1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
"""
Additional statistics functions, with support to MA.
:author: Pierre GF Gerard-Marchant
:contact: pierregm_at_uga_edu
:date: $Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $
:version: $Id: morestats.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
__author__ = "Pierre GF Gerard-Marchant"
__docformat__ = "restructuredtext en"
__all__ = ['compare_medians_ms',
'hdquantiles', 'hdmedian', 'hdquantiles_sd',
'idealfourths',
'median_cihs','mjci','mquantiles_cimj',
'rsh',
'trimmed_mean_ci',]
import numpy as np
from numpy import float_, int_, ndarray
import numpy.ma as ma
from numpy.ma import MaskedArray
import mstats_basic as mstats
from scipy.stats.distributions import norm, beta, t, binom
#####--------------------------------------------------------------------------
#---- --- Quantiles ---
#####--------------------------------------------------------------------------
def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
"""Computes quantile estimates with the Harrell-Davis method, where the estimates
are calculated as a weighted linear combination of order statistics.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
var : boolean
Whether to return the variance of the estimate.
Returns
-------
A (p,) array of quantiles (if ``var`` is False), or a (2,p) array of quantiles
and variances (if ``var`` is True), where ``p`` is the number of quantiles.
Notes
-----
The function is restricted to 2D arrays.
"""
def _hd_1D(data,prob,var):
"Computes the HD quantiles for a 1D array. Returns nan for invalid data."
xsorted = np.squeeze(np.sort(data.compressed().view(ndarray)))
# Don't use length here, in case we have a numpy scalar
n = xsorted.size
#.........
hd = np.empty((2,len(prob)), float_)
if n < 2:
hd.flat = np.nan
if var:
return hd
return hd[0]
#.........
v = np.arange(n+1) / float(n)
betacdf = beta.cdf
for (i,p) in enumerate(prob):
_w = betacdf(v, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
hd_mean = np.dot(w, xsorted)
hd[0,i] = hd_mean
#
hd[1,i] = np.dot(w, (xsorted-hd_mean)**2)
#
hd[0, prob == 0] = xsorted[0]
hd[0, prob == 1] = xsorted[-1]
if var:
hd[1, prob == 0] = hd[1, prob == 1] = np.nan
return hd
return hd[0]
# Initialization & checks ---------
data = ma.array(data, copy=False, dtype=float_)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None) or (data.ndim == 1):
result = _hd_1D(data, p, var)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = ma.apply_along_axis(_hd_1D, axis, data, p, var)
#
return ma.fix_invalid(result, copy=False)
#..............................................................................
def hdmedian(data, axis=-1, var=False):
"""Returns the Harrell-Davis estimate of the median along the given axis.
Parameters
----------
data: ndarray
Data array.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
var : boolean
Whether to return the variance of the estimate.
"""
result = hdquantiles(data,[0.5], axis=axis, var=var)
return result.squeeze()
#..............................................................................
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
"""Computes the standard error of the Harrell-Davis quantile estimates by jackknife.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
Notes
-----
The function is restricted to 2D arrays.
"""
def _hdsd_1D(data,prob):
"Computes the std error for 1D arrays."
xsorted = np.sort(data.compressed())
n = len(xsorted)
#.........
hdsd = np.empty(len(prob), float_)
if n < 2:
hdsd.flat = np.nan
#.........
vv = np.arange(n) / float(n-1)
betacdf = beta.cdf
#
for (i,p) in enumerate(prob):
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
w = _w[1:] - _w[:-1]
mx_ = np.fromiter([np.dot(w,xsorted[np.r_[range(0,k),
range(k+1,n)].astype(int_)])
for k in range(n)], dtype=float_)
mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
return hdsd
# Initialization & checks ---------
data = ma.array(data, copy=False, dtype=float_)
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _hdsd_1D(data, p)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
#
return ma.fix_invalid(result, copy=False).ravel()
#####--------------------------------------------------------------------------
#---- --- Confidence intervals ---
#####--------------------------------------------------------------------------
def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True),
alpha=0.05, axis=None):
"""Returns the selected confidence interval of the trimmed mean along the
given axis.
Parameters
----------
data : sequence
Input data. The data is transformed to a masked array
proportiontocut : float
Proportion of the data to cut from each side of the data .
As a result, (2*proportiontocut*n) values are actually trimmed.
alpha : float
Confidence level of the intervals.
inclusive : tuple of boolean
If relative==False, tuple indicating whether values exactly equal to the
absolute limits are allowed.
If relative==True, tuple indicating whether the number of data being masked
on each side should be rounded (True) or truncated (False).
axis : int
Axis along which to cut. If None, uses a flattened version of the input.
"""
data = ma.array(data, copy=False)
trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis)
tmean = trimmed.mean(axis)
tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis)
df = trimmed.count(axis) - 1
tppf = t.ppf(1-alpha/2.,df)
return np.array((tmean - tppf*tstde, tmean+tppf*tstde))
#..............................................................................
