File: stats.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (2738 lines) | stat: -rw-r--r-- 87,826 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
# Copyright (c) Gary Strangman.  All rights reserved
#
# Disclaimer
#
# This software is provided "as-is".  There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fittness for a given application.  In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
#

#
# Heavily adapted for use by SciPy 2002 by Travis Oliphant
"""
stats.py module

#################################################
#######  Written by:  Gary Strangman  ###########
#################################################

A collection of basic statistical functions for python.  The function
names appear below.

 *** Some scalar functions defined here are also available in the scipy.special
     package where they work on arbitrary sized arrays. ****

Disclaimers:  The function list is obviously incomplete and, worse, the
functions are not optimized.  All functions have been tested (some more
so than others), but they are far from bulletproof.  Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-)  A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters.  These functions don't necessarily have
both list and array versions but were deemed useful

CENTRAL TENDENCY:  gmean    (geometric mean)
                   hmean    (harmonic mean)
                   mean
                   median
                   medianscore
                   mode

MOMENTS:  moment
          variation
          skew
          kurtosis
          normaltest (for arrays only)

MOMENTS HANDLING NAN: nanmean
                      nanmedian
                      nanstd

ALTERED VERSIONS:  tmean
                   tvar
                   tstd
                   tsem
                   describe

FREQUENCY STATS:  freqtable
                  itemfreq
                  scoreatpercentile
                  percentileofscore
                  histogram
                  cumfreq
                  relfreq

VARIABILITY:  obrientransform
              samplevar
              samplestd
              signaltonoise (for arrays only)
              var
              std
              stderr
              sem
              z
              zs

TRIMMING FCNS:  threshold (for arrays only)
                trimboth
                trim1
                around (round all vals to 'n' decimals)

CORRELATION FCNS:  paired
                   pearsonr
                   spearmanr
                   pointbiserialr
                   kendalltau
                   linregress

INFERENTIAL STATS:  ttest_1samp
                    ttest_ind
                    ttest_rel
                    chisquare
                    ks_2samp
                    mannwhitneyu
                    ranksums
                    wilcoxon
                    kruskal
                    friedmanchisquare

PROBABILITY CALCS:  chisqprob
                    erfcc
                    zprob
                    fprob
                    betai

## Note that scipy.stats.distributions has many more statistical probability
## functions defined.


ANOVA FUNCTIONS:  f_oneway
                  f_value

SUPPORT FUNCTIONS:  ss
                    square_of_sums
                    shellsort
                    rankdata

References
----------
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. _CRC Standard Probablity and
Statistics Tables and Formulae_. Chapman & Hall: New York. 2000.
"""
## CHANGE LOG:
## ===========
## since 2001-06-25 ... see scipy SVN changelog
## 05-11-29 ... fixed default axis to be 0 for consistency with scipy;
##              cleanup of redundant imports, dead code, {0,1} -> booleans
## 02-02-10 ... require Numeric, eliminate "list-only" functions
##              (only 1 set of functions now and no Dispatch class),
##              removed all references to aXXXX functions.
## 00-04-13 ... pulled all "global" statements, except from aanova()
##              added/fixed lots of documentation, removed io.py dependency
##              changed to version 0.5
## 99-11-13 ... added asign() function
## 99-11-01 ... changed version to 0.4 ... enough incremental changes now
## 99-10-25 ... added acovariance and acorrelation functions
## 99-10-10 ... fixed askew/akurtosis to avoid divide-by-zero errors
##              added aglm function (crude, but will be improved)
## 99-10-04 ... upgraded acumsum, ass, asummult, asamplevar, var, etc. to
##                   all handle lists of 'dimension's and keepdims
##              REMOVED ar0, ar2, ar3, ar4 and replaced them with around
##              reinserted fixes for abetai to avoid math overflows
## 99-09-05 ... rewrote achisqprob/aerfcc/aksprob/afprob/abetacf/abetai to
##                   handle multi-dimensional arrays (whew!)
## 99-08-30 ... fixed l/amoment, l/askew, l/akurtosis per D'Agostino (1990)
##              added anormaltest per same reference
##              re-wrote azprob to calc arrays of probs all at once
## 99-08-22 ... edited attest_ind printing section so arrays could be rounded
## 99-08-19 ... fixed amean and aharmonicmean for non-error(!) overflow on
##                   short/byte arrays (mean of #s btw 100-300 = -150??)
## 99-08-09 ... fixed asum so that the None case works for Byte arrays
## 99-08-08 ... fixed 7/3 'improvement' to handle t-calcs on N-D arrays
## 99-07-03 ... improved attest_ind, attest_rel (zero-division errortrap)
## 99-06-24 ... fixed bug(?) in attest_ind (n1=a.shape[0])
## 04/11/99 ... added asignaltonoise, athreshold functions, changed all
##                   max/min in array section to maximum/minimum,
##                   fixed square_of_sums to prevent integer overflow
## 04/10/99 ... !!! Changed function name ... sumsquared ==> square_of_sums
## 03/18/99 ... Added ar0, ar2, ar3 and ar4 rounding functions
## 02/28/99 ... Fixed aobrientransform to return an array rather than a list
## 01/15/99 ... Essentially ceased updating list-versions of functions (!!!)
## 01/13/99 ... CHANGED TO VERSION 0.3
##              fixed bug in a/lmannwhitneyu p-value calculation
## 12/31/98 ... fixed variable-name bug in ldescribe
## 12/19/98 ... fixed bug in findwithin (fcns needed pstat. prefix)
## 12/16/98 ... changed amedianscore to return float (not array) for 1 score
## 12/14/98 ... added atmin and atmax functions
##              removed umath from import line (not needed)
##              l/ageometricmean modified to reduce chance of overflows (take
##                   nth root first, then multiply)
## 12/07/98 ... added __version__variable (now 0.2)
##              removed all 'stats.' from anova() fcn
## 12/06/98 ... changed those functions (except shellsort) that altered
##                   arguments in-place ... cumsum, ranksort, ...
##              updated (and fixed some) doc-strings
## 12/01/98 ... added anova() function (requires NumPy)
##              incorporated Dispatch class
## 11/12/98 ... added functionality to amean, aharmonicmean, ageometricmean
##              added 'asum' function (added functionality to add.reduce)
##              fixed both moment and amoment (two errors)
##              changed name of skewness and askewness to skew and askew
##              fixed (a)histogram (which sometimes counted points <lowerlimit)

# Standard library imports.
import warnings
import math

#friedmanchisquare patch uses python sum
pysum = sum  # save it before it gets overwritten

# Scipy imports.
from numpy import array, asarray, dot, ma, zeros, sum
import scipy.special as special
import scipy.linalg as linalg
import numpy as np

#import scipy.stats  #is this a circular import ?
from morestats import find_repeats #is only reference to scipy.stats
import distributions

# Local imports.
import _support

__all__ = ['gmean', 'hmean', 'mean', 'cmedian', 'median', 'mode',
           'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem',
           'moment', 'variation', 'skew', 'kurtosis', 'describe',
           'skewtest', 'kurtosistest', 'normaltest',
           'itemfreq', 'scoreatpercentile', 'percentileofscore',
           'histogram', 'histogram2', 'cumfreq', 'relfreq',
           'obrientransform', 'samplevar', 'samplestd', 'signaltonoise',
           'var', 'std', 'stderr', 'sem', 'z', 'zs', 'zmap',
           'threshold', 'trimboth', 'trim1', 'trim_mean',
           'cov', 'corrcoef', 'f_oneway', 'pearsonr', 'spearmanr',
           'pointbiserialr', 'kendalltau', 'linregress',
           'ttest_1samp', 'ttest_ind', 'ttest_rel',
           'kstest', 'chisquare', 'ks_2samp', 'mannwhitneyu',
           'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
           'zprob', 'erfc', 'chisqprob', 'ksprob', 'fprob', 'betai',
           'glm', 'f_value_wilks_lambda',
           'f_value', 'f_value_multivariate',
           'ss', 'square_of_sums',
           'fastsort', 'rankdata',
           'nanmean', 'nanstd', 'nanmedian',
          ]


def _chk_asarray(a, axis):
    if axis is None:
        a = np.ravel(a)
        outaxis = 0
    else:
        a = np.asarray(a)
        outaxis = axis
    return a, outaxis

def _chk2_asarray(a, b, axis):
    if axis is None:
        a = np.ravel(a)
        b = np.ravel(b)
        outaxis = 0
    else:
        a = np.asarray(a)
        b = np.asarray(b)
        outaxis = axis
    return a, b, outaxis

#######
### NAN friendly functions
########

def nanmean(x, axis=0):
    """Compute the mean over the given axis ignoring nans.

    :Parameters:
        x : ndarray
            input array
        axis : int
            axis along which the mean is computed.

    :Results:
        m : float
            the mean."""
    x, axis = _chk_asarray(x,axis)
    x = x.copy()
    Norig = x.shape[axis]
    factor = 1.0-np.sum(np.isnan(x),axis)*1.0/Norig

    x[np.isnan(x)] = 0
    return np.mean(x,axis)/factor

def nanstd(x, axis=0, bias=False):
    """Compute the standard deviation over the given axis ignoring nans

    :Parameters:
        x : ndarray
            input array
        axis : int
            axis along which the standard deviation is computed.
        bias : boolean
            If true, the biased (normalized by N) definition is used. If false,
            the unbiased is used (the default).

    :Results:
        s : float
            the standard deviation."""
    x, axis = _chk_asarray(x,axis)
    x = x.copy()
    Norig = x.shape[axis]

    Nnan = np.sum(np.isnan(x),axis)*1.0
    n = Norig - Nnan

    x[np.isnan(x)] = 0.
    m1 = np.sum(x,axis)/n

    # Kludge to subtract m1 from the correct axis
    if axis!=0:
        shape = np.arange(x.ndim).tolist()
        shape.remove(axis)
        shape.insert(0,axis)
        x = x.transpose(tuple(shape))
        d = (x-m1)**2.0
        shape = tuple(array(shape).argsort())
        d = d.transpose(shape)
    else:
        d = (x-m1)**2.0
    m2 = np.sum(d,axis)-(m1*m1)*Nnan
    if bias:
        m2c = m2 / n
    else:
        m2c = m2 / (n - 1.)
    return np.sqrt(m2c)

def _nanmedian(arr1d):  # This only works on 1d arrays
    """Private function for rank a arrays. Compute the median ignoring Nan.

