1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
|
# Copyright (c) Gary Strangman. All rights reserved
#
# Disclaimer
#
# This software is provided "as-is". There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fittness for a given application. In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
#
#
# Heavily adapted for use by SciPy 2002 by Travis Oliphant
"""
stats.py module
#################################################
####### Written by: Gary Strangman ###########
#################################################
A collection of basic statistical functions for python. The function
names appear below.
*** Some scalar functions defined here are also available in the scipy.special
package where they work on arbitrary sized arrays. ****
Disclaimers: The function list is obviously incomplete and, worse, the
functions are not optimized. All functions have been tested (some more
so than others), but they are far from bulletproof. Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-) A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters. These functions don't necessarily have
both list and array versions but were deemed useful
CENTRAL TENDENCY: gmean (geometric mean)
hmean (harmonic mean)
mean
median
medianscore
mode
MOMENTS: moment
variation
skew
kurtosis
normaltest (for arrays only)
MOMENTS HANDLING NAN: nanmean
nanmedian
nanstd
ALTERED VERSIONS: tmean
tvar
tstd
tsem
describe
FREQUENCY STATS: freqtable
itemfreq
scoreatpercentile
percentileofscore
histogram
cumfreq
relfreq
VARIABILITY: obrientransform
samplevar
samplestd
signaltonoise (for arrays only)
var
std
stderr
sem
z
zs
TRIMMING FCNS: threshold (for arrays only)
trimboth
trim1
around (round all vals to 'n' decimals)
CORRELATION FCNS: paired
pearsonr
spearmanr
pointbiserialr
kendalltau
linregress
INFERENTIAL STATS: ttest_1samp
ttest_ind
ttest_rel
chisquare
ks_2samp
mannwhitneyu
ranksums
wilcoxon
kruskal
friedmanchisquare
PROBABILITY CALCS: chisqprob
erfcc
zprob
fprob
betai
## Note that scipy.stats.distributions has many more statistical probability
## functions defined.
ANOVA FUNCTIONS: f_oneway
f_value
SUPPORT FUNCTIONS: ss
square_of_sums
shellsort
rankdata
References
----------
[CRCProbStat2000] Zwillinger, D. and Kokoska, S. _CRC Standard Probablity and
Statistics Tables and Formulae_. Chapman & Hall: New York. 2000.
"""
## CHANGE LOG:
## ===========
## since 2001-06-25 ... see scipy SVN changelog
## 05-11-29 ... fixed default axis to be 0 for consistency with scipy;
## cleanup of redundant imports, dead code, {0,1} -> booleans
## 02-02-10 ... require Numeric, eliminate "list-only" functions
## (only 1 set of functions now and no Dispatch class),
## removed all references to aXXXX functions.
## 00-04-13 ... pulled all "global" statements, except from aanova()
## added/fixed lots of documentation, removed io.py dependency
## changed to version 0.5
## 99-11-13 ... added asign() function
## 99-11-01 ... changed version to 0.4 ... enough incremental changes now
## 99-10-25 ... added acovariance and acorrelation functions
## 99-10-10 ... fixed askew/akurtosis to avoid divide-by-zero errors
## added aglm function (crude, but will be improved)
## 99-10-04 ... upgraded acumsum, ass, asummult, asamplevar, var, etc. to
## all handle lists of 'dimension's and keepdims
## REMOVED ar0, ar2, ar3, ar4 and replaced them with around
## reinserted fixes for abetai to avoid math overflows
## 99-09-05 ... rewrote achisqprob/aerfcc/aksprob/afprob/abetacf/abetai to
## handle multi-dimensional arrays (whew!)
## 99-08-30 ... fixed l/amoment, l/askew, l/akurtosis per D'Agostino (1990)
## added anormaltest per same reference
## re-wrote azprob to calc arrays of probs all at once
## 99-08-22 ... edited attest_ind printing section so arrays could be rounded
## 99-08-19 ... fixed amean and aharmonicmean for non-error(!) overflow on
## short/byte arrays (mean of #s btw 100-300 = -150??)
## 99-08-09 ... fixed asum so that the None case works for Byte arrays
## 99-08-08 ... fixed 7/3 'improvement' to handle t-calcs on N-D arrays
## 99-07-03 ... improved attest_ind, attest_rel (zero-division errortrap)
## 99-06-24 ... fixed bug(?) in attest_ind (n1=a.shape[0])
## 04/11/99 ... added asignaltonoise, athreshold functions, changed all
## max/min in array section to maximum/minimum,
## fixed square_of_sums to prevent integer overflow
## 04/10/99 ... !!! Changed function name ... sumsquared ==> square_of_sums
## 03/18/99 ... Added ar0, ar2, ar3 and ar4 rounding functions
## 02/28/99 ... Fixed aobrientransform to return an array rather than a list
## 01/15/99 ... Essentially ceased updating list-versions of functions (!!!)
## 01/13/99 ... CHANGED TO VERSION 0.3
## fixed bug in a/lmannwhitneyu p-value calculation
## 12/31/98 ... fixed variable-name bug in ldescribe
## 12/19/98 ... fixed bug in findwithin (fcns needed pstat. prefix)
## 12/16/98 ... changed amedianscore to return float (not array) for 1 score
## 12/14/98 ... added atmin and atmax functions
## removed umath from import line (not needed)
## l/ageometricmean modified to reduce chance of overflows (take
## nth root first, then multiply)
## 12/07/98 ... added __version__variable (now 0.2)
## removed all 'stats.' from anova() fcn
## 12/06/98 ... changed those functions (except shellsort) that altered
## arguments in-place ... cumsum, ranksort, ...
## updated (and fixed some) doc-strings
## 12/01/98 ... added anova() function (requires NumPy)
## incorporated Dispatch class
## 11/12/98 ... added functionality to amean, aharmonicmean, ageometricmean
## added 'asum' function (added functionality to add.reduce)
## fixed both moment and amoment (two errors)
## changed name of skewness and askewness to skew and askew
## fixed (a)histogram (which sometimes counted points <lowerlimit)
# Standard library imports.
import warnings
import math
#friedmanchisquare patch uses python sum
pysum = sum # save it before it gets overwritten
# Scipy imports.
from numpy import array, asarray, dot, ma, zeros, sum
import scipy.special as special
import scipy.linalg as linalg
import numpy as np
#import scipy.stats #is this a circular import ?
