1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
"""
Airy Functions
--------------
* airy -- Airy functions and their derivatives.
* airye -- Exponentially scaled Airy functions
* ai_zeros -- [+]Zeros of Airy functions Ai(x) and Ai'(x)
* bi_zeros -- [+]Zeros of Airy functions Bi(x) and Bi'(x)
Elliptic Functions and Integrals
--------------------------------
* ellipj -- Jacobian elliptic functions
* ellipk -- Complete elliptic integral of the first kind.
* ellipkinc -- Incomplete elliptic integral of the first kind.
* ellipe -- Complete elliptic integral of the second kind.
* ellipeinc -- Incomplete elliptic integral of the second kind.
Bessel Functions
----------------
* jn -- Bessel function of integer order and real argument.
* jv -- Bessel function of real-valued order and complex argument.
* jve -- Exponentially scaled Bessel function.
* yn -- Bessel function of second kind (integer order).
* yv -- Bessel function of the second kind (real-valued order).
* yve -- Exponentially scaled Bessel function of the second kind.
* kn -- Modified Bessel function of the second kind (integer order).
* kv -- Modified Bessel function of the second kind (real order).
* kve -- Exponentially scaled modified Bessel function of the second kind.
* iv -- Modified Bessel function.
* ive -- Exponentially scaled modified Bessel function.
* hankel1 -- Hankel function of the first kind.
* hankel1e -- Exponentially scaled Hankel function of the first kind.
* hankel2 -- Hankel function of the second kind.
* hankel2e -- Exponentially scaled Hankel function of the second kind.
* lmbda -- [+]Sequence of lambda functions with arbitrary order v.
Zeros of Bessel Functions
.........................
* jnjnp_zeros -- [+]Zeros of integer-order Bessel functions and derivatives sorted in order.
* jnyn_zeros -- [+]Zeros of integer-order Bessel functions and derivatives as separate arrays.
* jn_zeros -- [+]Zeros of Jn(x)
* jnp_zeros -- [+]Zeros of Jn'(x)
* yn_zeros -- [+]Zeros of Yn(x)
* ynp_zeros -- [+]Zeros of Yn'(x)
* y0_zeros -- [+]Complex zeros: Y0(z0)=0 and values of Y0'(z0)
* y1_zeros -- [+]Complex zeros: Y1(z1)=0 and values of Y1'(z1)
* y1p_zeros -- [+]Complex zeros of Y1'(z1')=0 and values of Y1(z1')
Faster versions of common Bessel Functions
..........................................
* j0 -- Bessel function of order 0.
* j1 -- Bessel function of order 1.
* y0 -- Bessel function of second kind of order 0.
* y1 -- Bessel function of second kind of order 1.
* i0 -- Modified Bessel function of order 0.
* i0e -- Exponentially scaled modified Bessel function of order 0.
* i1 -- Modified Bessel function of order 1.
* i1e -- Exponentially scaled modified Bessel function of order 1.
* k0 -- Modified Bessel function of the second kind of order 0.
* k0e -- Exponentially scaled modified Bessel function of the second kind of order 0.
* k1 -- Modified Bessel function of the second kind of order 1.
* k1e -- Exponentially scaled modified Bessel function of the second kind of order 1.
Integrals of Bessel Functions
.............................
* itj0y0 -- Basic integrals of j0 and y0 from 0 to x.
* it2j0y0 -- Integrals of (1-j0(t))/t from 0 to x and y0(t)/t from x to inf.
* iti0k0 -- Basic integrals of i0 and k0 from 0 to x.
* it2i0k0 -- Integrals of (i0(t)-1)/t from 0 to x and k0(t)/t from x to inf.
* besselpoly -- Integral of a bessel function: Jv(2* a* x) * x[+]lambda from x=0 to 1.
Derivatives of Bessel Functions
...............................
* jvp -- Nth derivative of Jv(v,z)
* yvp -- Nth derivative of Yv(v,z)
* kvp -- Nth derivative of Kv(v,z)
* ivp -- Nth derivative of Iv(v,z)
* h1vp -- Nth derivative of H1v(v,z)
* h2vp -- Nth derivative of H2v(v,z)
Spherical Bessel Functions
..........................