    :Parameters:
        arr1d : rank 1 ndarray
            input array

    :Results:
        m : float
            the median."""
    cond = 1-np.isnan(arr1d)
    x = np.sort(np.compress(cond,arr1d,axis=-1))
    if x.size == 0:
        return np.nan
    return median(x)

def nanmedian(x, axis=0):
    """ Compute the median along the given axis ignoring nan values

    :Parameters:
        x : ndarray
            input array
        axis : int
            axis along which the median is computed.

    :Results:
        m : float
            the median."""
    x, axis = _chk_asarray(x,axis)
    x = x.copy()
    return np.apply_along_axis(_nanmedian,axis,x)


#####################################
########  CENTRAL TENDENCY  ########
#####################################

def gmean(a, axis=0):
    """Calculates the geometric mean of the values in the passed array.

    That is:  n-th root of (x1 * x2 * ... * xn)

    Parameters
    ----------
    a : array of positive values
    axis : int or None
    zero_sub : value to substitute for zero values. Default is 0.

    Returns
    -------
    The geometric mean computed over a single dimension of the input array or
    all values in the array if axis==None.
    """
    a, axis = _chk_asarray(a, axis)
    log_a = np.log(a)
    return np.exp(log_a.mean(axis=axis))


def hmean(a, axis=0, zero_sub=0):
    """Calculates the harmonic mean of the values in the passed array.

    That is:  n / (1/x1 + 1/x2 + ... + 1/xn)

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    The harmonic mean computed over a single dimension of the input array or all
    values in the array if axis=None.
    """
    a, axis = _chk_asarray(a, axis)
    size = a.shape[axis]
    return size / np.sum(1.0/a, axis)

def mean(a, axis=0):
    # fixme: This seems to be redundant with numpy.mean(,axis=0) or even
    # the ndarray.mean() method.
    """Returns the arithmetic mean of m along the given dimension.

    That is: (x1 + x2 + .. + xn) / n

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    The arithmetic mean computed over a single dimension of the input array or
    all values in the array if axis=None. The return value will have a floating
    point dtype even if the input data are integers.
    """
    warnings.warn("""\
scipy.stats.mean is deprecated; please update your code to use numpy.mean.
Please note that:
    - numpy.mean axis argument defaults to None, not 0
    - numpy.mean has a ddof argument to replace bias in a more general manner.
      scipy.stats.mean(a, bias=True) can be replaced by numpy.mean(x,
axis=0, ddof=1).""", DeprecationWarning)
    a, axis = _chk_asarray(a, axis)
    return a.mean(axis)

def cmedian(a, numbins=1000):
    # fixme: numpy.median() always seems to be a better choice.
    # A better version of this function would take already-histogrammed data
    # and compute the median from that.
    # fixme: the wording of the docstring is a bit wonky.
    """Returns the computed median value of an array.

    All of the values in the input array are used. The input array is first
    histogrammed using numbins bins. The bin containing the median is
    selected by searching for the halfway point in the cumulative histogram.
    The median value is then computed by linearly interpolating across that bin.

    Parameters
    ----------
    a : array
    numbins : int
        The number of bins used to histogram the data. More bins give greater
        accuracy to the approximation of the median.

    Returns
    -------
    A floating point value approximating the median.

    References
    ----------
    [CRCProbStat2000] Section 2.2.6
    """
    a = np.ravel(a)
    n = float(len(a))

    # We will emulate the (fixed!) bounds selection scheme used by
    # scipy.stats.histogram(), but use numpy.histogram() since it is faster.
    amin = a.min()
    amax = a.max()
    estbinwidth = (amax - amin)/float(numbins - 1)
    binsize = (amax - amin + estbinwidth) / float(numbins)
    (hist, bins) = np.histogram(a, numbins,
        range=(amin-binsize*0.5, amax+binsize*0.5))
    binsize = bins[1] - bins[0]
    cumhist = np.cumsum(hist)           # make cumulative histogram
    cfbin = np.searchsorted(cumhist, n/2.0)
    LRL = bins[cfbin]      # get lower read limit of that bin
    if cfbin == 0:
        cfbelow = 0.0
    else:
        cfbelow = cumhist[cfbin-1]       # cum. freq. below bin
    freq = hist[cfbin]                  # frequency IN the 50%ile bin
    median = LRL + ((n/2.0-cfbelow)/float(freq))*binsize # MEDIAN
    return median

def median(a, axis=0):
    # fixme: This would be redundant with numpy.median() except that the latter
    # does not deal with arbitrary axes.
    """Returns the median of the passed array along the given axis.

    If there is an even number of entries, the mean of the
    2 middle values is returned.

    Parameters
    ----------
    a : array
    axis=0 : int

    Returns
    -------
    The median of each remaining axis, or of all of the values in the array
    if axis is None.
    """
    warnings.warn("""\
scipy.stats.median is deprecated; please update your code to use numpy.median.
Please note that:
    - numpy.median axis argument defaults to None, not 0
    - numpy.median has a ddof argument to replace bias in a more general manner.
      scipy.stats.median(a, bias=True) can be replaced by numpy.median(x,
axis=0, ddof=1).""", DeprecationWarning)
    return np.median(a, axis)

def mode(a, axis=0):
    """Returns an array of the modal (most common) value in the passed array.

    If there is more than one such value, only the first is returned.
    The bin-count for the modal bins is also returned.

    Parameters
    ----------
    a : array
    axis=0 : int

    Returns
    -------
    (array of modal values, array of counts for each mode)
    """
    a, axis = _chk_asarray(a, axis)
    scores = np.unique(np.ravel(a))       # get ALL unique values
    testshape = list(a.shape)
    testshape[axis] = 1
    oldmostfreq = np.zeros(testshape)
    oldcounts = np.zeros(testshape)
    for score in scores:
        template = (a == score)
        counts = np.expand_dims(np.sum(template, axis),axis)
        mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
        oldcounts = np.maximum(counts, oldcounts)
        oldmostfreq = mostfrequent
    return mostfrequent, oldcounts

def mask_to_limits(a, limits, inclusive):
    """Mask an array for values outside of given limits.

    This is primarily a utility function.

    Parameters
    ----------
    a : array
    limits : (float or None, float or None)
        A tuple consisting of the (lower limit, upper limit).  Values in the
        input array less than the lower limit or greater than the upper limit
        will be masked out. None implies no limit.
    inclusive : (bool, bool)
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to lower or upper are allowed.

    Returns
    -------
    A MaskedArray.

    Raises
    ------
    A ValueError if there are no values within the given limits.
    """
    lower_limit, upper_limit = limits
    lower_include, upper_include = inclusive
    am = ma.MaskedArray(a)
    if lower_limit is not None:
        if lower_include:
            am = ma.masked_less(am, lower_limit)
        else:
            am = ma.masked_less_equal(am, lower_limit)
    if upper_limit is not None:
        if upper_include:
            am = ma.masked_greater(am, upper_limit)
        else:
            am = ma.masked_greater_equal(am, upper_limit)
    if am.count() == 0:
        raise ValueError("No array values within given limits")
    return am

def tmean(a, limits=None, inclusive=(True, True)):
    """Returns the arithmetic mean of all values in an array, ignoring values
    strictly outside given limits.

    Parameters
    ----------
    a : array
    limits : None or (lower limit, upper limit)
        Values in the input array less than the lower limit or greater than the
        upper limit will be masked out. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.
    inclusive : (bool, bool)
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to lower or upper are allowed.

    Returns
    -------
    A float.
    """
    a = asarray(a)

    # Cast to a float if this is an integer array. If it is already a float
    # array, leave it as is to preserve its precision.
    if issubclass(a.dtype.type, np.integer):
        a = a.astype(float)

    # No trimming.
    if limits is None:
        return mean(a,None)

    am = mask_to_limits(a.ravel(), limits, inclusive)
    return am.mean()

def masked_var(am):
    m = am.mean()
    s = ma.add.reduce((am - m)**2)
    n = am.count() - 1.0
    return s / n

def tvar(a, limits=None, inclusive=(1,1)):
    """Returns the sample variance of values in an array, (i.e., using
    N-1), ignoring values strictly outside the sequence passed to
    'limits'.  Note: either limit in the sequence, or the value of
    limits itself, can be set to None.  The inclusive list/tuple
    determines whether the lower and upper limiting bounds
    (respectively) are open/exclusive (0) or closed/inclusive (1).
    """
    a = asarray(a)
    a = a.astype(float).ravel()
    if limits is None:
        n = len(a)
        return a.var()*(n/(n-1.))
    am = mask_to_limits(a, limits, inclusive)
    return masked_var(am)

def tmin(a, lowerlimit=None, axis=0, inclusive=True):
    """Returns the minimum value of a, along axis, including only values
    less than (or equal to, if inclusive is True) lowerlimit.  If the
    limit is set to None, all values in the array are used.
    """
    a, axis = _chk_asarray(a, axis)
    am = mask_to_limits(a, (lowerlimit, None), (inclusive, False))
    return ma.minimum.reduce(am, axis)

def tmax(a, upperlimit, axis=0, inclusive=True):
    """Returns the maximum value of a, along axis, including only values
    greater than (or equal to, if inclusive is True) upperlimit.  If the limit
    is set to None, a limit larger than the max value in the array is
    used.
    """
    a, axis = _chk_asarray(a, axis)
    am = mask_to_limits(a, (None, upperlimit), (False, inclusive))
    return ma.maximum.reduce(am, axis)

def tstd(a, limits=None, inclusive=(1,1)):
    """Returns the standard deviation of all values in an array,
    ignoring values strictly outside the sequence passed to 'limits'.
    Note: either limit in the sequence, or the value of limits itself,
    can be set to None.  The inclusive list/tuple determines whether the
    lower and upper limiting bounds (respectively) are open/exclusive
    (0) or closed/inclusive (1).
    """
    return np.sqrt(tvar(a,limits,inclusive))


def tsem(a, limits=None, inclusive=(True,True)):
    """Returns the standard error of the mean for the values in an array,
    (i.e., using N for the denominator), ignoring values strictly outside
    the sequence passed to 'limits'.   Note: either limit in the
    sequence, or the value of limits itself, can be set to None.  The
    inclusive list/tuple determines whether the lower and upper limiting
    bounds (respectively) are open/exclusive (0) or closed/inclusive (1).
    """
    a = np.asarray(a).ravel()
    if limits is None:
        n = float(len(a))
        return a.std()/np.sqrt(n)
    am = mask_to_limits(a.ravel(), limits, inclusive)
    sd = np.sqrt(masked_var(am))
    return sd / am.count()


#####################################
############  MOMENTS  #############
#####################################

def moment(a, moment=1, axis=0):
    """Calculates the nth moment about the mean for a sample.