from morestats import find_repeats #is only reference to scipy.stats
import distributions
# Local imports.
import _support
__all__ = ['gmean', 'hmean', 'mean', 'cmedian', 'median', 'mode',
'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem',
'moment', 'variation', 'skew', 'kurtosis', 'describe',
'skewtest', 'kurtosistest', 'normaltest',
'itemfreq', 'scoreatpercentile', 'percentileofscore',
'histogram', 'histogram2', 'cumfreq', 'relfreq',
'obrientransform', 'samplevar', 'samplestd', 'signaltonoise',
'var', 'std', 'stderr', 'sem', 'z', 'zs', 'zmap',
'threshold', 'trimboth', 'trim1', 'trim_mean',
'cov', 'corrcoef', 'f_oneway', 'pearsonr', 'spearmanr',
'pointbiserialr', 'kendalltau', 'linregress',
'ttest_1samp', 'ttest_ind', 'ttest_rel',
'kstest', 'chisquare', 'ks_2samp', 'mannwhitneyu',
'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
'zprob', 'erfc', 'chisqprob', 'ksprob', 'fprob', 'betai',
'glm', 'f_value_wilks_lambda',
'f_value', 'f_value_multivariate',
'ss', 'square_of_sums',
'fastsort', 'rankdata',
'nanmean', 'nanstd', 'nanmedian',
]
def _chk_asarray(a, axis):
if axis is None:
a = np.ravel(a)
outaxis = 0
else:
a = np.asarray(a)
outaxis = axis
return a, outaxis
def _chk2_asarray(a, b, axis):
if axis is None:
a = np.ravel(a)
b = np.ravel(b)
outaxis = 0
else:
a = np.asarray(a)
b = np.asarray(b)
outaxis = axis
return a, b, outaxis
#######
### NAN friendly functions
########
def nanmean(x, axis=0):
"""Compute the mean over the given axis ignoring nans.
:Parameters:
x : ndarray
input array
axis : int
axis along which the mean is computed.
:Results:
m : float
the mean."""
x, axis = _chk_asarray(x,axis)
x = x.copy()
Norig = x.shape[axis]
factor = 1.0-np.sum(np.isnan(x),axis)*1.0/Norig
x[np.isnan(x)] = 0
return np.mean(x,axis)/factor
def nanstd(x, axis=0, bias=False):
"""Compute the standard deviation over the given axis ignoring nans
:Parameters:
x : ndarray
input array
axis : int
axis along which the standard deviation is computed.
bias : boolean
If true, the biased (normalized by N) definition is used. If false,
the unbiased is used (the default).
:Results:
s : float
the standard deviation."""
x, axis = _chk_asarray(x,axis)
x = x.copy()
Norig = x.shape[axis]
Nnan = np.sum(np.isnan(x),axis)*1.0
n = Norig - Nnan
x[np.isnan(x)] = 0.
m1 = np.sum(x,axis)/n
# Kludge to subtract m1 from the correct axis
if axis!=0:
shape = np.arange(x.ndim).tolist()
shape.remove(axis)
shape.insert(0,axis)
x = x.transpose(tuple(shape))
d = (x-m1)**2.0
shape = tuple(array(shape).argsort())
d = d.transpose(shape)
else:
d = (x-m1)**2.0
m2 = np.sum(d,axis)-(m1*m1)*Nnan
if bias:
m2c = m2 / n
else:
m2c = m2 / (n - 1.)
return np.sqrt(m2c)
def _nanmedian(arr1d): # This only works on 1d arrays
"""Private function for rank a arrays. Compute the median ignoring Nan.
:Parameters:
arr1d : rank 1 ndarray
input array
:Results:
m : float
the median."""
cond = 1-np.isnan(arr1d)
x = np.sort(np.compress(cond,arr1d,axis=-1))
if x.size == 0:
return np.nan
return median(x)
def nanmedian(x, axis=0):
""" Compute the median along the given axis ignoring nan values
:Parameters:
x : ndarray
input array
axis : int
axis along which the median is computed.
:Results:
m : float
the median."""
x, axis = _chk_asarray(x,axis)
x = x.copy()
return np.apply_along_axis(_nanmedian,axis,x)
#####################################
######## CENTRAL TENDENCY ########
#####################################
def gmean(a, axis=0):
"""Calculates the geometric mean of the values in the passed array.
That is: n-th root of (x1 * x2 * ... * xn)
Parameters
----------
a : array of positive values
axis : int or None
zero_sub : value to substitute for zero values. Default is 0.
Returns
-------
The geometric mean computed over a single dimension of the input array or
all values in the array if axis==None.
"""
a, axis = _chk_asarray(a, axis)
log_a = np.log(a)
return np.exp(log_a.mean(axis=axis))
def hmean(a, axis=0, zero_sub=0):
"""Calculates the harmonic mean of the values in the passed array.
That is: n / (1/x1 + 1/x2 + ... + 1/xn)
Parameters
----------
a : array
axis : int or None
Returns
-------
The harmonic mean computed over a single dimension of the input array or all
values in the array if axis=None.
"""
a, axis = _chk_asarray(a, axis)
size = a.shape[axis]
return size / np.sum(1.0/a, axis)
def mean(a, axis=0):
# fixme: This seems to be redundant with numpy.mean(,axis=0) or even
# the ndarray.mean() method.
"""Returns the arithmetic mean of m along the given dimension.
That is: (x1 + x2 + .. + xn) / n
Parameters
----------
a : array
axis : int or None
Returns
-------
The arithmetic mean computed over a single dimension of the input array or
all values in the array if axis=None. The return value will have a floating
point dtype even if the input data are integers.
"""
warnings.warn("""\
scipy.stats.mean is deprecated; please update your code to use numpy.mean.
Please note that:
- numpy.mean axis argument defaults to None, not 0
- numpy.mean has a ddof argument to replace bias in a more general manner.
scipy.stats.mean(a, bias=True) can be replaced by numpy.mean(x,
axis=0, ddof=1).""", DeprecationWarning)
a, axis = _chk_asarray(a, axis)
return a.mean(axis)
def cmedian(a, numbins=1000):
# fixme: numpy.median() always seems to be a better choice.
# A better version of this function would take already-histogrammed data
# and compute the median from that.
# fixme: the wording of the docstring is a bit wonky.
"""Returns the computed median value of an array.