* sph_jn -- [+]Sequence of spherical Bessel functions, jn(z)
* sph_yn -- [+]Sequence of spherical Bessel functions, yn(z)
* sph_jnyn -- [+]Sequence of spherical Bessel functions, jn(z) and yn(z)
* sph_in -- [+]Sequence of spherical Bessel functions, in(z)
* sph_kn -- [+]Sequence of spherical Bessel functions, kn(z)
* sph_inkn -- [+]Sequence of spherical Bessel functions, in(z) and kn(z)
Ricatti-Bessel Functions
........................
* riccati_jn -- [+]Sequence of Ricatti-Bessel functions of first kind.
* riccati_yn -- [+]Sequence of Ricatti-Bessel functions of second kind.
Struve Functions
----------------
* struve -- Struve function --- Hv(x)
* modstruve -- Modified struve function --- Lv(x)
* itstruve0 -- Integral of H0(t) from 0 to x
* it2struve0 -- Integral of H0(t)/t from x to Inf.
* itmodstruve0 -- Integral of L0(t) from 0 to x.
Raw Statistical Functions (Friendly versions in scipy.stats)
------------------------------------------------------------
* bdtr -- Sum of terms 0 through k of of the binomial pdf.
* bdtrc -- Sum of terms k+1 through n of the binomial pdf.
* bdtri -- Inverse of bdtr
* btdtr -- Integral from 0 to x of beta pdf.
* btdtri -- Quantiles of beta distribution
* fdtr -- Integral from 0 to x of F pdf.
* fdtrc -- Integral from x to infinity under F pdf.
* fdtri -- Inverse of fdtrc
* gdtr -- Integral from 0 to x of gamma pdf.
* gdtrc -- Integral from x to infinity under gamma pdf.
* gdtria --
* gdtrib --
* gdtrix --
* nbdtr -- Sum of terms 0 through k of the negative binomial pdf.
* nbdtrc -- Sum of terms k+1 to infinity under negative binomial pdf.
* nbdtri -- Inverse of nbdtr
* pdtr -- Sum of terms 0 through k of the Poisson pdf.
* pdtrc -- Sum of terms k+1 to infinity of the Poisson pdf.
* pdtri -- Inverse of pdtr
* stdtr -- Integral from -infinity to t of the Student-t pdf.
* stdtridf --
* stdtrit --
* chdtr -- Integral from 0 to x of the Chi-square pdf.
* chdtrc -- Integral from x to infnity of Chi-square pdf.
* chdtri -- Inverse of chdtrc.
* ndtr -- Integral from -infinity to x of standard normal pdf
* ndtri -- Inverse of ndtr (quantiles)
* smirnov -- Kolmogorov-Smirnov complementary CDF for one-sided test statistic (Dn+ or Dn-)
* smirnovi -- Inverse of smirnov.
* kolmogorov -- The complementary CDF of the (scaled) two-sided test statistic (Kn*) valid for large n.
* kolmogi -- Inverse of kolmogorov
* tklmbda -- Tukey-Lambda CDF
Gamma and Related Functions
---------------------------
* gamma -- Gamma function.
* gammaln -- Log of the absolute value of the gamma function.
* gammainc -- Incomplete gamma integral.
* gammaincinv -- Inverse of gammainc.
* gammaincc -- Complemented incomplete gamma integral.
* gammainccinv -- Inverse of gammaincc.
* beta -- Beta function.
* betaln -- Log of the absolute value of the beta function.
* betainc -- Incomplete beta integral.
* betaincinv -- Inverse of betainc.
* psi(digamma) -- Logarithmic derivative of the gamma function.
* rgamma -- One divided by the gamma function.
* polygamma -- Nth derivative of psi function.
Error Function and Fresnel Integrals
------------------------------------
* erf -- Error function.
* erfc -- Complemented error function (1- erf(x))
* erfinv -- Inverse of error function
* erfcinv -- Inverse of erfc
* erf_zeros -- [+]Complex zeros of erf(z)
* fresnel -- Fresnel sine and cosine integrals.