    Generally used to calculate coefficients of skewness and
    kurtosis.

    Parameters
    ----------
    a : array
    moment : int
    axis : int or None

    Returns
    -------
    The appropriate moment along the given axis or over all values if axis is
    None.
    """
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        mn = np.expand_dims(np.mean(a,axis), axis)
        s = np.power((a-mn), moment)
        return np.mean(s, axis)


def variation(a, axis=0):
    """Computes the coefficient of variation, the ratio of the biased standard
    deviation to the mean.

    Parameters
    ----------
    a : array
    axis : int or None

    References
    ----------
    [CRCProbStat2000] section 2.2.20
    """
    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]
    return a.std(axis)/a.mean(axis)


def skew(a, axis=0, bias=True):
    """Computes the skewness of a data set.

    For normally distributed data, the skewness should be about 0. A skewness
    value > 0 means that there is more weight in the left tail of the
    distribution. The function skewtest() can be used to determine if the
    skewness value is close enough to 0, statistically speaking.

    Parameters
    ----------
    a : array
    axis : int or None
    bias : bool
        If False, then the calculations are corrected for statistical bias.

    Returns
    -------
    The skewness of values along an axis, returning 0 where all values are
    equal.

    References
    ----------
    [CRCProbStat2000] section 2.2.24.1
    """
    a, axis = _chk_asarray(a,axis)
    n = a.shape[axis]
    m2 = moment(a, 2, axis)
    m3 = moment(a, 3, axis)
    zero = (m2 == 0)
    vals = np.where(zero, 0, m3 / m2**1.5)
    if not bias:
        can_correct = (n > 2) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m3 = np.extract(can_correct, m3)
            nval = np.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
            np.place(vals, can_correct, nval)
    if vals.ndim == 0:
        return vals.item()
    return vals

def kurtosis(a, axis=0, fisher=True, bias=True):
    """Computes the kurtosis (Fisher or Pearson) of a dataset.

    Kurtosis is the fourth central moment divided by the square of the variance.
    If Fisher's definition is used, then 3.0 is subtracted from the result to
    give 0.0 for a normal distribution.

    If bias is False then the kurtosis is calculated using k statistics to
    eliminate bias comming from biased moment estimators

    Use kurtosistest() to see if result is close enough to normal.

    Parameters
    ----------
    a : array
    axis : int or None
    fisher : bool
        If True, Fisher's definition is used (normal ==> 0.0). If False,
        Pearson's definition is used (normal ==> 3.0).
    bias : bool
        If False, then the calculations are corrected for statistical bias.

    Returns
    -------
    The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's
    definition and 0 for Pearson's definition.


    References
    ----------
    [CRCProbStat2000] section 2.2.25
    """
    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]
    m2 = moment(a,2,axis)
    m4 = moment(a,4,axis)
    zero = (m2 == 0)
    vals = np.where(zero, 0, m4/ m2**2.0)
    if not bias:
        can_correct = (n > 3) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m4 = np.extract(can_correct, m4)
            nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
            np.place(vals, can_correct, nval+3.0)

    if vals.ndim == 0:
        vals = vals.item() # array scalar

    if fisher:
        return vals - 3
    else:
        return vals

def describe(a, axis=0):
    """Computes several descriptive statistics of the passed array.

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    (size of the data,
     (min, max),
     arithmetic mean,
     unbiased variance,
     biased skewness,
     biased kurtosis)
    """
    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]
    #mm = (np.minimum.reduce(a), np.maximum.reduce(a))
    mm = (np.min(a, axis=axis), np.max(a, axis=axis))
    m = np.mean(a, axis=axis)
    v = np.var(a, axis=axis, ddof=1)
    sk = skew(a, axis)
    kurt = kurtosis(a, axis)
    return n, mm, m, v, sk, kurt

#####################################
########  NORMALITY TESTS  ##########
#####################################

def skewtest(a, axis=0):
    """Tests whether the skew is significantly different from a normal
    distribution.

    The size of the dataset should be >= 8.

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    (Z-score,
     2-tail Z-probability,
    )
    """
    a, axis = _chk_asarray(a, axis)
    if axis is None:
        a = np.ravel(a)
        axis = 0
    b2 = skew(a,axis)
    n = float(a.shape[axis])
    if n < 8:
        warnings.warn(
            "skewtest only valid for n>=8 ... continuing anyway, n=%i" %
            int(n))
    y = b2 * math.sqrt(((n+1)*(n+3)) / (6.0*(n-2)) )
    beta2 = ( 3.0*(n*n+27*n-70)*(n+1)*(n+3) ) / ( (n-2.0)*(n+5)*(n+7)*(n+9) )
    W2 = -1 + math.sqrt(2*(beta2-1))
    delta = 1/math.sqrt(0.5*math.log(W2))
    alpha = math.sqrt(2.0/(W2-1))
    y = np.where(y==0, 1, y)
    Z = delta*np.log(y/alpha + np.sqrt((y/alpha)**2+1))
    return Z, (1.0 - zprob(np.abs(Z)))*2


def kurtosistest(a, axis=0):
    """Tests whether a dataset has normal kurtosis (i.e.,
    kurtosis=3(n-1)/(n+1)).

    Valid only for n>20.

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    (Z-score,
     2-tail Z-probability)
    The Z-score is set to 0 for bad entries.
    """
    a, axis = _chk_asarray(a, axis)
    n = float(a.shape[axis])
    if n < 20:
        warnings.warn(
            "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
            int(n))
    b2 = kurtosis(a, axis, fisher=False)
    E = 3.0*(n-1) /(n+1)
    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
    x = (b2-E)/np.sqrt(varb2)
    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5))/
                                                       (n*(n-2)*(n-3)))
    A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
    term1 = 1 -2/(9.0*A)
    denom = 1 +x*np.sqrt(2/(A-4.0))
    denom = np.where(denom < 0, 99, denom)
    term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom,1/3.0))
    Z = ( term1 - term2 ) / np.sqrt(2/(9.0*A))
    Z = np.where(denom == 99, 0, Z)
    if Z.ndim == 0:
        Z = Z[()]
    #JPNote: p-value sometimes larger than 1
    #zprob uses upper tail, so Z needs to be positive
    return Z, (1.0-zprob(np.abs(Z)))*2


def normaltest(a, axis=0):
    """Tests whether skew and/or kurtosis of dataset differs from normal curve.

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    (Chi^2 score,
     2-tail probability)

    Based on the D'Agostino and Pearson's test that combines skew and
    kurtosis to produce an omnibus test of normality.

    D'Agostino, R. B. and Pearson, E. S. (1971), "An Omnibus Test of
    Normality for Moderate and Large Sample Size," Biometrika, 58, 341-348

    D'Agostino, R. B. and Pearson, E. S. (1973), "Testing for departures from
    Normality," Biometrika, 60, 613-622

    """
    a, axis = _chk_asarray(a, axis)
    s,p = skewtest(a,axis)
    k,p = kurtosistest(a,axis)
    k2 = s*s + k*k
    return k2, chisqprob(k2,2)

# Martinez-Iglewicz test
# K-S test

#####################################
######  FREQUENCY FUNCTIONS  #######
#####################################

def itemfreq(a):
    # fixme: I'm not sure I understand what this does. The docstring is
    # internally inconsistent.
    # comment: fortunately, this function doesn't appear to be used elsewhere
    """Returns a 2D array of item frequencies.

    Column 1 contains item values, column 2 contains their respective counts.
    Assumes a 1D array is passed.

    Parameters
    ----------
    a : array

    Returns
    -------
    A 2D frequency table (col [0:n-1]=scores, col n=frequencies)
    """
    scores = _support.unique(a)
    scores = np.sort(scores)
    freq = zeros(len(scores))
    for i in range(len(scores)):
        freq[i] = np.add.reduce(np.equal(a,scores[i]))
    return array(_support.abut(scores, freq))


def _interpolate(a, b, fraction):
    """Returns the point at the given fraction between a and b, where
    'fraction' must be between 0 and 1.
    """
    return a + (b - a)*fraction;

def scoreatpercentile(a, per, limit=()):
    """Calculate the score at the given 'per' percentile of the
    sequence a.  For example, the score at per=50 is the median.

    If the desired quantile lies between two data points, we
    interpolate between them.

    If the parameter 'limit' is provided, it should be a tuple (lower,
    upper) of two values.  Values of 'a' outside this (closed)
    interval will be ignored.

    """
    # TODO: this should be a simple wrapper around a well-written quantile
    # function.  GNU R provides 9 quantile algorithms (!), with differing
    # behaviour at, for example, discontinuities.
    values = np.sort(a,axis=0)
    if limit:
        values = values[(limit[0] <= values) & (values <= limit[1])]

    idx = per /100. * (values.shape[0] - 1)
    if (idx % 1 == 0):
        return values[idx]
    else:
        return _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1)


def percentileofscore(a, score, kind='rank'):
    '''
    The percentile rank of a score relative to a list of scores.

    A `percentileofscore` of, for example, 80% means that 80% of the
    scores in `a` are below the given score. In the case of gaps or
    ties, the exact definition depends on the optional keyword, `kind`.

