1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
|
# Author: Travis Oliphant, 2002
#
import math
import statlib
import stats
import distributions
from numpy import isscalar, r_, log, sum, around, unique, asarray
from numpy import zeros, arange, sort, amin, amax, any, where, \
atleast_1d, sqrt, ceil, floor, array, poly1d, compress, not_equal, \
pi, exp, ravel, angle
import scipy
import numpy as np
import types
import scipy.optimize as optimize
import scipy.special as special
import futil
from numpy.testing.decorators import setastest
import warnings
__all__ = ['find_repeats',
'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot',
'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot',
'shapiro', 'anderson', 'ansari', 'bartlett', 'levene', 'binom_test',
'fligner', 'mood', 'oneway', 'wilcoxon',
'pdf_moments', 'pdf_fromgamma', 'pdfapprox',
'circmean', 'circvar', 'circstd',
]
def find_repeats(arr):
"""Find repeats in arr and return (repeats, repeat_count)
"""
v1,v2, n = futil.dfreps(arr)
return v1[:n],v2[:n]
##########################################################
### Bayesian confidence intervals for mean, variance, std
##########################################################
## See the paper "A Bayesian perspective on estimating
## mean, variance, and standard-deviation from data" by
## Travis E. Oliphant
## at http://dspace.byu.edu/bitstream/1877/438/1/bayes_mvs.pdf
## (Permanent link at http://hdl.handle.net/1877/438 )
# assume distributions are gaussian with given means and variances.
def _gauss_mvs(x, n, alpha):
xbar = x.mean()
C = x.var()
val = distributions.norm.ppf((1+alpha)/2.0)
# mean is a Gaussian with mean xbar and variance C/n
mp = xbar
fac0 = sqrt(C/n)
term = fac0*val
ma = mp - term
mb = mp + term
# var is a Gaussian with mean C and variance 2*C*C/n
vp = C
fac1 = sqrt(2.0/n)*C
term = fac1*val
va = vp - term
vb = vp + term
# std is a Gaussian with mean sqrt(C) and variance C/(2*n)
st = sqrt(C)
fac2 = sqrt(0.5)*fac0
term = fac2*val
sta = st - term
stb = st + term
return (mp, (ma, mb)), (vp, (va, vb)), (st, (sta, stb))
## Assumes all is known is that mean, and std (variance,axis=0) exist
## and are the same for all the data. Uses Jeffrey's prior
##
## Returns alpha confidence interval for the mean, variance,
## and std.
def bayes_mvs(data,alpha=0.90):
"""Return Bayesian confidence intervals for the mean, var, and std.
Assumes 1-d data all has same mean and variance and uses Jeffrey's prior
for variance and std.
alpha gives the probability that the returned confidence interval contains
the true parameter.
Uses mean of conditional pdf as center estimate
(but centers confidence interval on the median)
Returns (center, (a, b)) for each of mean, variance and standard deviation.
Requires 2 or more data-points.
"""
x = ravel(data)
n = len(x)
assert(n > 1)
assert(alpha < 1 and alpha > 0)
n = float(n)
if (n > 1000): # just a guess. The curves look very similar at this point.
return _gauss_mvs(x, n, alpha)
xbar = x.mean()
C = x.var()
# mean
fac = sqrt(C/(n-1))
tval = distributions.t.ppf((1+alpha)/2.0,n-1)
delta = fac*tval
ma = xbar - delta
mb = xbar + delta
mp = xbar
# var
fac = n*C/2.0
a = (n-1)/2
if (n < 4):
peak = distributions.invgamma.ppf(0.5,a)
else:
peak = 2.0/(n-3.0)
q1 = (1-alpha)/2.0
q2 = (1+alpha)/2.0
va = fac*distributions.invgamma.ppf(q1,a)
vb = fac*distributions.invgamma.ppf(q2,a)
vp = peak*fac
# std
fac = sqrt(fac)
if (n < 3):
peak = distributions.gengamma.ppf(0.5,a,-2)
stp = fac*peak
else:
ndiv2 = (n-1)/2.0
term = special.gammaln(ndiv2-0.5)-special.gammaln(ndiv2)
term += (log(n)+log(C)-log(2.0))*0.5
stp = exp(term)
q1 = (1-alpha)/2.0
q2 = (1+alpha)/2.0
sta = fac*distributions.gengamma.ppf(q1,a,-2)
stb = fac*distributions.gengamma.ppf(q2,a,-2)
return (mp,(ma,mb)),(vp,(va,vb)),(stp,(sta,stb))
################################
## K-Statistic
################################
###
## The n-th k-statistic is the unique symmetric unbiased estimator of
## the n-th cumulant kappa_n
## The cumulants are related to central moments but are specifically defined
## using a power series expansion of the logarithm of the characteristic
## function (which is the Fourier transform of the PDF).
## In particular let phi(t) be the characteristic function, then
## _
## ln phi(t) = > kappa_n (it)^n / n! (sum from n=0 to inf)
## -
##
## The first few cumulants (kappa_n) in terms of central moments (mu_n) are
## kappa_1 = mu_1
## kappa_2 = mu_2
## kappa_3 = mu_3
## kappa_4 = mu_4 - 3*mu_2**2
## kappa_5 = mu_5 - 10*mu_2 * mu_3
##
## Source: http://mathworld.wolfram.com/Cumulant.html
## http://mathworld.wolfram.com/k-Statistic.html
##
def kstat(data,n=2):
"""Return the nth k-statistic (1<=n<=4 so far).