All of the values in the input array are used. The input array is first
histogrammed using numbins bins. The bin containing the median is
selected by searching for the halfway point in the cumulative histogram.
The median value is then computed by linearly interpolating across that bin.
Parameters
----------
a : array
numbins : int
The number of bins used to histogram the data. More bins give greater
accuracy to the approximation of the median.
Returns
-------
A floating point value approximating the median.
References
----------
[CRCProbStat2000] Section 2.2.6
"""
a = np.ravel(a)
n = float(len(a))
# We will emulate the (fixed!) bounds selection scheme used by
# scipy.stats.histogram(), but use numpy.histogram() since it is faster.
amin = a.min()
amax = a.max()
estbinwidth = (amax - amin)/float(numbins - 1)
binsize = (amax - amin + estbinwidth) / float(numbins)
(hist, bins) = np.histogram(a, numbins,
range=(amin-binsize*0.5, amax+binsize*0.5))
binsize = bins[1] - bins[0]
cumhist = np.cumsum(hist) # make cumulative histogram
cfbin = np.searchsorted(cumhist, n/2.0)
LRL = bins[cfbin] # get lower read limit of that bin
if cfbin == 0:
cfbelow = 0.0
else:
cfbelow = cumhist[cfbin-1] # cum. freq. below bin
freq = hist[cfbin] # frequency IN the 50%ile bin
median = LRL + ((n/2.0-cfbelow)/float(freq))*binsize # MEDIAN
return median
def median(a, axis=0):
# fixme: This would be redundant with numpy.median() except that the latter
# does not deal with arbitrary axes.
"""Returns the median of the passed array along the given axis.
If there is an even number of entries, the mean of the
2 middle values is returned.
Parameters
----------
a : array
axis=0 : int
Returns
-------
The median of each remaining axis, or of all of the values in the array
if axis is None.
"""
warnings.warn("""\
scipy.stats.median is deprecated; please update your code to use numpy.median.
Please note that:
- numpy.median axis argument defaults to None, not 0
- numpy.median has a ddof argument to replace bias in a more general manner.
scipy.stats.median(a, bias=True) can be replaced by numpy.median(x,
axis=0, ddof=1).""", DeprecationWarning)
return np.median(a, axis)
def mode(a, axis=0):
"""Returns an array of the modal (most common) value in the passed array.
If there is more than one such value, only the first is returned.
The bin-count for the modal bins is also returned.
Parameters
----------
a : array
axis=0 : int
Returns
-------
(array of modal values, array of counts for each mode)
"""
a, axis = _chk_asarray(a, axis)
scores = np.unique(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape)
oldcounts = np.zeros(testshape)
for score in scores:
template = (a == score)
counts = np.expand_dims(np.sum(template, axis),axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return mostfrequent, oldcounts
def mask_to_limits(a, limits, inclusive):
"""Mask an array for values outside of given limits.
This is primarily a utility function.
Parameters
----------
a : array
limits : (float or None, float or None)
A tuple consisting of the (lower limit, upper limit). Values in the
input array less than the lower limit or greater than the upper limit
will be masked out. None implies no limit.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A MaskedArray.
Raises
------
A ValueError if there are no values within the given limits.
"""
lower_limit, upper_limit = limits
lower_include, upper_include = inclusive
am = ma.MaskedArray(a)
if lower_limit is not None:
if lower_include:
am = ma.masked_less(am, lower_limit)
else:
am = ma.masked_less_equal(am, lower_limit)
if upper_limit is not None:
if upper_include:
am = ma.masked_greater(am, upper_limit)
else:
am = ma.masked_greater_equal(am, upper_limit)
if am.count() == 0:
raise ValueError("No array values within given limits")
return am
def tmean(a, limits=None, inclusive=(True, True)):
"""Returns the arithmetic mean of all values in an array, ignoring values
strictly outside given limits.
Parameters
----------
a : array
limits : None or (lower limit, upper limit)
Values in the input array less than the lower limit or greater than the
upper limit will be masked out. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A float.
"""
a = asarray(a)
# Cast to a float if this is an integer array. If it is already a float
# array, leave it as is to preserve its precision.
if issubclass(a.dtype.type, np.integer):
a = a.astype(float)
# No trimming.
if limits is None:
return mean(a,None)
am = mask_to_limits(a.ravel(), limits, inclusive)
return am.mean()
def masked_var(am):
m = am.mean()
s = ma.add.reduce((am - m)**2)
n = am.count() - 1.0
return s / n
def tvar(a, limits=None, inclusive=(1,1)):
"""Returns the sample variance of values in an array, (i.e., using
N-1), ignoring values strictly outside the sequence passed to
'limits'. Note: either limit in the sequence, or the value of
limits itself, can be set to None. The inclusive list/tuple
determines whether the lower and upper limiting bounds
(respectively) are open/exclusive (0) or closed/inclusive (1).
"""
a = asarray(a)
a = a.astype(float).ravel()
if limits is None:
n = len(a)
return a.var()*(n/(n-1.))
am = mask_to_limits(a, limits, inclusive)
return masked_var(am)
def tmin(a, lowerlimit=None, axis=0, inclusive=True):
"""Returns the minimum value of a, along axis, including only values
less than (or equal to, if inclusive is True) lowerlimit. If the
limit is set to None, all values in the array are used.
"""
a, axis = _chk_asarray(a, axis)
am = mask_to_limits(a, (lowerlimit, None), (inclusive, False))
return ma.minimum.reduce(am, axis)
def tmax(a, upperlimit, axis=0, inclusive=True):
"""Returns the maximum value of a, along axis, including only values
greater than (or equal to, if inclusive is True) upperlimit. If the limit
is set to None, a limit larger than the max value in the array is
used.
"""
a, axis = _chk_asarray(a, axis)
am = mask_to_limits(a, (None, upperlimit), (False, inclusive))
return ma.maximum.reduce(am, axis)
def tstd(a, limits=None, inclusive=(1,1)):
"""Returns the standard deviation of all values in an array,
ignoring values strictly outside the sequence passed to 'limits'.
Note: either limit in the sequence, or the value of limits itself,
can be set to None. The inclusive list/tuple determines whether the
lower and upper limiting bounds (respectively) are open/exclusive
(0) or closed/inclusive (1).