    Parameters
    ----------
    a: array like
        Array of scores to which `score` is compared.
    score: int or float
        Score that is compared to the elements in `a`.
    kind: {'rank', 'weak', 'strict', 'mean'}, optional
        This optional parameter specifies the interpretation of the
        resulting score:

        - "rank": Average percentage ranking of score.  In case of
                  multiple matches, average the percentage rankings of
                  all matching scores.
        - "weak": This kind corresponds to the definition of a cumulative
                  distribution function.  A percentileofscore of 80%
                  means that 80% of values are less than or equal
                  to the provided score.
        - "strict": Similar to "weak", except that only values that are
                    strictly less than the given score are counted.
        - "mean": The average of the "weak" and "strict" scores, often used in
                  testing.  See

                  http://en.wikipedia.org/wiki/Percentile_rank

    Returns
    -------
    pcos : float
        Percentile-position of score (0-100) relative to `a`.

    Examples
    --------
    Three-quarters of the given values lie below a given score:

    >>> percentileofscore([1, 2, 3, 4], 3)
    75.0

    With multiple matches, note how the scores of the two matches, 0.6
    and 0.8 respectively, are averaged:

    >>> percentileofscore([1, 2, 3, 3, 4], 3)
    70.0

    Only 2/5 values are strictly less than 3:

    >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
    40.0

    But 4/5 values are less than or equal to 3:

    >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
    80.0

    The average between the weak and the strict scores is

    >>> percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
    60.0

    '''
    a = np.array(a)
    n = len(a)

    if kind == 'rank':
        if not(np.any(a == score)):
            a = np.append(a, score)
            a_len = np.array(range(len(a)))
        else:
            a_len = np.array(range(len(a))) + 1.0

        a = np.sort(a)
        idx = [a == score]
        pct = (np.mean(a_len[idx]) / n) * 100.0
        return pct

    elif kind == 'strict':
        return sum(a < score) / float(n) * 100
    elif kind == 'weak':
        return sum(a <= score) / float(n) * 100
    elif kind == 'mean':
        return (sum(a < score) + sum(a <= score)) * 50 / float(n)
    else:
        raise ValueError, "kind can only be 'rank', 'strict', 'weak' or 'mean'"


def histogram2(a, bins):
    # comment: probably obsoleted by numpy.histogram()
    """ histogram2(a,bins) -- Compute histogram of a using divisions in bins

         Description:
            Count the number of times values from array a fall into
            numerical ranges defined by bins.  Range x is given by
            bins[x] <= range_x < bins[x+1] where x =0,N and N is the
            length of the bins array.  The last range is given by
            bins[N] <= range_N < infinity.  Values less than bins[0] are
            not included in the histogram.
         Arguments:
            a -- 1D array.  The array of values to be divied into bins
            bins -- 1D array.  Defines the ranges of values to use during
                    histogramming.
         Returns:
            1D array.  Each value represents the occurences for a given
            bin (range) of values.

         Caveat:
            This should probably have an axis argument that would histogram
            along a specific axis (kinda like matlab)

    """
    n = np.searchsorted(np.sort(a), bins)
    n = np.concatenate([ n, [len(a)]])
    return n[ 1:]-n[:-1]




def histogram(a, numbins=10, defaultlimits=None, printextras=True):
    # fixme: use numpy.histogram() to implement
    """
Returns (i) an array of histogram bin counts, (ii) the smallest value
of the histogram binning, and (iii) the bin width (the last 2 are not
necessarily integers).  Default number of bins is 10.  Defaultlimits
can be None (the routine picks bins spanning all the numbers in the
a) or a 2-sequence (lowerlimit, upperlimit).  Returns all of the
following: array of bin values, lowerreallimit, binsize, extrapoints.

Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)
"""
    a = np.ravel(a)               # flatten any >1D arrays
    if (defaultlimits is not None):
        lowerreallimit = defaultlimits[0]
        upperreallimit = defaultlimits[1]
        binsize = (upperreallimit-lowerreallimit) / float(numbins)
    else:
        Min = a.min()
        Max = a.max()
        estbinwidth = float(Max - Min)/float(numbins - 1)
        binsize = (Max-Min+estbinwidth)/float(numbins)
        lowerreallimit = Min - binsize/2.0  #lower real limit,1st bin
    bins = zeros(numbins)
    extrapoints = 0
    for num in a:
        try:
            if (num-lowerreallimit) < 0:
                extrapoints += 1
            else:
                bintoincrement = int((num-lowerreallimit) / float(binsize))
                bins[bintoincrement] = bins[bintoincrement] + 1
        except:                           # point outside lower/upper limits
            extrapoints += 1
    if extrapoints > 0 and printextras:
        # fixme: warnings.warn()
        print '\nPoints outside given histogram range =',extrapoints
    return (bins, lowerreallimit, binsize, extrapoints)


def cumfreq(a, numbins=10, defaultreallimits=None):
    """
Returns a cumulative frequency histogram, using the histogram function.
Defaultreallimits can be None (use all data), or a 2-sequence containing
lower and upper limits on values to include.

Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
"""
    h,l,b,e = histogram(a,numbins,defaultreallimits)
    cumhist = np.cumsum(h*1, axis=0)
    return cumhist,l,b,e


def relfreq(a, numbins=10, defaultreallimits=None):
    """
Returns a relative frequency histogram, using the histogram function.
Defaultreallimits can be None (use all data), or a 2-sequence containing
lower and upper limits on values to include.

Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
"""
    h,l,b,e = histogram(a,numbins,defaultreallimits)
    h = array(h/float(a.shape[0]))
    return h,l,b,e


#####################################
######  VARIABILITY FUNCTIONS  #####
#####################################

def obrientransform(*args):
    """
Computes a transform on input data (any number of columns).  Used to
test for homogeneity of variance prior to running one-way stats.  Each
array in *args is one level of a factor.  If an F_oneway() run on the
transformed data and found significant, variances are unequal.   From
Maxwell and Delaney, p.112.

Returns: transformed data for use in an ANOVA
"""
    TINY = 1e-10
    k = len(args)
    n = zeros(k)
    v = zeros(k)
    m = zeros(k)
    nargs = []
    for i in range(k):
        nargs.append(args[i].astype(float))
        n[i] = float(len(nargs[i]))
        v[i] = var(nargs[i])
        m[i] = mean(nargs[i],None)
    for j in range(k):
        for i in range(int(n[j])):
            t1 = (n[j]-1.5)*n[j]*(nargs[j][i]-m[j])**2
            t2 = 0.5*v[j]*(n[j]-1.0)
            t3 = (n[j]-1.0)*(n[j]-2.0)
            nargs[j][i] = (t1-t2) / float(t3)
    check = 1
    for j in range(k):
        if v[j] - mean(nargs[j],None) > TINY:
            check = 0
    if check != 1:
        raise ValueError, 'Lack of convergence in obrientransform.'
    else:
        return array(nargs)


def samplevar(a, axis=0):
    """
Returns the sample standard deviation of the values in the passed
array (i.e., using N).  Axis can equal None (ravel array first),
an integer (the axis over which to operate)
"""
    a, axis = _chk_asarray(a, axis)
    mn = np.expand_dims(mean(a, axis), axis)
    deviations = a - mn
    n = a.shape[axis]
    svar = ss(deviations,axis) / float(n)
    return svar


def samplestd(a, axis=0):
    """Returns the sample standard deviation of the values in the passed
array (i.e., using N).  Axis can equal None (ravel array first),
an integer (the axis over which to operate).
"""
    return np.sqrt(samplevar(a,axis))


def signaltonoise(instack, axis=0):
    """
Calculates signal-to-noise.  Axis can equal None (ravel array
first), an integer (the axis over which to operate).

Returns: array containing the value of (mean/stdev) along axis,
         or 0 when stdev=0
"""
    m = mean(instack,axis)
    sd = samplestd(instack,axis)
    return np.where(sd == 0, 0, m/sd)

def var(a, axis=0, bias=False):
    """
Returns the estimated population variance of the values in the passed
array (i.e., N-1).  Axis can equal None (ravel array first), or an
integer (the axis over which to operate).
"""
    warnings.warn("""\
scipy.stats.var is deprecated; please update your code to use numpy.var.
Please note that:
    - numpy.var axis argument defaults to None, not 0
    - numpy.var has a ddof argument to replace bias in a more general manner.
      scipy.stats.var(a, bias=True) can be replaced by numpy.var(x,
      axis=0, ddof=0), scipy.stats.var(a, bias=False) by var(x, axis=0,
      ddof=1).""", DeprecationWarning)
    a, axis = _chk_asarray(a, axis)
    mn = np.expand_dims(mean(a,axis),axis)
    deviations = a - mn
    n = a.shape[axis]
    vals = sum(abs(deviations)**2,axis)/(n-1.0)
    if bias:
        return vals * (n-1.0)/n
    else:
        return vals

def std(a, axis=0, bias=False):
    """
Returns the estimated population standard deviation of the values in
the passed array (i.e., N-1).  Axis can equal None (ravel array
first), or an integer (the axis over which to operate).
"""
    warnings.warn("""\
scipy.stats.std is deprecated; please update your code to use numpy.std.
Please note that:
    - numpy.std axis argument defaults to None, not 0
    - numpy.std has a ddof argument to replace bias in a more general manner.
      scipy.stats.std(a, bias=True) can be replaced by numpy.std(x,
      axis=0, ddof=0), scipy.stats.std(a, bias=False) by numpy.std(x, axis=0,
      ddof=1).""", DeprecationWarning)
    return np.sqrt(var(a,axis,bias))


def stderr(a, axis=0):
    """
Returns the estimated population standard error of the values in the
passed array (i.e., N-1).  Axis can equal None (ravel array
first), or an integer (the axis over which to operate).
"""
    a, axis = _chk_asarray(a, axis)
    return std(a,axis) / float(np.sqrt(a.shape[axis]))


def sem(a, axis=0):
    """
Returns the standard error of the mean (i.e., using N) of the values
in the passed array.  Axis can equal None (ravel array first), or an
integer (the axis over which to operate)
"""
    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]
    s = samplestd(a,axis) / np.sqrt(n-1)
    return s


def z(a, score):
    """
Returns the z-score of a given input score, given thearray from which
that score came.  Not appropriate for population calculations, nor for
arrays > 1D.