The nth k-statistic is the unique symmetric unbiased estimator of the nth
cumulant kappa_n
"""
if n>4 or n<1:
raise ValueError, "k-statistics only supported for 1<=n<=4"
n = int(n)
S = zeros(n+1,'d')
data = ravel(data)
N = len(data)
for k in range(1,n+1):
S[k] = sum(data**k,axis=0)
if n==1:
return S[1]*1.0/N
elif n==2:
return (N*S[2]-S[1]**2.0)/(N*(N-1.0))
elif n==3:
return (2*S[1]**3 - 3*N*S[1]*S[2]+N*N*S[3]) / (N*(N-1.0)*(N-2.0))
elif n==4:
return (-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 - \
4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) / \
(N*(N-1.0)*(N-2.0)*(N-3.0))
else:
raise ValueError, "Should not be here."
def kstatvar(data,n=2):
"""Returns an unbiased estimator of the variance of the k-statistic: n=1 or 2
"""
data = ravel(data)
N = len(data)
if n==1:
return kstat(data,n=2)*1.0/N
elif n==2:
k2 = kstat(data,n=2)
k4 = kstat(data,n=4)
return (2*k2*k2*N + (N-1)*k4)/(N*(N+1))
else:
raise ValueError, "Only n=1 or n=2 supported."
#__all__ = ['probplot','ppcc_max','ppcc_plot','boxcox','boxcox_llf',
# 'boxcox_normplot','boxcox_normmax','shapiro']
def probplot(x, sparams=(), dist='norm', fit=1, plot=None):
"""Return (osm, osr){,(scale,loc,r)} where (osm, osr) are order statistic
medians and ordered response data respectively so that plot(osm, osr)
is a probability plot. If fit==1, then do a regression fit and compute the
slope (scale), intercept (loc), and correlation coefficient (r), of the
best straight line through the points. If fit==0, only (osm, osr) is
returned.
sparams is a tuple of shape parameter arguments for the distribution.
"""
N = len(x)
Ui = zeros(N)*1.0
Ui[-1] = 0.5**(1.0/N)
Ui[0] = 1-Ui[-1]
i = arange(2,N)
Ui[1:-1] = (i-0.3175)/(N+0.365)
try:
ppf_func = eval('distributions.%s.ppf'%dist)
except AttributeError:
raise dist, "is not a valid distribution with a ppf."
if sparams is None:
sparams = ()
if isscalar(sparams):
sparams = (sparams,)
if not isinstance(sparams,types.TupleType):
sparams = tuple(sparams)
"""
res = inspect.getargspec(ppf_func)
if not ('loc' == res[0][-2] and 'scale' == res[0][-1] and \
0.0==res[-1][-2] and 1.0==res[-1][-1]):
raise ValueError, "Function has does not have default location", \
"and scale parameters\n that are 0.0 and 1.0 respectively."
if (len(sparams) < len(res[0])-len(res[-1])-1) or \
(len(sparams) > len(res[0])-3):
raise ValueError, "Incorrect number of shape parameters."
"""
osm = ppf_func(Ui,*sparams)
osr = sort(x)
if fit or (plot is not None):
# perform a linear fit.
slope, intercept, r, prob, sterrest = stats.linregress(osm,osr)
if plot is not None:
plot.plot(osm, osr, 'o', osm, slope*osm + intercept)
plot.title('Probability Plot')
plot.xlabel('Order Statistic Medians')
plot.ylabel('Ordered Values')
xmin,xmax= amin(osm),amax(osm)
ymin,ymax= amin(x),amax(x)
posx,posy = xmin+0.70*(xmax-xmin), ymin+0.01*(ymax-ymin)
#plot.addtext("r^2^=%1.4f" % r, xy=pos,tosys=1)
plot.text(posx,posy, "r^2=%1.4f" % r)
if fit:
return (osm, osr), (slope, intercept, r)
else:
return osm, osr
def ppcc_max(x, brack=(0.0,1.0), dist='tukeylambda'):
"""Returns the shape parameter that maximizes the probability plot
correlation coefficient for the given data to a one-parameter
family of distributions.
See also ppcc_plot
"""
try:
ppf_func = eval('distributions.%s.ppf'%dist)
except AttributeError:
raise dist, "is not a valid distribution with a ppf."