* fresnel_zeros -- Complex zeros of both Fresnel integrals
* fresnelc_zeros -- [+]Complex zeros of fresnel cosine integrals
* fresnels_zeros -- [+]Complex zeros of fresnel sine integrals
* modfresnelp -- Modified Fresnel integrals F_+(x) and K_+(x)
* modfresnelm -- Modified Fresnel integrals F_-(x) and K_-(x)
Legendre Functions
------------------
* lpn -- [+]Legendre Functions (polynomials) of the first kind
* lqn -- [+]Legendre Functions of the second kind.
* lpmn -- [+]Associated Legendre Function of the first kind.
* lqmn -- [+]Associated Legendre Function of the second kind.
* lpmv -- Associated Legendre Function of arbitrary non-negative degree v.
* sph_harm -- Spherical Harmonics (complex-valued) Y^m_n(theta,phi)
Orthogonal polynomials --- 15 types
These functions all return a polynomial class which can then be
evaluated: vals = chebyt(n)(x)
This class also has an attribute 'weights' which
return the roots, weights, and total weights for the appropriate
form of Gaussian quadrature. These are returned in an n x 3 array with roots
in the first column, weights in the second column, and total weights in the final
column
* legendre -- [+]Legendre polynomial P_n(x) (lpn -- for function).
* chebyt -- [+]Chebyshev polynomial T_n(x)
* chebyu -- [+]Chebyshev polynomial U_n(x)
* chebyc -- [+]Chebyshev polynomial C_n(x)
* chebys -- [+]Chebyshev polynomial S_n(x)
* jacobi -- [+]Jacobi polynomial P^(alpha,beta)_n(x)
* laguerre -- [+]Laguerre polynomial, L_n(x)
* genlaguerre -- [+]Generalized (Associated) Laguerre polynomial, L^alpha_n(x)
* hermite -- [+]Hermite polynomial H_n(x)
* hermitenorm -- [+]Normalized Hermite polynomial, He_n(x)
* gegenbauer -- [+]Gegenbauer (Ultraspherical) polynomials, C^(alpha)_n(x)
* sh_legendre -- [+]shifted Legendre polynomial, P*_n(x)
* sh_chebyt -- [+]shifted Chebyshev polynomial, T*_n(x)
* sh_chebyu -- [+]shifted Chebyshev polynomial, U*_n(x)
* sh_jacobi -- [+]shifted Jacobi polynomial, J*_n(x) = G^(p,q)_n(x)
HyperGeometric Functions
------------------------
* hyp2f1 -- Gauss hypergeometric function (2F1)
* hyp1f1 -- Confluent hypergeometric function (1F1)
* hyperu -- Confluent hypergeometric function (U)
* hyp0f1 -- Confluent hypergeometric limit function (0F1)
* hyp2f0 -- Hypergeometric function (2F0)
* hyp1f2 -- Hypergeometric function (1F2)
* hyp3f0 -- Hypergeometric function (3F0)
Parabolic Cylinder Functions
----------------------------
* pbdv -- Parabolic cylinder function Dv(x) and derivative.
* pbvv -- Parabolic cylinder function Vv(x) and derivative.
* pbwa -- Parabolic cylinder function W(a,x) and derivative.