"""
    z = (score-mean(a,None)) / samplestd(a)
    return z


def zs(a):
    """
Returns a 1D array of z-scores, one for each score in the passed array,
computed relative to the passed array.

"""
    mu = mean(a,None)
    sigma = samplestd(a)
    return (array(a)-mu)/sigma

def zmap(scores, compare, axis=0):
    """
Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to
array passed to compare (e.g., [time,x,y]).  Assumes collapsing over dim 0
of the compare array.

"""
    mns = mean(compare,axis)
    sstd = samplestd(compare,0)
    return (scores - mns) / sstd


#####################################
#######  TRIMMING FUNCTIONS  #######
#####################################

def threshold(a, threshmin=None, threshmax=None, newval=0):
    """Clip array to a given value.

Similar to numpy.clip(), except that values less than threshmin or
greater than threshmax are replaced by newval, instead of by
threshmin and threshmax respectively.

Returns: a, with values less than threshmin or greater than threshmax
         replaced with newval

"""
    a = asarray(a).copy()
    mask = zeros(a.shape, dtype=bool)
    if threshmin is not None:
        mask |= (a < threshmin)
    if threshmax is not None:
        mask |= (a > threshmax)
    a[mask] = newval
    return a


def trimboth(a, proportiontocut):
    """
Slices off the passed proportion of items from BOTH ends of the passed
array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND
'rightmost' 10% of scores.  You must pre-sort the array if you want
"proper" trimming.  Slices off LESS if proportion results in a
non-integer slice index (i.e., conservatively slices off
proportiontocut).

Returns: trimmed version of array a
"""
    a = asarray(a)
    lowercut = int(proportiontocut*len(a))
    uppercut = len(a) - lowercut
    if (lowercut >= uppercut):
        raise ValueError, "Proportion too big."
    return a[lowercut:uppercut]


def trim1(a, proportiontocut, tail='right'):
    """
    Slices off the passed proportion of items from ONE end of the passed
    array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
    10% of scores).  Slices off LESS if proportion results in a non-integer
    slice index (i.e., conservatively slices off proportiontocut).

    Returns: trimmed version of array a
    """
    a = asarray(a)
    if tail.lower() == 'right':
        lowercut = 0
        uppercut = len(a) - int(proportiontocut*len(a))
    elif tail.lower() == 'left':
        lowercut = int(proportiontocut*len(a))
        uppercut = len(a)
    return a[lowercut:uppercut]

def trim_mean(a, proportiontocut):
    """Return mean with proportiontocut chopped from each of the lower and
    upper tails.
    """
    newa = trimboth(np.sort(a),proportiontocut)
    return mean(newa,axis=0)



#####################################
#####  CORRELATION FUNCTIONS  ######
#####################################

#  Cov is more flexible than the original
#    covariance and computes an unbiased covariance matrix
#    by default.
def cov(m, y=None, rowvar=False, bias=False):
    """Estimate the covariance matrix.

    If m is a vector, return the variance.  For matrices where each row
    is an observation, and each column a variable, return the covariance
    matrix.  Note that in this case diag(cov(m)) is a vector of
    variances for each column.

    cov(m) is the same as cov(m, m)

    Normalization is by (N-1) where N is the number of observations
    (unbiased estimate).  If bias is True then normalization is by N.

    If rowvar is False, then each row is a variable with
    observations in the columns.
    """
    warnings.warn("""\
scipy.stats.cov is deprecated; please update your code to use numpy.cov.
Please note that:
    - numpy.cov rowvar argument defaults to true, not false
    - numpy.cov bias argument defaults to false, not true
""", DeprecationWarning)
    m = asarray(m)
    if y is None:
        y = m
    else:
        y = asarray(y)
    if rowvar:
        m = np.transpose(m)
        y = np.transpose(y)
    N = m.shape[0]
    if (y.shape[0] != N):
        raise ValueError, "x and y must have the same number of observations."
    m = m - mean(m,axis=0)
    y = y - mean(y,axis=0)
    if bias:
        fact = N*1.0
    else:
        fact = N-1.0
    val = np.squeeze(np.dot(np.transpose(m),np.conjugate(y))) / fact
    return val

def corrcoef(x, y=None, rowvar=False, bias=True):
    """The correlation coefficients formed from 2-d array x, where the
    rows are the observations, and the columns are variables.

    corrcoef(x,y) where x and y are 1d arrays is the same as
    corrcoef(transpose([x,y]))

    If rowvar is True, then each row is a variables with
    observations in the columns.
    """
    warnings.warn("""\
scipy.stats.corrcoef is deprecated; please update your code to use numpy.corrcoef.
Please note that:
    - numpy.corrcoef rowvar argument defaults to true, not false
    - numpy.corrcoef bias argument defaults to false, not true
""", DeprecationWarning)
    if y is not None:
        x = np.transpose([x,y])
        y = None
    c = cov(x, y, rowvar=rowvar, bias=bias)
    d = np.diag(c)
    return c/np.sqrt(np.multiply.outer(d,d))



def f_oneway(*args):
    """
Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups.  From Heiman, pp.394-7.

Usage:   f_oneway (*args)    where *args is 2 or more arrays, one per
                                  treatment group
Returns: f-value, probability
"""
    na = len(args)            # ANOVA on 'na' groups, each in it's own array
    tmp = map(np.array,args)
    alldata = np.concatenate(args)
    bign = len(alldata)
    sstot = ss(alldata)-(square_of_sums(alldata)/float(bign))
    ssbn = 0
    for a in args:
        ssbn = ssbn + square_of_sums(array(a))/float(len(a))
    ssbn = ssbn - (square_of_sums(alldata)/float(bign))
    sswn = sstot-ssbn
    dfbn = na-1
    dfwn = bign - na
    msb = ssbn/float(dfbn)
    msw = sswn/float(dfwn)
    f = msb/msw
    prob = fprob(dfbn,dfwn,f)
    return f, prob



def pearsonr(x, y):
    """Calculates a Pearson correlation coefficient and the p-value for testing
    non-correlation.

    The Pearson correlation coefficient measures the linear relationship
    between two datasets. Strictly speaking, Pearson's correlation requires
    that each dataset be normally distributed. Like other correlation
    coefficients, this one varies between -1 and +1 with 0 implying no
    correlation. Correlations of -1 or +1 imply an exact linear
    relationship. Positive correlations imply that as x increases, so does
    y. Negative correlations imply that as x increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Pearson correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    x : 1D array
    y : 1D array the same length as x

    Returns
    -------
    (Pearson's correlation coefficient,
     2-tailed p-value)

    References
    ----------
    http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
    """
    # x and y should have same length.
    x = np.asarray(x)
    y = np.asarray(y)
    n = len(x)
    mx = x.mean()
    my = y.mean()
    xm, ym = x-mx, y-my
    r_num = n*(np.add.reduce(xm*ym))
    r_den = n*np.sqrt(ss(xm)*ss(ym))
    r = (r_num / r_den)

    # Presumably, if r > 1, then it is only some small artifact of floating
    # point arithmetic.
    r = min(r, 1.0)
    df = n-2

    # Use a small floating point value to prevent divide-by-zero nonsense
    # fixme: TINY is probably not the right value and this is probably not
    # the way to be robust. The scheme used in spearmanr is probably better.
    TINY = 1.0e-20
    t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    return r,prob


def spearmanr(x, y):
    """Calculates a Spearman rank-order correlation coefficient and the p-value
    to test for non-correlation.

    The Spearman correlation is a nonparametric measure of the linear
    relationship between two datasets. Unlike the Pearson correlation, the
    Spearman correlation does not assume that both datasets are normally
    distributed. Like other correlation coefficients, this one varies
    between -1 and +1 with 0 implying no correlation. Correlations of -1 or
    +1 imply an exact linear relationship. Positive correlations imply that
    as x increases, so does y. Negative correlations imply that as x
    increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Spearman correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    x : 1D array
    y : 1D array the same length as x
        The lengths of both arrays must be > 2.

    Returns
    -------
    (Spearman correlation coefficient,
     2-tailed p-value)

    References
    ----------
    [CRCProbStat2000] section 14.7
    """
    x = np.asanyarray(x)
    y = np.asanyarray(y)
    n = len(x)
    m = len(y)
    if n != m:
        raise ValueError("lengths of x and y must match: %s != %s" % (n, m))
    if n <= 2:
        raise ValueError("length must be > 2")
    rankx = rankdata(x)
    ranky = rankdata(y)
    dsq = np.add.reduce((rankx-ranky)**2)
    rs = 1 - 6*dsq / float(n*(n**2-1))
    df = n-2

    try:
        t = rs * np.sqrt((n-2) / ((rs+1.0)*(1.0-rs)))
        probrs = betai(0.5*df, 0.5, df/(df+t*t))
    except ZeroDivisionError:
        probrs = 0.0

    return rs, probrs


def pointbiserialr(x, y):
    # comment: I am changing the semantics somewhat. The original function is
    # fairly general and accepts an x sequence that has any type of thing in it as
    # along as there are only two unique items. I am going to restrict this to
    # a boolean array for my sanity.
    """Calculates a point biserial correlation coefficient and the associated
    p-value.

    The point biserial correlation is used to measure the relationship
    between a binary variable, x, and a continuous variable, y. Like other
    correlation coefficients, this one varies between -1 and +1 with 0
    implying no correlation. Correlations of -1 or +1 imply a determinative
    relationship.

    Parameters
    ----------
    x : array of bools
    y : array of floats

    Returns
    -------
    (point-biserial r,
     2-tailed p-value)

    References
    ----------
    http://www.childrens-mercy.org/stats/definitions/biserial.htm
    """

    ## Test data: http://support.sas.com/ctx/samples/index.jsp?sid=490&tab=output
    # x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]
    # y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,2.8,2.8,2.5,
    #      2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,0.8,0.7,0.6,0.5,0.2,0.2,
    #      0.1]
    # rpb = 0.36149

    x = np.asarray(x, dtype=bool)
    y = np.asarray(y, dtype=float)
    n = len(x)

    # phat is the fraction of x values that are True
    phat = x.sum() / float(len(x))
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()

    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()

    df = n-2
    # fixme: see comment about TINY in pearsonr()
    TINY = 1e-20
    t = rpb*np.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY)))
    prob = betai(0.5*df, 0.5, df/(df+t*t))
    return rpb, prob


def kendalltau(x, y):
    """Calculates Kendall's tau, a correlation measure for ordinal data, and an
    associated p-value.