"""
res = inspect.getargspec(ppf_func)
if not ('loc' == res[0][-2] and 'scale' == res[0][-1] and \
0.0==res[-1][-2] and 1.0==res[-1][-1]):
raise ValueError, "Function has does not have default location", \
"and scale parameters\n that are 0.0 and 1.0 respectively."
if (1 < len(res[0])-len(res[-1])-1) or \
(1 > len(res[0])-3):
raise ValueError, "Must be a one-parameter family."
"""
N = len(x)
# compute uniform median statistics
Ui = zeros(N)*1.0
Ui[-1] = 0.5**(1.0/N)
Ui[0] = 1-Ui[-1]
i = arange(2,N)
Ui[1:-1] = (i-0.3175)/(N+0.365)
osr = sort(x)
# this function computes the x-axis values of the probability plot
# and computes a linear regression (including the correlation)
# and returns 1-r so that a minimization function maximizes the
# correlation
def tempfunc(shape, mi, yvals, func):
xvals = func(mi, shape)
r, prob = stats.pearsonr(xvals, yvals)
return 1-r
return optimize.brent(tempfunc, brack=brack, args=(Ui, osr, ppf_func))
def ppcc_plot(x,a,b,dist='tukeylambda', plot=None, N=80):
"""Returns (shape, ppcc), and optionally plots shape vs. ppcc
(probability plot correlation coefficient) as a function of shape
parameter for a one-parameter family of distributions from shape
value a to b.
See also ppcc_max
"""
svals = r_[a:b:complex(N)]
ppcc = svals*0.0
k=0
for sval in svals:
r1,r2 = probplot(x,sval,dist=dist,fit=1)
ppcc[k] = r2[-1]
k += 1
if plot is not None:
plot.plot(svals, ppcc, 'x')
plot.title('(%s) PPCC Plot' % dist)
plot.xlabel('Prob Plot Corr. Coef.')#,deltay=-0.01)
plot.ylabel('Shape Values')#,deltax=-0.01)
return svals, ppcc
def boxcox_llf(lmb, data):
"""The boxcox log-likelihood function.
"""
N = len(data)
y = boxcox(data,lmb)
my = stats.mean(y)
f = (lmb-1)*sum(log(data),axis=0)
f -= N/2.0*log(sum((y-my)**2.0/N,axis=0))
return f
def _boxcox_conf_interval(x, lmax, alpha):
# Need to find the lambda for which
# f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1
fac = 0.5*distributions.chi2.ppf(1-alpha,1)
target = boxcox_llf(lmax,x)-fac
def rootfunc(lmbda,data,target):
return boxcox_llf(lmbda,data) - target
# Find positive endpont
newlm = lmax+0.5
N = 0
while (rootfunc(newlm,x,target) > 0.0) and (N < 500):
newlm += 0.1
N +=1
if (N==500):
raise RuntimeError, "Could not find endpoint."
lmplus = optimize.brentq(rootfunc,lmax,newlm,args=(x,target))
newlm = lmax-0.5
N = 0
while (rootfunc(newlm,x,target) > 0.0) and (N < 500):
newlm += 0.1
N +=1
if (N==500):
raise RuntimeError, "Could not find endpoint."
lmminus = optimize.brentq(rootfunc,newlm,lmax,args=(x,target))
return lmminus,lmplus
def boxcox(x,lmbda=None,alpha=None):
"""Return a positive dataset tranformed by a Box-Cox power transformation.
If lmbda is not None, do the transformation for that value.
If lmbda is None, find the lambda that maximizes the log-likelihood
function and return it as the second output argument.
If alpha is not None, return the 100(1-alpha)% confidence interval for
lambda as the third output argument.
"""
if any(x < 0):
raise ValueError, "Data must be positive."
if lmbda is not None: # single transformation
lmbda = lmbda*(x==x)
y = where(lmbda == 0, log(x), (x**lmbda - 1)/lmbda)
return y
# Otherwise find the lmbda that maximizes the log-likelihood function.
def tempfunc(lmb, data): # function to minimize
return -boxcox_llf(lmb,data)
lmax = optimize.brent(tempfunc, brack=(-2.0,2.0),args=(x,))
y = boxcox(x, lmax)
if alpha is None:
return y, lmax
# Otherwise find confidence interval
interval = _boxcox_conf_interval(x, lmax, alpha)
return y, lmax, interval
def boxcox_normmax(x,brack=(-1.0,1.0)):
N = len(x)
# compute uniform median statistics
Ui = zeros(N)*1.0
Ui[-1] = 0.5**(1.0/N)
Ui[0] = 1-Ui[-1]
i = arange(2,N)
Ui[1:-1] = (i-0.3175)/(N+0.365)
# this function computes the x-axis values of the probability plot
# and computes a linear regression (including the correlation)
# and returns 1-r so that a minimization function maximizes the
# correlation
xvals = distributions.norm.ppf(Ui)
def tempfunc(lmbda, xvals, samps):
y = boxcox(samps,lmbda)
yvals = sort(y)
r, prob = stats.pearsonr(xvals, yvals)
return 1-r
return optimize.brent(tempfunc, brack=brack, args=(xvals, x))
def boxcox_normplot(x,la,lb,plot=None,N=80):
svals = r_[la:lb:complex(N)]
ppcc = svals*0.0
k = 0
for sval in svals:
#JP: this doesn't use sval, creates constant ppcc, and horizontal line
z = boxcox(x,sval) #JP: this was missing
r1,r2 = probplot(z,dist='norm',fit=1)
ppcc[k] = r2[-1]
k +=1
if plot is not None:
plot.plot(svals, ppcc, 'x')
plot.title('Box-Cox Normality Plot')
plot.xlabel('Prob Plot Corr. Coef.')