"""
return np.sqrt(tvar(a,limits,inclusive))
def tsem(a, limits=None, inclusive=(True,True)):
"""Returns the standard error of the mean for the values in an array,
(i.e., using N for the denominator), ignoring values strictly outside
the sequence passed to 'limits'. Note: either limit in the
sequence, or the value of limits itself, can be set to None. The
inclusive list/tuple determines whether the lower and upper limiting
bounds (respectively) are open/exclusive (0) or closed/inclusive (1).
"""
a = np.asarray(a).ravel()
if limits is None:
n = float(len(a))
return a.std()/np.sqrt(n)
am = mask_to_limits(a.ravel(), limits, inclusive)
sd = np.sqrt(masked_var(am))
return sd / am.count()
#####################################
############ MOMENTS #############
#####################################
def moment(a, moment=1, axis=0):
"""Calculates the nth moment about the mean for a sample.
Generally used to calculate coefficients of skewness and
kurtosis.
Parameters
----------
a : array
moment : int
axis : int or None
Returns
-------
The appropriate moment along the given axis or over all values if axis is
None.
"""
a, axis = _chk_asarray(a, axis)
if moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
mn = np.expand_dims(np.mean(a,axis), axis)
s = np.power((a-mn), moment)
return np.mean(s, axis)
def variation(a, axis=0):
"""Computes the coefficient of variation, the ratio of the biased standard
deviation to the mean.
Parameters
----------
a : array
axis : int or None
References
----------
[CRCProbStat2000] section 2.2.20
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
return a.std(axis)/a.mean(axis)
def skew(a, axis=0, bias=True):
"""Computes the skewness of a data set.
For normally distributed data, the skewness should be about 0. A skewness
value > 0 means that there is more weight in the left tail of the
distribution. The function skewtest() can be used to determine if the
skewness value is close enough to 0, statistically speaking.
Parameters
----------
a : array
axis : int or None
bias : bool
If False, then the calculations are corrected for statistical bias.
Returns
-------
The skewness of values along an axis, returning 0 where all values are
equal.
References
----------
[CRCProbStat2000] section 2.2.24.1
"""
a, axis = _chk_asarray(a,axis)
n = a.shape[axis]
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
zero = (m2 == 0)
vals = np.where(zero, 0, m3 / m2**1.5)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = np.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
np.place(vals, can_correct, nval)
if vals.ndim == 0:
return vals.item()
return vals
def kurtosis(a, axis=0, fisher=True, bias=True):
"""Computes the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance.
If Fisher's definition is used, then 3.0 is subtracted from the result to
give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to
eliminate bias comming from biased moment estimators
Use kurtosistest() to see if result is close enough to normal.
Parameters
----------
a : array
axis : int or None
fisher : bool
If True, Fisher's definition is used (normal ==> 0.0). If False,
Pearson's definition is used (normal ==> 3.0).
bias : bool
If False, then the calculations are corrected for statistical bias.
Returns
-------
The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's
definition and 0 for Pearson's definition.
References
----------
[CRCProbStat2000] section 2.2.25
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
m2 = moment(a,2,axis)
m4 = moment(a,4,axis)
zero = (m2 == 0)
vals = np.where(zero, 0, m4/ m2**2.0)
if not bias:
can_correct = (n > 3) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
np.place(vals, can_correct, nval+3.0)
if vals.ndim == 0:
vals = vals.item() # array scalar
if fisher:
return vals - 3
else:
return vals
def describe(a, axis=0):
"""Computes several descriptive statistics of the passed array.
Parameters
----------
a : array
axis : int or None
Returns
-------
(size of the data,
(min, max),
arithmetic mean,
unbiased variance,
biased skewness,
biased kurtosis)
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
#mm = (np.minimum.reduce(a), np.maximum.reduce(a))
mm = (np.min(a, axis=axis), np.max(a, axis=axis))
m = np.mean(a, axis=axis)
v = np.var(a, axis=axis, ddof=1)
sk = skew(a, axis)
kurt = kurtosis(a, axis)
return n, mm, m, v, sk, kurt
#####################################
######## NORMALITY TESTS ##########
#####################################
def skewtest(a, axis=0):
"""Tests whether the skew is significantly different from a normal
distribution.
The size of the dataset should be >= 8.
Parameters
----------
a : array
axis : int or None
Returns
-------
(Z-score,
2-tail Z-probability,
)
"""
a, axis = _chk_asarray(a, axis)
if axis is None:
a = np.ravel(a)
axis = 0
b2 = skew(a,axis)
n = float(a.shape[axis])
if n < 8:
warnings.warn(
"skewtest only valid for n>=8 ... continuing anyway, n=%i" %
int(n))
y = b2 * math.sqrt(((n+1)*(n+3)) / (6.0*(n-2)) )
beta2 = ( 3.0*(n*n+27*n-70)*(n+1)*(n+3) ) / ( (n-2.0)*(n+5)*(n+7)*(n+9) )
W2 = -1 + math.sqrt(2*(beta2-1))
delta = 1/math.sqrt(0.5*math.log(W2))
alpha = math.sqrt(2.0/(W2-1))
y = np.where(y==0, 1, y)
Z = delta*np.log(y/alpha + np.sqrt((y/alpha)**2+1))
return Z, (1.0 - zprob(np.abs(Z)))*2
def kurtosistest(a, axis=0):
"""Tests whether a dataset has normal kurtosis (i.e.,
kurtosis=3(n-1)/(n+1)).
Valid only for n>20.
Parameters
----------
a : array
axis : int or None
Returns
-------
(Z-score,
2-tail Z-probability)
The Z-score is set to 0 for bad entries.
"""
a, axis = _chk_asarray(a, axis)
n = float(a.shape[axis])
if n < 20:
warnings.warn(
"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
int(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) /(n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
x = (b2-E)/np.sqrt(varb2)
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5))/
(n*(n-2)*(n-3)))
A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 -2/(9.0*A)
denom = 1 +x*np.sqrt(2/(A-4.0))
denom = np.where(denom < 0, 99, denom)
term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom,1/3.0))
Z = ( term1 - term2 ) / np.sqrt(2/(9.0*A))
Z = np.where(denom == 99, 0, Z)
if Z.ndim == 0:
Z = Z[()]
#JPNote: p-value sometimes larger than 1
#zprob uses upper tail, so Z needs to be positive
return Z, (1.0-zprob(np.abs(Z)))*2
def normaltest(a, axis=0):
"""Tests whether skew and/or kurtosis of dataset differs from normal curve.