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
"""Returns the Maritz-Jarrett estimators of the standard error of selected
experimental quantiles of the data.
Parameters
-----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
axis : int
Axis along which to compute the quantiles. If None, use a flattened array.
"""
def _mjci_1D(data, p):
data = np.sort(data.compressed())
n = data.size
prob = (np.array(p) * n + 0.5).astype(int_)
betacdf = beta.cdf
#
mj = np.empty(len(prob), float_)
x = np.arange(1,n+1, dtype=float_) / n
y = x - 1./n
for (i,m) in enumerate(prob):
(m1,m2) = (m-1, n-m)
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
C1 = np.dot(W,data)
C2 = np.dot(W,data**2)
mj[i] = np.sqrt(C2 - C1**2)
return mj
#
data = ma.array(data, copy=False)
assert data.ndim <= 2, "Array should be 2D at most !"
p = np.array(prob, copy=False, ndmin=1)
# Computes quantiles along axis (or globally)
if (axis is None):
return _mjci_1D(data, p)
else:
return ma.apply_along_axis(_mjci_1D, axis, data, p)
#..............................................................................
def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
"""Computes the alpha confidence interval for the selected quantiles of the
data, with Maritz-Jarrett estimators.
Parameters
----------
data: ndarray
Data array.
prob: sequence
Sequence of quantiles to compute.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles. If None, use a flattened array.
"""
alpha = min(alpha, 1-alpha)
z = norm.ppf(1-alpha/2.)
xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis)
smj = mjci(data, prob, axis=axis)
return (xq - z * smj, xq + z * smj)
#.............................................................................
def median_cihs(data, alpha=0.05, axis=None):
"""Computes the alpha-level confidence interval for the median of the data,
following the Hettmasperger-Sheather method.
Parameters
----------
data : sequence
Input data. Masked values are discarded. The input should be 1D only, or
axis should be set to None.
alpha : float
Confidence level of the intervals.
axis : integer
Axis along which to compute the quantiles. If None, use a flattened array.
"""
def _cihs_1D(data, alpha):
data = np.sort(data.compressed())
n = len(data)
alpha = min(alpha, 1-alpha)
k = int(binom._ppf(alpha/2., n, 0.5))
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
if gk < 1-alpha:
k -= 1
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
I = (gk - 1 + alpha)/(gk - gkk)
lambd = (n-k) * I / float(k + (n-2*k)*I)
lims = (lambd*data[k] + (1-lambd)*data[k-1],
lambd*data[n-k-1] + (1-lambd)*data[n-k])
return lims
data = ma.rray(data, copy=False)
# Computes quantiles along axis (or globally)
if (axis is None):
result = _cihs_1D(data.compressed(), alpha)
else:
assert data.ndim <= 2, "Array should be 2D at most !"
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)
#
return result
#..............................................................................
def compare_medians_ms(group_1, group_2, axis=None):
"""Compares the medians from two independent groups along the given axis.
The comparison is performed using the McKean-Schrader estimate of the standard
error of the medians.
Parameters
----------
group_1 : {sequence}
First dataset.
group_2 : {sequence}
Second dataset.
axis : {integer}
Axis along which the medians are estimated. If None, the arrays are flattened.
Returns
-------
A (p,) array of comparison values.
"""
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
mstats.stde_median(group_2, axis=axis))
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
return 1 - norm.cdf(W)
def idealfourths(data, axis=None):
"""Returns an estimate of the lower and upper quartiles of the data along
the given axis, as computed with the ideal fourths.
"""
def _idf(data):
x = data.compressed()
n = len(x)
if n < 3:
return [np.nan,np.nan]
(j,h) = divmod(n/4. + 5/12.,1)
qlo = (1-h)*x[j-1] + h*x[j]
k = n - j
qup = (1-h)*x[k] + h*x[k-1]
return [qlo, qup]
data = ma.sort(data, axis=axis).view(MaskedArray)
if (axis is None):
return _idf(data)
else:
return ma.apply_along_axis(_idf, axis, data)
def rsh(data, points=None):
"""Evaluates Rosenblatt's shifted histogram estimators for each point
on the dataset 'data'.
Parameters
data : sequence
Input data. Masked values are ignored.
points : sequence
Sequence of points where to evaluate Rosenblatt shifted histogram.
If None, use the data.
"""
data = ma.array(data, copy=False)
if points is None:
points = data
else:
points = np.array(points, copy=False, ndmin=1)
if data.ndim != 1:
raise AttributeError("The input array should be 1D only !")
n = data.count()
r = idealfourths(data, axis=None)
h = 1.2 * (r[-1]-r[0]) / n**(1./5)
nhi = (data[:,None] <= points[None,:] + h).sum(0)
nlo = (data[:,None] < points[None,:] - h).sum(0)
return (nhi-nlo) / (2.*n*h)
###############################################################################
|