plot.ylabel('Transformation parameter')
return svals, ppcc
def shapiro(x,a=None,reta=0):
"""Shapiro and Wilk test for normality.
Given random variates x, compute the W statistic and its p-value
for a normality test.
If p-value is high, one cannot reject the null hypothesis of normality
with this test. P-value is probability that the W statistic is
as low as it is if the samples are actually from a normal distribution.
Output: W statistic and its p-value
if reta is nonzero then also return the computed "a" values
as the third output. If these are known for a given size
they can be given as input instead of computed internally.
"""
N = len(x)
if N < 3:
raise ValueError, "Data must be at least length 3."
if a is None:
a = zeros(N,'f')
init = 0
else:
assert(len(a) == N/2), "a must be == len(x)/2"
init = 1
y = sort(x)
a,w,pw,ifault = statlib.swilk(y,a[:N/2],init)
if not ifault in [0,2]:
warnings.warn(str(ifault))
if N > 5000:
warnings.warn("p-value may not be accurate for N > 5000.")
if reta:
return w, pw, a
else:
return w, pw
# Values from Stephens, M A, "EDF Statistics for Goodness of Fit and
# Some Comparisons", Journal of he American Statistical
# Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737
_Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092])
_Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957])
# From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution",
# Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588.
_Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038])
# From Stephens, M A, "Tests of Fit for the Logistic Distribution Based
# on the Empirical Distribution Function.", Biometrika,
# Vol. 66, Issue 3, Dec. 1979, pp 591-595.
_Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010])
def anderson(x,dist='norm'):
"""Anderson and Darling test for normal, exponential, or Gumbel
(Extreme Value Type I) distribution.
Given samples x, return A2, the Anderson-Darling statistic,
the significance levels in percentages, and the corresponding
critical values.
Critical values provided are for the following significance levels
norm/expon: 15%, 10%, 5%, 2.5%, 1%
Gumbel: 25%, 10%, 5%, 2.5%, 1%
logistic: 25%, 10%, 5%, 2.5%, 1%, 0.5%
If A2 is larger than these critical values then for that significance
level, the hypothesis that the data come from a normal (exponential)
can be rejected.
"""
if not dist in ['norm','expon','gumbel','extreme1','logistic']:
raise ValueError, "Invalid distribution."
y = sort(x)
xbar = stats.mean(x)
N = len(y)
if dist == 'norm':
s = stats.std(x)
w = (y-xbar)/s
z = distributions.norm.cdf(w)
sig = array([15,10,5,2.5,1])
critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N),3)
elif dist == 'expon':
w = y / xbar
z = distributions.expon.cdf(w)
sig = array([15,10,5,2.5,1])
critical = around(_Avals_expon / (1.0 + 0.6/N),3)
elif dist == 'logistic':
def rootfunc(ab,xj,N):
a,b = ab
tmp = (xj-a)/b
tmp2 = exp(tmp)
val = [sum(1.0/(1+tmp2),axis=0)-0.5*N,
sum(tmp*(1.0-tmp2)/(1+tmp2),axis=0)+N]
return array(val)
sol0=array([xbar,stats.std(x)])
sol = optimize.fsolve(rootfunc,sol0,args=(x,N),xtol=1e-5)
w = (y-sol[0])/sol[1]
z = distributions.logistic.cdf(w)
sig = array([25,10,5,2.5,1,0.5])
critical = around(_Avals_logistic / (1.0+0.25/N),3)
else:
def fixedsolve(th,xj,N):
val = stats.sum(xj)*1.0/N
tmp = exp(-xj/th)
term = sum(xj*tmp,axis=0)
term /= sum(tmp,axis=0)
return val - term
s = optimize.fixed_point(fixedsolve, 1.0, args=(x,N),xtol=1e-5)
xbar = -s*log(sum(exp(-x/s),axis=0)*1.0/N)
w = (y-xbar)/s
z = distributions.gumbel_l.cdf(w)
sig = array([25,10,5,2.5,1])
critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)),3)
i = arange(1,N+1)
S = sum((2*i-1.0)/N*(log(z)+log(1-z[::-1])),axis=0)
A2 = -N-S
return A2, critical, sig
def _find_repeats(arr):
"""Find repeats in the array and return (repeats, repeat_count)
"""
arr = sort(arr)
lastval = arr[0]
howmany = 0
ind = 1
N = len(arr)
repeat = 0
replist = []
repnum = []
while ind < N:
if arr[ind] != lastval:
if repeat:
repnum.append(howmany+1)
repeat = 0
howmany = 0
else:
howmany += 1
repeat = 1
if (howmany == 1):
replist.append(arr[ind])
lastval = arr[ind]
ind += 1
if repeat:
repnum.append(howmany+1)
return replist, repnum
def ansari(x,y):
"""Determine if the scale parameter for two distributions with equal
medians is the same using the Ansari-Bradley statistic.