    Returns: Kendall's tau, two-tailed p-value
    """
    n1 = 0
    n2 = 0
    iss = 0
    for j in range(len(x)-1):
        for k in range(j+1,len(y)):
            a1 = x[j] - x[k]
            a2 = y[j] - y[k]
            aa = a1 * a2
            if (aa):             # neither array has a tie
                n1 = n1 + 1
                n2 = n2 + 1
                if aa > 0:
                    iss = iss + 1
                else:
                    iss = iss -1
            else:
                if a1:
                    n1 = n1 + 1
                if a2:
                    n2 = n2 + 1
    tau = iss / np.sqrt(float(n1*n2))
    svar = (4.0*len(x)+10.0) / (9.0*len(x)*(len(x)-1))
    z = tau / np.sqrt(svar)
    prob = erfc(abs(z)/1.4142136)
    return tau, prob


def linregress(*args):
    """Calculates a regression line on two arrays, x and y, corresponding to
    x,y pairs.  If a single 2D array is passed, linregress finds dim with 2
    levels and splits data into x,y pairs along that dim.

    Returns: slope, intercept, r, two-tailed prob, stderr-of-the-estimate
    """
    TINY = 1.0e-20
    if len(args) == 1:  # more than 1D array?
        args = asarray(args[0])
        if len(args) == 2:
            x = args[0]
            y = args[1]
        else:
            x = args[:,0]
            y = args[:,1]
    else:
        x = asarray(args[0])
        y = asarray(args[1])
    n = len(x)
    xmean = np.mean(x,None)
    ymean = np.mean(y,None)

    # average sum of squares:
    ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat
    r_num = ssxym
    r_den = np.sqrt(ssxm*ssym)
    if r_den == 0.0:
        r = 0.0
    else:
        r = r_num / r_den
        if (r > 1.0): r = 1.0 # from numerical error
    #z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
    df = n-2
    t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
    prob = distributions.t.sf(np.abs(t),df)*2
    slope = r_num / ssxm
    intercept = ymean - slope*xmean
    sterrest = np.sqrt((1-r*r)*ssym / ssxm / df)
    return slope, intercept, r, prob, sterrest


#####################################
#####  INFERENTIAL STATISTICS  #####
#####################################

def ttest_1samp(a, popmean, axis=0):
    """Calculates the T-test for the mean of ONE group of scores `a`.

    This is a two-sided test for the null hypothesis that the expected value
    (mean) of a sample of independent observations is equal to the given
    population mean, `popmean`.

    Parameters
    ----------
    a : array_like
        sample observation
    popmean : float or array_like
        expected value in null hypothesis, if array_like than it must have the
        same shape as `a` excluding the axis dimension
    axis : int, optional, (default axis=0)
        Axis can equal None (ravel array first), or an integer (the axis
        over which to operate on a).

    Returns
    -------
    t : float or array
        t-statistic
    prob : float or array
        two-tailed p-value

    Examples
    --------

    >>> from scipy import stats
    >>> import numpy as np

    >>> #fix seed to get the same result
    >>> np.random.seed(7654567)
    >>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))

    test if mean of random sample is equal to true mean, and different mean.
    We reject the null hypothesis in the second case and don't reject it in
    the first case

    >>> stats.ttest_1samp(rvs,5.0)
    (array([-0.68014479, -0.04323899]), array([ 0.49961383,  0.96568674]))
    >>> stats.ttest_1samp(rvs,0.0)
    (array([ 2.77025808,  4.11038784]), array([ 0.00789095,  0.00014999]))

    examples using axis and non-scalar dimension for population mean

    >>> stats.ttest_1samp(rvs,[5.0,0.0])
    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
    >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
    >>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
    (array([[-0.68014479, -0.04323899],
           [ 2.77025808,  4.11038784]]), array([[  4.99613833e-01,   9.65686743e-01],
           [  7.89094663e-03,   1.49986458e-04]]))

"""


    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]
    df=n-1

    d = np.mean(a,axis) - popmean
    v = np.var(a, axis, ddof=1)

    t = d / np.sqrt(v/float(n))
    t = np.where((d==0)*(v==0), 1.0, t) #define t=0/0 = 1, identical mean, var
    prob = distributions.t.sf(np.abs(t),df)*2  #use np.abs to get upper tail
    #distributions.t.sf currently does not propagate nans
    #this can be dropped, if distributions.t.sf propagates nans
    #if this is removed, then prob = prob[()] needs to be removed
    prob = np.where(np.isnan(t), np.nan, prob)

    if t.ndim == 0:
        t = t[()]
        prob = prob[()]
    return t,prob


def ttest_ind(a, b, axis=0):
    """Calculates the T-test for the means of TWO INDEPENDENT samples of scores.

    This is a two-sided test for the null hypothesis that 2 independent samples
    have identical average (expected) values.

    Parameters
    ----------
    a, b : sequence of ndarrays
        The arrays must have the same shape, except in the dimension
        corresponding to `axis` (the first, by default).
    axis : int, optional
        Axis can equal None (ravel array first), or an integer (the axis
        over which to operate on a and b).

    Returns
    -------
    t : float or array
        t-statistic
    prob : float or array
        two-tailed p-value


    Notes
    -----

    We can use this test, if we observe two independent samples from
    the same or different population, e.g. exam scores of boys and
    girls or of two ethnic groups. The test measures whether the
    average (expected) value differs significantly across samples. If
    we observe a large p-value, for example larger than 0.05 or 0.1,
    then we cannot reject the null hypothesis of identical average scores.
    If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
    then we reject the null hypothesis of equal averages.

    References
    ----------

       http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test


    Examples
    --------

    >>> from scipy import stats
    >>> import numpy as np

    >>> #fix seed to get the same result
    >>> np.random.seed(12345678)

    test with sample with identical means

    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> stats.ttest_ind(rvs1,rvs2)
    (0.26833823296239279, 0.78849443369564765)


    test with sample with different means

    >>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500)
    >>> stats.ttest_ind(rvs1,rvs3)
    (-5.0434013458585092, 5.4302979468623391e-007)

    """
    a, b, axis = _chk2_asarray(a, b, axis)

    v1 = np.var(a,axis,ddof = 1)
    v2 = np.var(b,axis,ddof = 1)
    n1 = a.shape[axis]
    n2 = b.shape[axis]
    df = n1+n2-2

    d = mean(a,axis) - mean(b,axis)
    svar = ((n1-1)*v1+(n2-1)*v2) / float(df)

    t = d/np.sqrt(svar*(1.0/n1 + 1.0/n2))
    t = np.where((d==0)*(svar==0), 1.0, t) #define t=0/0 = 0, identical means
    prob = distributions.t.sf(np.abs(t),df)*2#use np.abs to get upper tail

    #distributions.t.sf currently does not propagate nans
    #this can be dropped, if distributions.t.sf propagates nans
    #if this is removed, then prob = prob[()] needs to be removed
    prob = np.where(np.isnan(t), np.nan, prob)

    if t.ndim == 0:
        t = t[()]
        prob = prob[()]

    return t, prob


def ttest_rel(a,b,axis=0):
    """Calculates the T-test on TWO RELATED samples of scores, a and b.

    This is a two-sided test for the null hypothesis that 2 related or
    repeated samples have identical average (expected) values.

    Parameters
    ----------
    a, b : sequence of ndarrays
        The arrays must have the same shape.
    axis : int, optional, (default axis=0)
        Axis can equal None (ravel array first), or an integer (the axis
        over which to operate on a and b).

    Returns
    -------
    t : float or array
        t-statistic
    prob : float or array
        two-tailed p-value


    Notes
    -----

    Examples for the use are scores of the same set of student in
    different exams, or repeated sampling from the same units. The
    test measures whether the average score differs significantly
    across samples (e.g. exams). If we observe a large p-value, for
    example greater than 0.5 or 0.1 then we cannot reject the null
    hypothesis of identical average scores. If the p-value is smaller
    than the threshold, e.g. 1%, 5% or 10%, then we reject the null
    hypothesis of equal averages. Small p-values are associated with
    large t-statistics.

   References
   ----------

       http://en.wikipedia.org/wiki/T-test#Dependent_t-test

    Examples
    --------

    >>> from scipy import stats
    >>> import numpy as np

    >>> #fix random seed to get the same result
    >>> np.random.seed(12345678)
    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) + \
                            stats.norm.rvs(scale=0.2,size=500)
    >>> stats.ttest_rel(rvs1,rvs2)
    (0.24101764965300962, 0.80964043445811562)
    >>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500) + \
                            stats.norm.rvs(scale=0.2,size=500)
    >>> stats.ttest_rel(rvs1,rvs3)
    (-3.9995108708727933, 7.3082402191726459e-005)

    """
    a, b, axis = _chk2_asarray(a, b, axis)
    if a.shape[axis] != b.shape[axis]:
        raise ValueError, 'unequal length arrays'
    n = a.shape[axis]
    df = float(n-1)

    d = (a-b).astype('d')
    v = np.var(d,axis,ddof=1)
    dm = np.mean(d, axis)

    t = dm / np.sqrt(v/float(n))
    t = np.where((dm==0)*(v==0), 1.0, t) #define t=0/0 = 1, zero mean and var
    prob = distributions.t.sf(np.abs(t),df)*2 #use np.abs to get upper tail
    #distributions.t.sf currently does not propagate nans
    #this can be dropped, if distributions.t.sf propagates nans
    #if this is removed, then prob = prob[()] needs to be removed
    prob = np.where(np.isnan(t), np.nan, prob)

##    if not np.isscalar(t):
##        probs = np.reshape(probs, t.shape) # this should be redundant
##    if not np.isscalar(prob) and len(prob) == 1:
##        prob = prob[0]
    if t.ndim == 0:
        t = t[()]
        prob = prob[()]

    return t, prob


#import scipy.stats
#import distributions
def kstest(rvs, cdf, args=(), N=20, alternative = 'two_sided', mode='approx',**kwds):
    """
    Return the D-value and the p-value for a Kolmogorov-Smirnov test

    This performs a test of the distribution G(x) of an observed
    random variable against a given distribution F(x). Under the null
    hypothesis the two distributions are identical, G(x)=F(x). The
    alternative hypothesis can be either 'two_sided' (default), 'less'
    or 'greater'. The KS test is only valid for continuous distributions.

