi(bp[l-1])
bip[l-1] -- Bi'(b[l-1])
"""
kf = 2
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be a positive integer scalar."
return specfun.airyzo(nt,kf)
def lmbda(v,x):
"""Compute sequence of lambda functions with arbitrary order v
and their derivatives. Lv0(x)..Lv(x) are computed with v0=v-int(v).
"""
if not (isscalar(v) and isscalar(x)):
raise ValueError, "arguments must be scalars."
if (v<0):
raise ValueError, "argument must be > 0."
n = int(v)
v0 = v - n
if (n < 1): n1 = 1
else: n1 = n
v1 = n1 + v0
if (v!=floor(v)):
vm, vl, dl = specfun.lamv(v1,x)
else:
vm, vl, dl = specfun.lamn(v1,x)
return vl[:(n+1)], dl[:(n+1)]
def pbdv_seq(v,x):
"""Compute sequence of parabolic cylinder functions Dv(x) and
their derivatives for Dv0(x)..Dv(x) with v0=v-int(v).
"""
if not (isscalar(v) and isscalar(x)):
raise ValueError, "arguments must be scalars."
n = int(v)
v0 = v-n
if (n < 1): n1=1
else: n1 = n
v1 = n1 + v0
dv,dp,pdf,pdd = specfun.pbdv(v1,x)
return dv[:n1+1],dp[:n1+1]
def pbvv_seq(v,x):
"""Compute sequence of parabolic cylinder functions Dv(x) and
their derivatives for Dv0(x)..Dv(x) with v0=v-int(v).
"""
if not (isscalar(v) and isscalar(x)):
raise ValueError, "arguments must be scalars."
n = int(v)
v0 = v-n
if (n <= 1): n1=1
else: n1 = n
v1 = n1 + v0
dv,dp,pdf,pdd = specfun.pbvv(v1,x)
return dv[:n1+1],dp[:n1+1]
def pbdn_seq(n,z):
"""Compute sequence of parabolic cylinder functions Dn(z) and
their derivatives for D0(z)..Dn(z).
"""
if not (isscalar(n) and isscalar(z)):
raise ValueError, "arguments must be scalars."
if (floor(n)!=n):
raise ValueError, "n must be an integer."
if (abs(n) <= 1):
n1 = 1
else:
n1 = n
cpb,cpd = specfun.cpbdn(n1,z)
return cpb[:n1+1],cpd[:n1+1]
def ber_zeros(nt):
"""Compute nt zeros of the kelvin function ber x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,1)
def bei_zeros(nt):
"""Compute nt zeros of the kelvin function bei x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,2)
def ker_zeros(nt):
"""Compute nt zeros of the kelvin function ker x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,3)
def kei_zeros(nt):
"""Compute nt zeros of the kelvin function kei x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,4)
def berp_zeros(nt):
"""Compute nt zeros of the kelvin function ber' x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,5)
def beip_zeros(nt):
"""Compute nt zeros of the kelvin function bei' x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,6)
def kerp_zeros(nt):
"""Compute nt zeros of the kelvin function ker' x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,7)
def keip_zeros(nt):
"""Compute nt zeros of the kelvin function kei' x
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,8)
def kelvin_zeros(nt):
"""Compute nt zeros of all the kelvin functions returned in a
length 8 tuple of arrays of length nt.
The tuple containse the arrays of zeros of
(ber, bei, ker, kei, ber', bei', ker', kei')
"""
if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
raise ValueError, "nt must be positive integer scalar."
return specfun.klvnzo(nt,1), \
specfun.klvnzo(nt,2), \
specfun.klvnzo(nt,3), \
specfun.klvnzo(nt,4), \
specfun.klvnzo(nt,5), \
specfun.klvnzo(nt,6), \
specfun.klvnzo(nt,7), \
specfun.klvnzo(nt,8)
def pro_cv_seq(m,n,c):
"""Compute a sequence of characteristic values for the prolate
spheroidal wave functions for mode m and n'=m..n and spheroidal
parameter c.
"""
if not (isscalar(m) and isscalar(n) and isscalar(c)):
raise ValueError, "Arguments must be scalars."
if (n!=floor(n)) or (m!=floor(m)):
raise ValueError, "Modes must be integers."
if (n-m > 199):
raise ValueError, "Difference between n and m is too large."
maxL = n-m+1
return specfun.segv(m,n,c,1)[1][:maxL]
def obl_cv_seq(m,n,c):
"""Compute a sequence of characteristic values for the oblate
spheroidal wave functions for mode m and n'=m..n and spheroidal
parameter c.
"""
if not (isscalar(m) and isscalar(n) and isscalar(c)):
raise ValueError, "Arguments must be scalars."
if (n!=floor(n)) or (m!=floor(m)):
raise ValueError, "Modes must be integers."
if (n-m > 199):
raise ValueError, "Difference between n and m is too large."
maxL = n-m+1
return specfun.segv(m,n,c,-1)[1][:maxL]
def agm(a,b):
"""Arithmetic, Geometric Mean
Start with a_0=a and b_0=b and iteratively compute
a_{n+1} = (a_n+b_n)/2
b_{n+1} = sqrt(a_n*b_n)
until a_n=b_n. The result is agm(a,b)
agm(a,b)=agm(b,a)
agm(a,a) = a
min(a,b) < agm(a,b) < max(a,b)
"""
res1 = a+b+0.0
res2 = a-b
k = res2 / res1
return res1*pi/4/ellipk(k**2)
|