Specifically, compute the AB statistic and the probability of error
that the null hypothesis is true but rejected with the computed
statistic as the critical value.
One can reject the null hypothesis that the ratio of variances is 1 if
returned probability of error is small (say < 0.05)
"""
x,y = asarray(x),asarray(y)
n = len(x)
m = len(y)
if (m < 1):
raise ValueError, "Not enough other observations."
if (n < 1):
raise ValueError, "Not enough test observations."
N = m+n
xy = r_[x,y] # combine
rank = stats.rankdata(xy)
symrank = amin(array((rank,N-rank+1)),0)
AB = sum(symrank[:n],axis=0)
uxy = unique(xy)
repeats = (len(uxy) != len(xy))
exact = ((m<55) and (n<55) and not repeats)
if repeats and ((m < 55) or (n < 55)):
warnings.warn("Ties preclude use of exact statistic.")
if exact:
astart, a1, ifault = statlib.gscale(n,m)
ind = AB-astart
total = sum(a1,axis=0)
if ind < len(a1)/2.0:
cind = int(ceil(ind))
if (ind == cind):
pval = 2.0*sum(a1[:cind+1],axis=0)/total
else:
pval = 2.0*sum(a1[:cind],axis=0)/total
else:
find = int(floor(ind))
if (ind == floor(ind)):
pval = 2.0*sum(a1[find:],axis=0)/total
else:
pval = 2.0*sum(a1[find+1:],axis=0)/total
return AB, min(1.0,pval)
# otherwise compute normal approximation
if N % 2: # N odd
mnAB = n*(N+1.0)**2 / 4.0 / N
varAB = n*m*(N+1.0)*(3+N**2)/(48.0*N**2)
else:
mnAB = n*(N+2.0)/4.0
varAB = m*n*(N+2)*(N-2.0)/48/(N-1.0)
if repeats: # adjust variance estimates
# compute sum(tj * rj**2,axis=0)
fac = sum(symrank**2,axis=0)
if N % 2: # N odd
varAB = m*n*(16*N*fac-(N+1)**4)/(16.0 * N**2 * (N-1))
else: # N even
varAB = m*n*(16*fac-N*(N+2)**2)/(16.0 * N * (N-1))
z = (AB - mnAB)/sqrt(varAB)
pval = (1-distributions.norm.cdf(abs(z)))*2.0
return AB, pval
def bartlett(*args):
"""Perform Bartlett test with the null hypothesis that all input samples
have equal variances.
Inputs are sample vectors: bartlett(x,y,z,...)
Outputs: (T, pval)
T -- the Test statistic
pval -- significance level if null is rejected with this value of T
(prob. that null is true but rejected with this p-value.)
Sensitive to departures from normality. The Levene test is
an alternative that is less sensitive to departures from
normality.
References:
http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm
Snedecor, George W. and Cochran, William G. (1989), Statistical
Methods, Eighth Edition, Iowa State University Press.
"""
k = len(args)
if k < 2:
raise ValueError, "Must enter at least two input sample vectors."
Ni = zeros(k)
ssq = zeros(k,'d')
for j in range(k):
Ni[j] = len(args[j])
ssq[j] = stats.var(args[j])
Ntot = sum(Ni,axis=0)
spsq = sum((Ni-1)*ssq,axis=0)/(1.0*(Ntot-k))
numer = (Ntot*1.0-k)*log(spsq) - sum((Ni-1.0)*log(ssq),axis=0)
denom = 1.0 + (1.0/(3*(k-1)))*((sum(1.0/(Ni-1.0),axis=0))-1.0/(Ntot-k))
T = numer / denom
pval = distributions.chi2.sf(T,k-1) # 1 - cdf
return T, pval
def levene(*args,**kwds):
"""Perform Levene test with the null hypothesis that all input samples
have equal variances.
Inputs are sample vectors: bartlett(x,y,z,...)
One keyword input, center, can be used with values
center = 'mean', center='median' (default), center='trimmed'
center='median' is recommended for skewed (non-normal) distributions
center='mean' is recommended for symmetric, moderate-tailed, dist.
center='trimmed' is recommended for heavy-tailed distributions.