    Parameters
    ----------
    rvs : string or array or callable
        string: name of a distribution in scipy.stats

        array: 1-D observations of random variables

        callable: function to generate random variables, requires keyword
        argument `size`

    cdf : string or callable
        string: name of a distribution in scipy.stats, if rvs is a string then
        cdf can evaluate to `False` or be the same as rvs
        callable: function to evaluate cdf

    args : tuple, sequence
        distribution parameters, used if rvs or cdf are strings
    N : int
        sample size if rvs is string or callable
    alternative : 'two_sided' (default), 'less' or 'greater'
        defines the alternative hypothesis (see explanation)

    mode : 'approx' (default) or 'asymp'
        defines the distribution used for calculating p-value

        'approx' : use approximation to exact distribution of test statistic

        'asymp' : use asymptotic distribution of test statistic


    Returns
    -------
    D : float
        KS test statistic, either D, D+ or D-
    p-value :  float
        one-tailed or two-tailed p-value

    Notes
    -----

    In the two one-sided test, the alternative is that the empirical
    cumulative distribution function of the random variable is "less"
    or "greater" then the cumulative distribution function F(x) of the
    hypothesis, G(x)<=F(x), resp. G(x)>=F(x).

    If the p-value is greater than the significance level (say 5%), then we
    cannot reject the hypothesis that the data come from the given
    distribution.

    Examples
    --------

    >>> from scipy import stats
    >>> import numpy as np
    >>> from scipy.stats import kstest

    >>> x = np.linspace(-15,15,9)
    >>> kstest(x,'norm')
    (0.44435602715924361, 0.038850142705171065)

    >>> np.random.seed(987654321) # set random seed to get the same result
    >>> kstest('norm','',N=100)
    (0.058352892479417884, 0.88531190944151261)

    is equivalent to this

    >>> np.random.seed(987654321)
    >>> kstest(stats.norm.rvs(size=100),'norm')
    (0.058352892479417884, 0.88531190944151261)

    Test against one-sided alternative hypothesis:

    >>> np.random.seed(987654321)

    Shift distribution to larger values, so that cdf_dgp(x)< norm.cdf(x):

    >>> x = stats.norm.rvs(loc=0.2, size=100)
    >>> kstest(x,'norm', alternative = 'less')
    (0.12464329735846891, 0.040989164077641749)

    Reject equal distribution against alternative hypothesis: less

    >>> kstest(x,'norm', alternative = 'greater')
    (0.0072115233216311081, 0.98531158590396395)

    Don't reject equal distribution against alternative hypothesis: greater

    >>> kstest(x,'norm', mode='asymp')
    (0.12464329735846891, 0.08944488871182088)


    Testing t distributed random variables against normal distribution:

    With 100 degrees of freedom the t distribution looks close to the normal
    distribution, and the kstest does not reject the hypothesis that the sample
    came from the normal distribution

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.t.rvs(100,size=100),'norm')
    (0.072018929165471257, 0.67630062862479168)

    With 3 degrees of freedom the t distribution looks sufficiently different
    from the normal distribution, that we can reject the hypothesis that the
    sample came from the normal distribution at a alpha=10% level

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.t.rvs(3,size=100),'norm')
    (0.131016895759829, 0.058826222555312224)

    """
    if isinstance(rvs, basestring):
        #cdf = getattr(stats, rvs).cdf
        if (not cdf) or (cdf == rvs):
            cdf = getattr(distributions, rvs).cdf
            rvs = getattr(distributions, rvs).rvs
        else:
            raise AttributeError, 'if rvs is string, cdf has to be the same distribution'


    if isinstance(cdf, basestring):
        cdf = getattr(distributions, cdf).cdf
    if callable(rvs):
        kwds = {'size':N}
        vals = np.sort(rvs(*args,**kwds))
    else:
        vals = np.sort(rvs)
        N = len(vals)
    cdfvals = cdf(vals, *args)

    if alternative in ['two_sided', 'greater']:
        Dplus = (np.arange(1.0, N+1)/N - cdfvals).max()
        if alternative == 'greater':
            return Dplus, distributions.ksone.sf(Dplus,N)

    if alternative in ['two_sided', 'less']:
        Dmin = (cdfvals - np.arange(0.0, N)/N).max()
        if alternative == 'less':
            return Dmin, distributions.ksone.sf(Dmin,N)

    if alternative == 'two_sided':
        D = np.max([Dplus,Dmin])
        if mode == 'asymp':
            return D, distributions.kstwobign.sf(D*np.sqrt(N))
        if mode == 'approx':
            pval_two = distributions.kstwobign.sf(D*np.sqrt(N))
            if N > 2666 or pval_two > 0.80 - N*0.3/1000.0 :
                return D, distributions.kstwobign.sf(D*np.sqrt(N))
            else:
                return D, distributions.ksone.sf(D,N)*2

def chisquare(f_obs, f_exp=None):
    """ Calculates a one-way chi square for array of observed frequencies
    and returns the result.  If no expected frequencies are given, the total
    N is assumed to be equally distributed across all groups.

    Returns: chisquare-statistic, associated p-value
    """

    f_obs = asarray(f_obs)
    k = len(f_obs)
    if f_exp is None:
        f_exp = array([np.sum(f_obs,axis=0)/float(k)] * len(f_obs),float)
    f_exp = f_exp.astype(float)
    chisq = np.add.reduce((f_obs-f_exp)**2 / f_exp)
    return chisq, chisqprob(chisq, k-1)


def ks_2samp(data1, data2):
    """ Computes the Kolmogorov-Smirnof statistic on 2 samples.

    This is a two-sided test for the null hypothesis that 2 independent samples
    are drawn from the same continuous distribution.

    Parameters
    ----------
    a, b : sequence of 1-D ndarrays
        two arrays of sample observations assumed to be drawn from a continuous
        distribution, sample sizes can be different


    Returns
    -------
    D : float
        KS statistic
    p-value : float
        two-tailed p-value


    Notes
    -----

    This tests whether 2 samples are drawn from the same distribution. Note
    that, like in the case of the one-sample K-S test, the distribution is
    assumed to be continuous.

    This is the two-sided test, one-sided tests are not implemented.
    The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution.

    If the K-S statistic is small or the p-value is high, then we cannot
    reject the hypothesis that the distributions of the two samples
    are the same.

    Examples:
    ---------

    >>> from scipy import stats
    >>> import numpy as np
    >>> from scipy.stats import ks_2samp

    >>> #fix random seed to get the same result
    >>> np.random.seed(12345678);

    >>> n1 = 200  # size of first sample
    >>> n2 = 300  # size of second sample

    different distribution
    we can reject the null hypothesis since the pvalue is below 1%

    >>> rvs1 = stats.norm.rvs(size=n1,loc=0.,scale=1);
    >>> rvs2 = stats.norm.rvs(size=n2,loc=0.5,scale=1.5)
    >>> ks_2samp(rvs1,rvs2)
    (0.20833333333333337, 4.6674975515806989e-005)

    slightly different distribution
    we cannot reject the null hypothesis at a 10% or lower alpha since
    the pvalue at 0.144 is higher than 10%

    >>> rvs3 = stats.norm.rvs(size=n2,loc=0.01,scale=1.0)
    >>> ks_2samp(rvs1,rvs3)
    (0.10333333333333333, 0.14498781825751686)

    identical distribution
    we cannot reject the null hypothesis since the pvalue is high, 41%

    >>> rvs4 = stats.norm.rvs(size=n2,loc=0.0,scale=1.0)
    >>> ks_2samp(rvs1,rvs4)
    (0.07999999999999996, 0.41126949729859719)

    """
    data1, data2 = map(asarray, (data1, data2))
    n1 = data1.shape[0]
    n2 = data2.shape[0]
    n1 = len(data1)
    n2 = len(data2)
    data1 = np.sort(data1)
    data2 = np.sort(data2)
    data_all = np.concatenate([data1,data2])
    cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1)
    cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2)
    d = np.max(np.absolute(cdf1-cdf2))
    #Note: d absolute not signed distance
    en = np.sqrt(n1*n2/float(n1+n2))
    try:
        prob = ksprob((en+0.12+0.11/en)*d)
    except:
        prob = 1.0
    return d, prob


def mannwhitneyu(x, y, use_continuity=True):
    """Computes the Mann-Whitney rank test on samples x and y.


    Parameters
    ----------
        x : array_like 1d
        y : array_like 1d 
        use_continuity : {True, False} optional, default True
            Whether a continuity correction (1/2.) should be taken into account.

    Returns
    -------
        u : float
            The Mann-Whitney statistics
        prob : float
            one-sided p-value assuming a asymptotic normal distribution.

    Notes
    -----
    Use only when the number of observation in each sample is > 20 and
    you have 2 independent samples of ranks. Mann-Whitney U is
    significant if the u-obtained is LESS THAN or equal to the critical
    value of U.

    This test corrects for ties and by default uses a continuity correction.
    The reported p-value is for a one-sided hypothesis, to get the two-sided
    p-value multiply the returned p-value by 2.
 
    """
    x = asarray(x)
    y = asarray(y)
    n1 = len(x)
    n2 = len(y)
    ranked = rankdata(np.concatenate((x,y)))
    rankx = ranked[0:n1]       # get the x-ranks
    #ranky = ranked[n1:]        # the rest are y-ranks
    u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx,axis=0)  # calc U for x
    u2 = n1*n2 - u1                            # remainder is U for y
    bigu = max(u1,u2)
    smallu = min(u1,u2)
    #T = np.sqrt(tiecorrect(ranked))  # correction factor for tied scores
    T = tiecorrect(ranked)
    if T == 0:
        raise ValueError, 'All numbers are identical in amannwhitneyu'
    sd = np.sqrt(T*n1*n2*(n1+n2+1)/12.0)
    
    if use_continuity:
        # normal approximation for prob calc with continuity correction
        z = abs((bigu-0.5-n1*n2/2.0) / sd)  
    else:
        z = abs((bigu-n1*n2/2.0) / sd)  # normal approximation for prob calc
    return smallu, distributions.norm.sf(z)  #(1.0 - zprob(z))


def tiecorrect(rankvals):
    """Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
    See Siegel, S. (1956) Nonparametric Statistics for the Behavioral
    Sciences.  New York: McGraw-Hill.  Code adapted from |Stat rankind.c
    code.