* pbdv_seq -- [+]Sequence of parabolic cylinder functions Dv(x)
* pbvv_seq -- [+]Sequence of parabolic cylinder functions Vv(x)
* pbdn_seq -- [+]Sequence of parabolic cylinder functions Dn(z), complex z
mathieu and Related Functions (and derivatives)
-----------------------------------------------
* mathieu_a -- Characteristic values for even solution (ce_m)
* mathieu_b -- Characteristic values for odd solution (se_m)
* mathieu_even_coef -- [+]sequence of expansion coefficients for even solution
* mathieu_odd_coef -- [+]sequence of expansion coefficients for odd solution
**All the following return both function and first derivative**
* mathieu_cem -- Even mathieu function
* mathieu_sem -- Odd mathieu function
* mathieu_modcem1 -- Even modified mathieu function of the first kind
* mathieu_modcem2 -- Even modified mathieu function of the second kind
* mathieu_modsem1 -- Odd modified mathieu function of the first kind
* mathieu_modsem2 -- Odd modified mathieu function of the second kind
Spheroidal Wave Functions
-------------------------
* pro_ang1 -- Prolate spheroidal angular function of the first kind
* pro_rad1 -- Prolate spheroidal radial function of the first kind
* pro_rad2 -- Prolate spheroidal radial function of the second kind
* obl_ang1 -- Oblate spheroidal angluar function of the first kind
* obl_rad1 -- Oblate spheroidal radial function of the first kind
* obl_rad2 -- Oblate spheroidal radial function of the second kind
* pro_cv -- Compute characteristic value for prolate functions
* obl_cv -- Compute characteristic value for oblate functions
* pro_cv_seq -- Compute sequence of prolate characteristic values
* obl_cv_seq -- Compute sequence of oblate characteristic values
**The following functions require pre-computed characteristic values**
* pro_ang1_cv -- Prolate spheroidal angular function of the first kind
* pro_rad1_cv -- Prolate spheroidal radial function of the first kind
* pro_rad2_cv -- Prolate spheroidal radial function of the second kind
* obl_ang1_cv -- Oblate spheroidal angluar function of the first kind
* obl_rad1_cv -- Oblate spheroidal radial function of the first kind
* obl_rad2_cv -- Oblate spheroidal radial function of the second kind
Kelvin Functions
----------------
* kelvin -- All Kelvin functions (order 0) and derivatives.
* kelvin_zeros -- [+]Zeros of All Kelvin functions (order 0) and derivatives
* ber -- Kelvin function ber x
* bei -- Kelvin function bei x
* berp -- Derivative of Kelvin function ber x
* beip -- Derivative of Kelvin function bei x
* ker -- Kelvin function ker x
* kei -- Kelvin function kei x
* kerp -- Derivative of Kelvin function ker x
* keip -- Derivative of Kelvin function kei x
* ber_zeros -- [+]Zeros of Kelvin function bei x
* bei_zeros -- [+]Zeros of Kelvin function ber x
* berp_zeros -- [+]Zeros of derivative of Kelvin function ber x
* beip_zeros -- [+]Zeros of derivative of Kelvin function bei x
* ker_zeros -- [+]Zeros of Kelvin function kei x
* kei_zeros -- [+]Zeros of Kelvin function ker x
* kerp_zeros -- [+]Zeros of derivative of Kelvin function ker x
* keip_zeros -- [+]Zeros of derivative of Kelvin function kei x
Other Special Functions
-----------------------
* expn -- Exponential integral.
* exp1 -- Exponential integral of order 1 (for complex argument)
* expi -- Another exponential integral -- Ei(x)
* wofz -- Fadeeva function.
* dawsn -- Dawson's integral.
* shichi -- Hyperbolic sine and cosine integrals.
* sici -- Integral of the sinc and "cosinc" functions.
* spence -- Dilogarithm integral.
* zeta -- Riemann zeta function of two arguments.
* zetac -- 1.0 - standard Riemann zeta function.
Convenience Functions
---------------------
* cbrt -- Cube root.
* exp10 -- 10 raised to the x power.
* exp2 -- 2 raised to the x power.
* radian -- radian angle given degrees, minutes, and seconds.
* cosdg -- cosine of the angle given in degrees.
* sindg -- sine of the angle given in degrees.
* tandg -- tangent of the angle given in degrees.
* cotdg -- cotangent of the angle given in degrees.
* log1p -- log(1+x)
* expm1 -- exp(x)-1
* cosm1 -- cos(x)-1
* round -- round the argument to the nearest integer. If argument ends in 0.5 exactly, pick the nearest even integer.
-------
[+] in the description indicates a function which is not a universal
function and does not follow broadcasting and automatic
array-looping rules.
Error handling
--------------
Errors are handled by returning nans, or other appropriate values.
Some of the special function routines will print an error message
when an error occurs. By default this printing
is disabled. To enable such messages use errprint(1)
To disable such messages use errprint(0).
Example:
>>> print scipy.special.bdtr(-1,10,0.3)
>>> scipy.special.errprint(1)
>>> print scipy.special.bdtr(-1,10,0.3)
"""
__docformat__ = 'restructuredtext'
postpone_import = 1
|