Outputs: (W, pval)
W -- the Test statistic
pval -- significance level if null is rejected with this value of W
(prob. that null is true but rejected with this p-value.)
References:
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
Levene, H. (1960). In Contributions to Probability and Statistics:
Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,
Stanford University Press, pp. 278-292.
Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
Statistical Association, 69, 364-367
"""
k = len(args)
if k < 2:
raise ValueError, "Must enter at least two input sample vectors."
Ni = zeros(k)
Yci = zeros(k,'d')
if 'center' in kwds.keys():
center = kwds['center']
else:
center = 'median'
if not center in ['mean','median','trimmed']:
raise ValueError, "Keyword argument <center> must be 'mean', 'median'"\
+ "or 'trimmed'."
if center == 'median':
func = stats.median
elif center == 'mean':
func = stats.mean
else:
func = stats.trim_mean
for j in range(k):
Ni[j] = len(args[j])
Yci[j] = func(args[j])
Ntot = sum(Ni,axis=0)
# compute Zij's
Zij = [None]*k
for i in range(k):
Zij[i] = abs(asarray(args[i])-Yci[i])
# compute Zbari
Zbari = zeros(k,'d')
Zbar = 0.0
for i in range(k):
Zbari[i] = stats.mean(Zij[i])
Zbar += Zbari[i]*Ni[i]
Zbar /= Ntot
numer = (Ntot-k)*sum(Ni*(Zbari-Zbar)**2,axis=0)
# compute denom_variance
dvar = 0.0
for i in range(k):
dvar += sum((Zij[i]-Zbari[i])**2,axis=0)
denom = (k-1.0)*dvar
W = numer / denom
pval = distributions.f.sf(W,k-1,Ntot-k) # 1 - cdf
return W, pval
@setastest(False)
def binom_test(x,n=None,p=0.5):
"""An exact (two-sided) test of the null hypothesis that the
probability of success in a Bernoulli experiment is p.
Inputs:
x -- Number of successes (or a vector of length 2 giving the
number of successes and number of failures respectively)
n -- Number of trials (ignored if x has length 2)
p -- Hypothesized probability of success
Returns pval -- Probability that null test is rejected for this set
of x and n even though it is true.
"""
x = atleast_1d(x).astype(np.integer)
if len(x) == 2:
n = x[1]+x[0]
x = x[0]
elif len(x) == 1:
x = x[0]
if n is None or n < x:
raise ValueError, "n must be >= x"
n = np.int_(n)
else:
raise ValueError, "Incorrect length for x."
if (p > 1.0) or (p < 0.0):
raise ValueError, "p must be in range [0,1]"
d = distributions.binom.pmf(x,n,p)
rerr = 1+1e-7
if (x < p*n):
i = arange(x+1,n+1)
y = sum(distributions.binom.pmf(i,n,p) <= d*rerr,axis=0)
pval = distributions.binom.cdf(x,n,p) + distributions.binom.sf(n-y,n,p)
else:
i = arange(0,x)
y = sum(distributions.binom.pmf(i,n,p) <= d*rerr,axis=0)
pval = distributions.binom.cdf(y-1,n,p) + distributions.binom.sf(x-1,n,p)
return min(1.0,pval)
def _apply_func(x,g,func):
# g is list of indices into x
# separating x into different groups
# func should be applied over the groups
g = unique(r_[0,g,len(x)])
output = []
for k in range(len(g)-1):
output.append(func(x[g[k]:g[k+1]]))
return asarray(output)
def fligner(*args,**kwds):
"""Perform Levene test with the null hypothesis that all input samples
have equal variances.
Inputs are sample vectors: bartlett(x,y,z,...)
One keyword input, center, can be used with values
center = 'mean', center='median' (default), center='trimmed'
Outputs: (Xsq, pval)
Xsq -- the Test statistic
pval -- significance level if null is rejected with this value of X
(prob. that null is true but rejected with this p-value.)
References:
http://www.stat.psu.edu/~bgl/center/tr/TR993.ps
Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample
tests for scale. 'Journal of the American Statistical Association.'
71(353), 210-213.