    Returns: T correction factor for U or H
    """
    sorted,posn = fastsort(asarray(rankvals))
    n = len(sorted)
    T = 0.0
    i = 0
    while (i<n-1):
        if sorted[i] == sorted[i+1]:
            nties = 1
            while (i<n-1) and (sorted[i] == sorted[i+1]):
                nties = nties +1
                i = i +1
            T = T + nties**3 - nties
        i = i+1
    T = T / float(n**3-n)
    return 1.0 - T


def ranksums(x, y):
    """Calculates the rank sums statistic on the provided scores and
    returns the result.

    Returns: z-statistic, two-tailed p-value
    """
    x,y = map(np.asarray, (x, y))
    n1 = len(x)
    n2 = len(y)
    alldata = np.concatenate((x,y))
    ranked = rankdata(alldata)
    x = ranked[:n1]
    y = ranked[n1:]
    s = np.sum(x,axis=0)
    expected = n1*(n1+n2+1) / 2.0
    z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
    prob = 2*(1.0 -zprob(abs(z)))
    return z, prob



def kruskal(*args):
    """The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more
    groups, requiring at least 5 subjects in each group.  This function
    calculates the Kruskal-Wallis H and associated p-value for 2 or more
    independent samples.

    Returns: H-statistic (corrected for ties), associated p-value
    """
    assert len(args) >= 2, "Need at least 2 groups in stats.kruskal()"
    n = map(len,args)
    all = []
    for i in range(len(args)):
        all.extend(args[i].tolist())
    ranked = list(rankdata(all))
    T = tiecorrect(ranked)
    args = list(args)
    for i in range(len(args)):
        args[i] = ranked[0:n[i]]
        del ranked[0:n[i]]
    rsums = []
    for i in range(len(args)):
        rsums.append(np.sum(args[i],axis=0)**2)
        rsums[i] = rsums[i] / float(n[i])
    ssbn = np.sum(rsums,axis=0)
    totaln = np.sum(n,axis=0)
    h = 12.0 / (totaln*(totaln+1)) * ssbn - 3*(totaln+1)
    df = len(args) - 1
    if T == 0:
        raise ValueError, 'All numbers are identical in kruskal'
    h = h / float(T)
    return h, chisqprob(h,df)


def friedmanchisquare(*args):
    """Friedman Chi-Square is a non-parametric, one-way within-subjects
    ANOVA.  This function calculates the Friedman Chi-square test for
    repeated measures and returns the result, along with the associated
    probability value.

    This function uses Chisquared aproximation of Friedman Chisquared
    distribution. This is exact only if n > 10 and factor levels > 6.

    Returns: friedman chi-square statistic, associated p-valueIt assumes 3 or more repeated measures.  Only 3
    """
    k = len(args)
    if k < 3:
        raise ValueError, '\nLess than 3 levels.  Friedman test not appropriate.\n'
    n = len(args[0])
    for i in range(1,k):
        if len(args[i]) <> n:
            raise ValueError, 'Unequal N in friedmanchisquare.  Aborting.'
    if n < 10 and k < 6:
        print 'Warning: friedmanchisquare test using Chisquared aproximation'

    # Rank data
    data = apply(_support.abut,args)
    data = data.astype(float)
    for i in range(len(data)):
        data[i] = rankdata(data[i])

    # Handle ties
    ties = 0
    for i in range(len(data)):
        replist, repnum = find_repeats(array(data[i]))
        for t in repnum:
            ties += t*(t*t-1)
    c = 1 - ties / float(k*(k*k-1)*n)

    ssbn = pysum(pysum(data)**2)
    chisq = ( 12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1) ) / c
    return chisq, chisqprob(chisq,k-1)


#####################################
####  PROBABILITY CALCULATIONS  ####
#####################################

zprob = special.ndtr
erfc = special.erfc

def chisqprob(chisq, df):
    """Returns the (1-tail) probability value associated with the provided
    chi-square value and degrees of freedom.

    Broadcasting rules apply.

    Parameters
    ----------
    chisq : array or float > 0
    df : array or float, probably int >= 1

    Returns
    -------
    The area from chisq to infinity under the Chi^2 probability distribution
    with degrees of freedom df.
    """
    return special.chdtrc(df,chisq)

ksprob = special.kolmogorov
fprob = special.fdtrc

def betai(a, b, x):
    """Returns the incomplete beta function.

    I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

    where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
    function of a.

    The standard broadcasting rules apply to a, b, and x.

    Parameters
    ----------
    a : array or float > 0
    b : array or float > 0
    x : array or float
        x will be clipped to be no greater than 1.0 .

    Returns
    -------

    """
    x = np.asarray(x)
    x = np.where(x < 1.0, x, 1.0)  # if x > 1 then return 1.0
    return special.betainc(a, b, x)

#####################################
#######  ANOVA CALCULATIONS  #######
#####################################

def glm(data, para):
    """Calculates a linear model fit ...
    anova/ancova/lin-regress/t-test/etc. Taken from:

    Peterson et al. Statistical limitations in functional neuroimaging
    I. Non-inferential methods and statistical models.  Phil Trans Royal Soc
    Lond B 354: 1239-1260.

    Returns: statistic, p-value ???
    """
    if len(para) != len(data):
        raise ValueError("data and para must be same length in aglm")
    n = len(para)
    p = _support.unique(para)
    x = zeros((n,len(p)))  # design matrix
    for l in range(len(p)):
        x[:,l] = para == p[l]
    # fixme: normal equations are bad. Use linalg.lstsq instead.
    b = dot(dot(linalg.inv(dot(np.transpose(x),x)),  # i.e., b=inv(X'X)X'Y
                    np.transpose(x)),data)
    diffs = (data - dot(x,b))
    s_sq = 1./(n-len(p)) * dot(np.transpose(diffs), diffs)

    if len(p) == 2:  # ttest_ind
        c = array([1,-1])
        df = n-2
        fact = np.sum(1.0/np.sum(x,0),axis=0)  # i.e., 1/n1 + 1/n2 + 1/n3 ...
        t = dot(c,b) / np.sqrt(s_sq*fact)
        probs = betai(0.5*df,0.5,float(df)/(df+t*t))
        return t, probs
    else:
        raise ValueError("only ttest_ind implemented")


def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    if isinstance(ER, (int, float)):
        ER = array([[ER]])
    if isinstance(EF, (int, float)):
        EF = array([[EF]])
    lmbda = linalg.det(EF) / linalg.det(ER)
    if (a-1)**2 + (b-1)**2 == 5:
        q = 1
    else:
        q = np.sqrt( ((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 -5) )
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en

def f_value(ER, EF, dfR, dfF):
    """Returns an F-statistic given the following:
        ER  = error associated with the null hypothesis (the Restricted model)
        EF  = error associated with the alternate hypothesis (the Full model)
        dfR = degrees of freedom the Restricted model
        dfF = degrees of freedom associated with the Restricted model
    """
    return ((ER-EF)/float(dfR-dfF) / (EF/float(dfF)))



def f_value_multivariate(ER, EF, dfnum, dfden):
    """Returns an F-statistic given the following:
        ER  = error associated with the null hypothesis (the Restricted model)
        EF  = error associated with the alternate hypothesis (the Full model)
        dfR = degrees of freedom the Restricted model
        dfF = degrees of freedom associated with the Restricted model
    where ER and EF are matrices from a multivariate F calculation.
    """
    if isinstance(ER, (int, float)):
        ER = array([[ER]])
    if isinstance(EF, (int, float)):
        EF = array([[EF]])
    n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum)
    d_en = linalg.det(EF) / float(dfden)
    return n_um / d_en


#####################################
#######  SUPPORT FUNCTIONS  ########
#####################################

def ss(a, axis=0):
    """Squares each value in the passed array, adds these squares, and
    returns the result.

    Parameters
    ----------
    a : array
    axis : int or None

    Returns
    -------
    The sum along the given axis for (a*a).
    """
    a, axis = _chk_asarray(a, axis)
    return np.sum(a*a, axis)


def square_of_sums(a, axis=0):
    """Adds the values in the passed array, squares that sum, and returns the
result.

Returns: the square of the sum over axis.
"""
    a, axis = _chk_asarray(a, axis)
    s = np.sum(a,axis)
    if not np.isscalar(s):
        return s.astype(float)*s
    else:
        return float(s)*s


def fastsort(a):
    # fixme: the wording in the docstring is nonsense.
    """Sort an array and provide the argsort.

    Parameters
    ----------
    a : array

    Returns
    -------
    (sorted array,
     indices into the original array,
    )
    """
    it = np.argsort(a)
    as_ = a[it]
    return as_, it

def rankdata(a):
    """Ranks the data in a, dealing with ties appropriately.

    Equal values are assigned a rank that is the average of the ranks that
    would have been otherwise assigned to all of the values within that set.
    Ranks begin at 1, not 0.

    Example
    -------
    In [15]: stats.rankdata([0, 2, 2, 3])
    Out[15]: array([ 1. ,  2.5,  2.5,  4. ])

    Parameters
    ----------
    a : array
        This array is first flattened.

    Returns
    -------
    An array of length equal to the size of a, containing rank scores.
    """
    a = np.ravel(a)
    n = len(a)
    svec, ivec = fastsort(a)
    sumranks = 0
    dupcount = 0
    newarray = np.zeros(n, float)
    for i in xrange(n):
        sumranks += i
        dupcount += 1
        if i==n-1 or svec[i] != svec[i+1]:
            averank = sumranks / float(dupcount) + 1
            for j in xrange(i-dupcount+1,i+1):
                newarray[ivec[j]] = averank
            sumranks = 0
            dupcount = 0
    return newarray