Parameters
----------
a : array
axis : int or None
Returns
-------
(Chi^2 score,
2-tail probability)
Based on the D'Agostino and Pearson's test that combines skew and
kurtosis to produce an omnibus test of normality.
D'Agostino, R. B. and Pearson, E. S. (1971), "An Omnibus Test of
Normality for Moderate and Large Sample Size," Biometrika, 58, 341-348
D'Agostino, R. B. and Pearson, E. S. (1973), "Testing for departures from
Normality," Biometrika, 60, 613-622
"""
a, axis = _chk_asarray(a, axis)
s,p = skewtest(a,axis)
k,p = kurtosistest(a,axis)
k2 = s*s + k*k
return k2, chisqprob(k2,2)
# Martinez-Iglewicz test
# K-S test
#####################################
###### FREQUENCY FUNCTIONS #######
#####################################
def itemfreq(a):
# fixme: I'm not sure I understand what this does. The docstring is
# internally inconsistent.
# comment: fortunately, this function doesn't appear to be used elsewhere
"""Returns a 2D array of item frequencies.
Column 1 contains item values, column 2 contains their respective counts.
Assumes a 1D array is passed.
Parameters
----------
a : array
Returns
-------
A 2D frequency table (col [0:n-1]=scores, col n=frequencies)
"""
scores = _support.unique(a)
scores = np.sort(scores)
freq = zeros(len(scores))
for i in range(len(scores)):
freq[i] = np.add.reduce(np.equal(a,scores[i]))
return array(_support.abut(scores, freq))
def _interpolate(a, b, fraction):
"""Returns the point at the given fraction between a and b, where
'fraction' must be between 0 and 1.
"""
return a + (b - a)*fraction;
def scoreatpercentile(a, per, limit=()):
"""Calculate the score at the given 'per' percentile of the
sequence a. For example, the score at per=50 is the median.
If the desired quantile lies between two data points, we
interpolate between them.
If the parameter 'limit' is provided, it should be a tuple (lower,
upper) of two values. Values of 'a' outside this (closed)
interval will be ignored.
"""
# TODO: this should be a simple wrapper around a well-written quantile
# function. GNU R provides 9 quantile algorithms (!), with differing
# behaviour at, for example, discontinuities.
values = np.sort(a,axis=0)
if limit:
values = values[(limit[0] <= values) & (values <= limit[1])]
idx = per /100. * (values.shape[0] - 1)
if (idx % 1 == 0):
return values[idx]
else:
return _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1)
def percentileofscore(a, score, kind='rank'):
'''
The percentile rank of a score relative to a list of scores.
A `percentileofscore` of, for example, 80% means that 80% of the
scores in `a` are below the given score. In the case of gaps or
ties, the exact definition depends on the optional keyword, `kind`.
Parameters
----------
a: array like
Array of scores to which `score` is compared.
score: int or float
Score that is compared to the elements in `a`.
kind: {'rank', 'weak', 'strict', 'mean'}, optional
This optional parameter specifies the interpretation of the
resulting score:
- "rank": Average percentage ranking of score. In case of
multiple matches, average the percentage rankings of
all matching scores.
- "weak": This kind corresponds to the definition of a cumulative
distribution function. A percentileofscore of 80%
means that 80% of values are less than or equal
to the provided score.
- "strict": Similar to "weak", except that only values that are
strictly less than the given score are counted.
- "mean": The average of the "weak" and "strict" scores, often used in
testing. See
http://en.wikipedia.org/wiki/Percentile_rank
Returns
-------
pcos : float
Percentile-position of score (0-100) relative to `a`.
Examples
--------
Three-quarters of the given values lie below a given score:
>>> percentileofscore([1, 2, 3, 4], 3)
75.0
With multiple matches, note how the scores of the two matches, 0.6
and 0.8 respectively, are averaged:
>>> percentileofscore([1, 2, 3, 3, 4], 3)
70.0
Only 2/5 values are strictly less than 3:
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
But 4/5 values are less than or equal to 3:
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
The average between the weak and the strict scores is
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
'''
a = np.array(a)
n = len(a)
if kind == 'rank':
if not(np.any(a == score)):
a = np.append(a, score)
a_len = np.array(range(len(a)))
else:
a_len = np.array(range(len(a))) + 1.0
a = np.sort(a)
idx = [a == score]
pct = (np.mean(a_len[idx]) / n) * 100.0
return pct
elif kind == 'strict':
return sum(a < score) / float(n) * 100
elif kind == 'weak':
return sum(a <= score) / float(n) * 100
elif kind == 'mean':
return (sum(a < score) + sum(a <= score)) * 50 / float(n)
else:
raise ValueError, "kind can only be 'rank', 'strict', 'weak' or 'mean'"
def histogram2(a, bins):
# comment: probably obsoleted by numpy.histogram()
""" histogram2(a,bins) -- Compute histogram of a using divisions in bins
Description:
Count the number of times values from array a fall into
numerical ranges defined by bins. Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the bins array. The last range is given by
bins[N] <= range_N < infinity. Values less than bins[0] are
not included in the histogram.
Arguments:
a -- 1D array. The array of values to be divied into bins
bins -- 1D array. Defines the ranges of values to use during
histogramming.
Returns:
1D array. Each value represents the occurences for a given
bin (range) of values.
Caveat:
This should probably have an axis argument that would histogram
along a specific axis (kinda like matlab)
"""
n = np.searchsorted(np.sort(a), bins)
n = np.concatenate([ n, [len(a)]])
return n[ 1:]-n[:-1]
def histogram(a, numbins=10, defaultlimits=None, printextras=True):
# fixme: use numpy.histogram() to implement
"""
Returns (i) an array of histogram bin counts, (ii) the smallest value
of the histogram binning, and (iii) the bin width (the last 2 are not
necessarily integers). Default number of bins is 10. Defaultlimits
can be None (the routine picks bins spanning all the numbers in the
a) or a 2-sequence (lowerlimit, upperlimit). Returns all of the
following: array of bin values, lowerreallimit, binsize, extrapoints.
Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)
"""
a = np.ravel(a) # flatten any >1D arrays
if (defaultlimits is not None):
lowerreallimit = defaultlimits[0]
upperreallimit = defaultlimits[1]
binsize = (upperreallimit-lowerreallimit) / float(numbins)
else:
Min = a.min()
Max = a.max()
estbinwidth = float(Max - Min)/float(numbins - 1)
binsize = (Max-Min+estbinwidth)/float(numbins)
lowerreallimit = Min - binsize/2.0 #lower real limit,1st bin
bins = zeros(numbins)
extrapoints = 0
for num in a:
try:
if (num-lowerreallimit) < 0:
extrapoints += 1
else:
bintoincrement = int((num-lowerreallimit) / float(binsize))
bins[bintoincrement] = bins[bintoincrement] + 1
except: # point outside lower/upper limits
extrapoints += 1
if extrapoints > 0 and printextras:
# fixme: warnings.warn()
print '\nPoints outside given histogram range =',extrapoints
return (bins, lowerreallimit, binsize, extrapoints)
def cumfreq(a, numbins=10, defaultreallimits=None):
"""
Returns a cumulative frequency histogram, using the histogram function.
Defaultreallimits can be None (use all data), or a 2-sequence containing
lower and upper limits on values to include.
Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
"""
h,l,b,e = histogram(a,numbins,defaultreallimits)
cumhist = np.cumsum(h*1, axis=0)
return cumhist,l,b,e
def relfreq(a, numbins=10, defaultreallimits=None):
"""
Returns a relative frequency histogram, using the histogram function.
Defaultreallimits can be None (use all data), or a 2-sequence containing
lower and upper limits on values to include.
Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
"""
h,l,b,e = histogram(a,numbins,defaultreallimits)
h = array(h/float(a.shape[0]))
return h,l,b,e
#####################################
###### VARIABILITY FUNCTIONS #####
#####################################
def obrientransform(*args):
"""
Computes a transform on input data (any number of columns). Used to
test for homogeneity of variance prior to running one-way stats. Each
array in *args is one level of a factor. If an F_oneway() run on the
transformed data and found significant, variances are unequal. From
Maxwell and Delaney, p.112.
Returns: transformed data for use in an ANOVA
"""
TINY = 1e-10
k = len(args)
n = zeros(k)
v = zeros(k)
m = zeros(k)
nargs = []
for i in range(k):
nargs.append(args[i].astype(float))
n[i] = float(len(nargs[i]))
v[i] = var(nargs[i])
m[i] = mean(nargs[i],None)
for j in range(k):
for i in range(int(n[j])):
t1 = (n[j]-1.5)*n[j]*(nargs[j][i]-m[j])**2
t2 = 0.5*v[j]*(n[j]-1.0)
t3 = (n[j]-1.0)*(n[j]-2.0)
nargs[j][i] = (t1-t2) / float(t3)
check = 1
for j in range(k):
if v[j] - mean(nargs[j],None) > TINY:
check = 0
if check != 1:
raise ValueError, 'Lack of convergence in obrientransform.'
else:
return array(nargs)
def samplevar(a, axis=0):
"""
Returns the sample standard deviation of the values in the passed
array (i.e., using N). Axis can equal None (ravel array first),
an integer (the axis over which to operate)
"""
a, axis = _chk_asarray(a, axis)
mn = np.expand_dims(mean(a, axis), axis)
deviations = a - mn
n = a.shape[axis]
svar = ss(deviations,axis) / float(n)
return svar
def samplestd(a, axis=0):
"""Returns the sample standard deviation of the values in the passed
array (i.e., using N). Axis can equal None (ravel array first),
an integer (the axis over which to operate).
"""
return np.sqrt(samplevar(a,axis))
def signaltonoise(instack, axis=0):
"""
Calculates signal-to-noise. Axis can equal None (ravel array
first), an integer (the axis over which to operate).
Returns: array containing the value of (mean/stdev) along axis,
or 0 when stdev=0
"""
m = mean(instack,axis)
sd = samplestd(instack,axis)
return np.where(sd == 0, 0, m/sd)
def var(a, axis=0, bias=False):
"""
Returns the estimated population variance of the values in the passed
array (i.e., N-1). Axis can equal None (ravel array first), or an
integer (the axis over which to operate).
"""
warnings.warn("""\
scipy.stats.var is deprecated; please update your code to use numpy.var.
Please note that:
- numpy.var axis argument defaults to None, not 0
- numpy.var has a ddof argument to replace bias in a more general manner.
scipy.stats.var(a, bias=True) can be replaced by numpy.var(x,
axis=0, ddof=0), scipy.stats.var(a, bias=False) by var(x, axis=0,
ddof=1).""", DeprecationWarning)
a, axis = _chk_asarray(a, axis)
mn = np.expand_dims(mean(a,axis),axis)
deviations = a - mn
n = a.shape[axis]
vals = sum(abs(deviations)**2,axis)/(n-1.0)
if bias:
return vals * (n-1.0)/n
else:
return vals
def std(a, axis=0, bias=False):
"""
Returns the estimated population standard deviation of the values in
the passed array (i.e., N-1). Axis can equal None (ravel array
first), or an integer (the axis over which to operate).
"""
warnings.warn("""\
scipy.stats.std is deprecated; please update your code to use numpy.std.
Please note that:
- numpy.std axis argument defaults to None, not 0
- numpy.std has a ddof argument to replace bias in a more general manner.
scipy.stats.std(a, bias=True) can be replaced by numpy.std(x,
axis=0, ddof=0), scipy.stats.std(a, bias=False) by numpy.std(x, axis=0,
ddof=1).""", DeprecationWarning)
return np.sqrt(var(a,axis,bias))
def stderr(a, axis=0):
"""
Returns the estimated population standard error of the values in the
passed array (i.e., N-1). Axis can equal None (ravel array
first), or an integer (the axis over which to operate).
"""
a, axis = _chk_asarray(a, axis)
return std(a,axis) / float(np.sqrt(a.shape[axis]))
def sem(a, axis=0):
"""
Returns the standard error of the mean (i.e., using N) of the values
in the passed array. Axis can equal None (ravel array first), or an
integer (the axis over which to operate)
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
s = samplestd(a,axis) / np.sqrt(n-1)
return s
def z(a, score):
"""
Returns the z-score of a given input score, given thearray from which
that score came. Not appropriate for population calculations, nor for
arrays > 1D.
"""
z = (score-mean(a,None)) / samplestd(a)
return z
def zs(a):
"""
Returns a 1D array of z-scores, one for each score in the passed array,
computed relative to the passed array.