"""
k = len(args)
if k < 2:
raise ValueError, "Must enter at least two input sample vectors."
if 'center' in kwds.keys():
center = kwds['center']
else:
center = 'median'
if not center in ['mean','median','trimmed']:
raise ValueError, "Keyword argument <center> must be 'mean', 'median'"\
+ "or 'trimmed'."
if center == 'median':
func = stats.median
elif center == 'mean':
func = stats.mean
else:
func = stats.trim_mean
Ni = asarray([len(args[j]) for j in range(k)])
Yci = asarray([func(args[j]) for j in range(k)])
Ntot = sum(Ni,axis=0)
# compute Zij's
Zij = [abs(asarray(args[i])-Yci[i]) for i in range(k)]
allZij = []
g = [0]
for i in range(k):
allZij.extend(list(Zij[i]))
g.append(len(allZij))
a = distributions.norm.ppf(stats.rankdata(allZij)/(2*(Ntot+1.0)) + 0.5)
# compute Aibar
Aibar = _apply_func(a,g,sum) / Ni
anbar = stats.mean(a)
varsq = stats.var(a)
Xsq = sum(Ni*(asarray(Aibar)-anbar)**2.0,axis=0)/varsq
pval = distributions.chi2.sf(Xsq,k-1) # 1 - cdf
return Xsq, pval
def mood(x,y):
"""Determine if the scale parameter for two distributions with equal
medians is the same using a Mood test.
Specifically, compute the z statistic and the probability of error
that the null hypothesis is true but rejected with the computed
statistic as the critical value.
One can reject the null hypothesis that the ratio of scale parameters is
1 if the returned probability of error is small (say < 0.05)
"""
n = len(x)
m = len(y)
xy = r_[x,y]
N = m+n
if (N < 3):
raise ValueError, "Not enough observations."
ranks = stats.rankdata(xy)
Ri = ranks[:n]
M = sum((Ri - (N+1.0)/2)**2,axis=0)
# Approx stat.
mnM = n*(N*N-1.0)/12
varM = m*n*(N+1.0)*(N+2)*(N-2)/180
z = (M-mnM)/sqrt(varM)
p = distributions.norm.cdf(z)
pval = 2*min(p,1-p)
return z, pval
def oneway(*args,**kwds):
"""Test for equal means in two or more samples from the
normal distribution.
If the keyword parameter <equal_var> is true then the variances
are assumed to be equal, otherwise they are not assumed to
be equal (default).
Return test statistic and the p-value giving the probability
of error if the null hypothesis (equal means) is rejected at this value.
"""
k = len(args)
if k < 2:
raise ValueError, "Must enter at least two input sample vectors."
if 'equal_var' in kwds.keys():
if kwds['equal_var']: evar = 1
else: evar = 0
else:
evar = 0
Ni = array([len(args[i]) for i in range(k)])
Mi = array([stats.mean(args[i]) for i in range(k)])
Vi = array([stats.var(args[i]) for i in range(k)])
Wi = Ni / Vi
swi = sum(Wi,axis=0)
N = sum(Ni,axis=0)
my = sum(Mi*Ni,axis=0)*1.0/N
tmp = sum((1-Wi/swi)**2 / (Ni-1.0),axis=0)/(k*k-1.0)
if evar:
F = ((sum(Ni*(Mi-my)**2,axis=0) / (k-1.0)) / (sum((Ni-1.0)*Vi,axis=0) / (N-k)))
pval = distributions.f.sf(F,k-1,N-k) # 1-cdf
else:
m = sum(Wi*Mi,axis=0)*1.0/swi
F = sum(Wi*(Mi-m)**2,axis=0) / ((k-1.0)*(1+2*(k-2)*tmp))
pval = distributions.f.sf(F,k-1.0,1.0/(3*tmp))
return F, pval
def wilcoxon(x,y=None):
"""
Calculates the Wilcoxon signed-rank test for the null hypothesis that two
samples come from the same distribution. A non-parametric T-test.
(need N > 20)
Returns: t-statistic, two-tailed p-value
"""
if y is None:
d = x
else:
x, y = map(asarray, (x, y))
if len(x) <> len(y):
raise ValueError, 'Unequal N in wilcoxon. Aborting.'
d = x-y
d = compress(not_equal(d,0),d,axis=-1) # Keep all non-zero differences
count = len(d)
if (count < 10):
warnings.warn("Warning: sample size too small for normal approximation.")
r = stats.rankdata(abs(d))
r_plus = sum((d > 0)*r,axis=0)
r_minus = sum((d < 0)*r,axis=0)
T = min(r_plus, r_minus)
mn = count*(count+1.0)*0.25
se = math.sqrt(count*(count+1)*(2*count+1.0)/24)
if (len(r) != len(unique(r))): # handle ties in data
replist, repnum = find_repeats(r)
corr = 0.0
for i in range(len(replist)):
si = repnum[i]
corr += 0.5*si*(si*si-1.0)
V = se*se - corr
se = sqrt((count*V - T*T)/(count-1.0))
z = (T - mn)/se
prob = 2*(1.0 -stats.zprob(abs(z)))
return T, prob
def _hermnorm(N):
# return the negatively normalized hermite polynomials up to order N-1
# (inclusive)
# using the recursive relationship
# p_n+1 = p_n(x)' - x*p_n(x)
# and p_0(x) = 1
plist = [None]*N
plist[0] = poly1d(1)
for n in range(1,N):
plist[n] = plist[n-1].deriv() - poly1d([1,0])*plist[n-1]
return plist
def pdf_moments(cnt):
"""Return the Gaussian expanded pdf function given the list of central
moments (first one is mean).
"""
N = len(cnt)
if N < 2:
raise ValueError, "At least two moments must be given to" + \
"approximate the pdf."
totp = poly1d(1)
sig = sqrt(cnt[1])
mu = cnt[0]
if N > 2:
Dvals = _hermnorm(N+1)
for k in range(3,N+1):
# Find Ck
Ck = 0.0
for n in range((k-3)/2):
m = k-2*n
if m % 2: # m is odd
momdiff = cnt[m-1]
else:
momdiff = cnt[m-1] - sig*sig*scipy.factorial2(m-1)
Ck += Dvals[k][m] / sig**m * momdiff
# Add to totp
totp = totp + Ck*Dvals[k]
def thisfunc(x):
xn = (x-mu)/sig
return totp(xn)*exp(-xn*xn/2.0)/sqrt(2*pi)/sig
return thisfunc
def pdf_fromgamma(g1,g2,g3=0.0,g4=None):
if g4 is None:
g4 = 3*g2*g2
sigsq = 1.0/g2
sig = sqrt(sigsq)
mu = g1*sig**3.0
p12 = _hermnorm(13)
for k in range(13):
p12[k] = p12[k]/sig**k
# Add all of the terms to polynomial
totp = p12[0] - (g1/6.0*p12[3]) + \
(g2/24.0*p12[4] +g1*g1/72.0*p12[6]) - \
(g3/120.0*p12[5] + g1*g2/144.0*p12[7] + g1**3.0/1296.0*p12[9]) + \
(g4/720*p12[6] + (g2*g2/1152.0+g1*g3/720)*p12[8] +
g1*g1*g2/1728.0*p12[10] + g1**4.0/31104.0*p12[12])
# Final normalization
totp = totp / sqrt(2*pi)/sig
def thefunc(x):
xn = (x-mu)/sig
return totp(xn)*exp(-xn*xn/2.0)
return thefunc
def pdfapprox(samples):
"""Return a function that approximates the pdf of a set of samples
using a Gaussian expansion computed from the mean, variance, skewness
and Fisher's kurtosis.
"""
# Estimate mean, variance, skewness and kurtosis
mu,sig,sk,kur = stats.describe(samples)[2:]
# Get central moments
cnt = [None]*4
cnt[0] = mu
cnt[1] = sig*sig
cnt[2] = sk * sig**1.5
cnt[3] = (kur+3.0) * sig**2.0
return pdf_moments(cnt)
#g2 = (1.0/sig)**2.0
#g1 = mu / sig**3.0
#g3 = sk / sig**3.5
#g4 = (kur+3.0) / sig**4.0
#return pdf_fromgamma(g1, g2, g3, g4)
def circmean(samples, high=2*pi, low=0):
"""Compute the circular mean for samples assumed to be in the range [low to high]
"""
ang = (samples - low)*2*pi / (high-low)
res = angle(stats.mean(exp(1j*ang)))
if (res < 0):
res = res + 2*pi
return res*(high-low)/2.0/pi + low
def circvar(samples, high=2*pi, low=0):
"""Compute the circular variance for samples assumed to be in the range [low to high]
"""
ang = (samples - low)*2*pi / (high-low)
res = stats.mean(exp(1j*ang))
V = 1-abs(res)
return ((high-low)/2.0/pi)**2 * V
def circstd(samples, high=2*pi, low=0):
"""Compute the circular standard deviation for samples assumed to be in the range [low to high]
"""
ang = (samples - low)*2*pi / (high-low)
res = stats.mean(exp(1j*ang))
V = 1-abs(res)
return ((high-low)/2.0/pi) * sqrt(V)
#Tests to include (from R) -- some of these already in stats.
########
#X Ansari-Bradley
#X Bartlett (and Levene)
#X Binomial
#Y Pearson's Chi-squared (stats.chisquare)
#Y Association Between Paired samples (stats.pearsonr, stats.spearmanr)
# stats.kendalltau) -- these need work though
# Fisher's exact test
#X Fligner-Killeen Test
#Y Friedman Rank Sum (stats.friedmanchisquare?)
#Y Kruskal-Wallis
#Y Kolmogorov-Smirnov
# Cochran-Mantel-Haenszel Chi-Squared for Count
# McNemar's Chi-squared for Count
#X Mood Two-Sample
#X Test For Equal Means in One-Way Layout (see stats.ttest also)
# Pairwise Comparisons of proportions
# Pairwise t tests
# Tabulate p values for pairwise comparisons
# Pairwise Wilcoxon rank sum tests
# Power calculations two sample test of prop.
# Power calculations for one and two sample t tests
# Equal or Given Proportions
# Trend in Proportions
# Quade Test
#Y Student's T Test
#Y F Test to compare two variances
#XY Wilcoxon Rank Sum and Signed Rank Tests
|