"""
mu = mean(a,None)
sigma = samplestd(a)
return (array(a)-mu)/sigma
def zmap(scores, compare, axis=0):
"""
Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to
array passed to compare (e.g., [time,x,y]). Assumes collapsing over dim 0
of the compare array.
"""
mns = mean(compare,axis)
sstd = samplestd(compare,0)
return (scores - mns) / sstd
#####################################
####### TRIMMING FUNCTIONS #######
#####################################
def threshold(a, threshmin=None, threshmax=None, newval=0):
"""Clip array to a given value.
Similar to numpy.clip(), except that values less than threshmin or
greater than threshmax are replaced by newval, instead of by
threshmin and threshmax respectively.
Returns: a, with values less than threshmin or greater than threshmax
replaced with newval
"""
a = asarray(a).copy()
mask = zeros(a.shape, dtype=bool)
if threshmin is not None:
mask |= (a < threshmin)
if threshmax is not None:
mask |= (a > threshmax)
a[mask] = newval
return a
def trimboth(a, proportiontocut):
"""
Slices off the passed proportion of items from BOTH ends of the passed
array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND
'rightmost' 10% of scores. You must pre-sort the array if you want
"proper" trimming. Slices off LESS if proportion results in a
non-integer slice index (i.e., conservatively slices off
proportiontocut).
Returns: trimmed version of array a
"""
a = asarray(a)
lowercut = int(proportiontocut*len(a))
uppercut = len(a) - lowercut
if (lowercut >= uppercut):
raise ValueError, "Proportion too big."
return a[lowercut:uppercut]
def trim1(a, proportiontocut, tail='right'):
"""
Slices off the passed proportion of items from ONE end of the passed
array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
10% of scores). Slices off LESS if proportion results in a non-integer
slice index (i.e., conservatively slices off proportiontocut).
Returns: trimmed version of array a
"""
a = asarray(a)
if tail.lower() == 'right':
lowercut = 0
uppercut = len(a) - int(proportiontocut*len(a))
elif tail.lower() == 'left':
lowercut = int(proportiontocut*len(a))
uppercut = len(a)
return a[lowercut:uppercut]
def trim_mean(a, proportiontocut):
"""Return mean with proportiontocut chopped from each of the lower and
upper tails.
"""
newa = trimboth(np.sort(a),proportiontocut)
return mean(newa,axis=0)
#####################################
##### CORRELATION FUNCTIONS ######
#####################################
# Cov is more flexible than the original
# covariance and computes an unbiased covariance matrix
# by default.
def cov(m, y=None, rowvar=False, bias=False):
"""Estimate the covariance matrix.
If m is a vector, return the variance. For matrices where each row
is an observation, and each column a variable, return the covariance
matrix. Note that in this case diag(cov(m)) is a vector of
variances for each column.
cov(m) is the same as cov(m, m)
Normalization is by (N-1) where N is the number of observations
(unbiased estimate). If bias is True then normalization is by N.
If rowvar is False, then each row is a variable with
observations in the columns.
"""
warnings.warn("""\
scipy.stats.cov is deprecated; please update your code to use numpy.cov.
Please note that:
- numpy.cov rowvar argument defaults to true, not false
- numpy.cov bias argument defaults to false, not true
""", DeprecationWarning)
m = asarray(m)
if y is None:
y = m
else:
y = asarray(y)
if rowvar:
m = np.transpose(m)
y = np.transpose(y)
N = m.shape[0]
if (y.shape[0] != N):
raise ValueError, "x and y must have the same number of observations."
m = m - mean(m,axis=0)
y = y - mean(y,axis=0)
if bias:
fact = N*1.0
else:
fact = N-1.0
val = np.squeeze(np.dot(np.transpose(m),np.conjugate(y))) / fact
return val
def corrcoef(x, y=None, rowvar=False, bias=True):
"""The correlation coefficients formed from 2-d array x, where the
rows are the observations, and the columns are variables.
corrcoef(x,y) where x and y are 1d arrays is the same as
corrcoef(transpose([x,y]))
If rowvar is True, then each row is a variables with
observations in the columns.
"""
warnings.warn("""\
scipy.stats.corrcoef is deprecated; please update your code to use numpy.corrcoef.
Please note that:
- numpy.corrcoef rowvar argument defaults to true, not false
- numpy.corrcoef bias argument defaults to false, not true
""", DeprecationWarning)
if y is not None:
x = np.transpose([x,y])
y = None
c = cov(x, y, rowvar=rowvar, bias=bias)
d = np.diag(c)
return c/np.sqrt(np.multiply.outer(d,d))
def f_oneway(*args):
"""
Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups. From Heiman, pp.394-7.
Usage: f_oneway (*args) where *args is 2 or more arrays, one per
treatment group
Returns: f-value, probability
"""
na = len(args) # ANOVA on 'na' groups, each in it's own array
tmp = map(np.array,args)
alldata = np.concatenate(args)
bign = len(alldata)
sstot = ss(alldata)-(square_of_sums(alldata)/float(bign))
ssbn = 0
for a in args:
ssbn = ssbn + square_of_sums(array(a))/float(len(a))
ssbn = ssbn - (square_of_sums(alldata)/float(bign))
sswn = sstot-ssbn
dfbn = na-1
dfwn = bign - na
msb = ssbn/float(dfbn)
msw = sswn/float(dfwn)
f = msb/msw
prob = fprob(dfbn,dfwn,f)
return f, prob
def pearsonr(x, y):
"""Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
"""
# x and y should have same length.
x = np.asarray(x)
y = np.asarray(y)
n = len(x)
mx = x.mean()
my = y.mean()
xm, ym = x-mx, y-my
r_num = n*(np.add.reduce(xm*ym))
r_den = n*np.sqrt(ss(xm)*ss(ym))
r = (r_num / r_den)
# Presumably, if r > 1, then it is only some small artifact of floating
# point arithmetic.
r = min(r, 1.0)
df = n-2
# Use a small floating point value to prevent divide-by-zero nonsense
# fixme: TINY is probably not the right value and this is probably not
# the way to be robust. The scheme used in spearmanr is probably better.
TINY = 1.0e-20
t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
prob = betai(0.5*df,0.5,df/(df+t*t))
return r,prob
def spearmanr(x, y):
"""Calculates a Spearman rank-order correlation coefficient and the p-value
to test for non-correlation.
The Spearman correlation is a nonparametric measure of the linear
relationship between two datasets. Unlike the Pearson correlation, the
Spearman correlation does not assume that both datasets are normally
distributed. Like other correlation coefficients, this one varies
between -1 and +1 with 0 implying no correlation. Correlations of -1 or
+1 imply an exact linear relationship. Positive correlations imply that
as x increases, so does y. Negative correlations imply that as x
increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
The lengths of both arrays must be > 2.
Returns
-------
(Spearman correlation coefficient,
2-tailed p-value)
References
----------
[CRCProbStat2000] section 14.7
"""
x = np.asanyarray(x)
y = np.asanyarray(y)
n = len(x)
m = len(y)
if n != m:
raise ValueError("lengths of x and y must match: %s != %s" % (n, m))
if n <= 2:
raise ValueError("length must be > 2")
rankx = rankdata(x)
ranky = rankdata(y)
dsq = np.add.reduce((rankx-ranky)**2)
rs = 1 - 6*dsq / float(n*(n**2-1))
df = n-2
try:
t = rs * np.sqrt((n-2) / ((rs+1.0)*(1.0-rs)))
probrs = betai(0.5*df, 0.5, df/(df+t*t))
except ZeroDivisionError:
probrs = 0.0
return rs, probrs
def pointbiserialr(x, y):
# comment: I am changing the semantics somewhat. The original function is
# fairly general and accepts an x sequence that has any type of thing in it as
# along as there are only two unique items. I am going to restrict this to
# a boolean array for my sanity.
"""Calculates a point biserial correlation coefficient and the associated
p-value.
The point biserial correlation is used to measure the relationship
between a binary variable, x, and a continuous variable, y. Like other
correlation coefficients, this one varies between -1 and +1 with 0
implying no correlation. Correlations of -1 or +1 imply a determinative
relationship.
Parameters
----------
x : array of bools
y : array of floats
Returns
-------
(point-biserial r,
2-tailed p-value)
References
----------
http://www.childrens-mercy.org/stats/definitions/biserial.htm
"""
## Test data: http://support.sas.com/ctx/samples/index.jsp?sid=490&tab=output
# x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]
# y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,2.8,2.8,2.5,
# 2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,0.8,0.7,0.6,0.5,0.2,0.2,
# 0.1]
# rpb = 0.36149
x = np.asarray(x, dtype=bool)
y = np.asarray(y, dtype=float)
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(len(x))
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
df = n-2
# fixme: see comment about TINY in pearsonr()
TINY = 1e-20
t = rpb*np.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY)))
prob = betai(0.5*df, 0.5, df/(df+t*t))
return rpb, prob
def kendalltau(x, y):
"""Calculates Kendall's tau, a correlation measure for ordinal data, and an
associated p-value.
Returns: Kendall's tau, two-tailed p-value
"""
n1 = 0
n2 = 0
iss = 0
for j in range(len(x)-1):
for k in range(j+1,len(y)):
a1 = x[j] - x[k]
a2 = y[j] - y[k]
aa = a1 * a2
if (aa): # neither array has a tie
n1 = n1 + 1
n2 = n2 + 1
if aa > 0:
iss = iss + 1
else:
iss = iss -1
else:
if a1:
n1 = n1 + 1
if a2:
n2 = n2 + 1
tau = iss / np.sqrt(float(n1*n2))
svar = (4.0*len(x)+10.0) / (9.0*len(x)*(len(x)-1))
z = tau / np.sqrt(svar)
prob = erfc(abs(z)/1.4142136)
return tau, prob
def linregress(*args):
"""Calculates a regression line on two arrays, x and y, corresponding to
x,y pairs. If a single 2D array is passed, linregress finds dim with 2
levels and splits data into x,y pairs along that dim.
Returns: slope, intercept, r, two-tailed prob, stderr-of-the-estimate
"""
TINY = 1.0e-20
if len(args) == 1: # more than 1D array?
args = asarray(args[0])
if len(args) == 2:
x = args[0]
y = args[1]
else:
x = args[:,0]
y = args[:,1]
else:
x = asarray(args[0])
y = asarray(args[1])
n = len(x)
xmean = np.mean(x,None)
ymean = np.mean(y,None)
# average sum of squares:
ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat
r_num = ssxym
r_den = np.sqrt(ssxm*ssym)
if r_den == 0.0:
r = 0.0
else:
r = r_num / r_den
if (r > 1.0): r = 1.0 # from numerical error
#z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
df = n-2
t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
prob = distributions.t.sf(np.abs(t),df)*2
slope = r_num / ssxm
intercept = ymean - slope*xmean
sterrest = np.sqrt((1-r*r)*ssym / ssxm / df)
return slope, intercept, r, prob, sterrest
#####################################
##### INFERENTIAL STATISTICS #####
#####################################
def ttest_1samp(a, popmean, axis=0):
"""Calculates the T-test for the mean of ONE group of scores `a`.
This is a two-sided test for the null hypothesis that the expected value
(mean) of a sample of independent observations is equal to the given
population mean, `popmean`.
Parameters
----------
a : array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the
same shape as `a` excluding the axis dimension
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis
over which to operate on a).
Returns
-------
t : float or array
t-statistic
prob : float or array
two-tailed p-value
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))
test if mean of random sample is equal to true mean, and different mean.
We reject the null hypothesis in the second case and don't reject it in
the first case
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
examples using axis and non-scalar dimension for population mean
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
[ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01],
[ 7.89094663e-03, 1.49986458e-04]]))
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
df=n-1
d = np.mean(a,axis) - popmean
v = np.var(a, axis, ddof=1)
t = d / np.sqrt(v/float(n))
t = np.where((d==0)*(v==0), 1.0, t) #define t=0/0 = 1, identical mean, var
prob = distributions.t.sf(np.abs(t),df)*2 #use np.abs to get upper tail
#distributions.t.sf currently does not propagate nans
#this can be dropped, if distributions.t.sf propagates nans
#if this is removed, then prob = prob[()] needs to be removed
prob = np.where(np.isnan(t), np.nan, prob)
if t.ndim == 0:
t = t[()]
prob = prob[()]
return t,prob
def ttest_ind(a, b, axis=0):
"""Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
This is a two-sided test for the null hypothesis that 2 independent samples
have identical average (expected) values.
Parameters
----------
a, b : sequence of ndarrays
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int, optional
Axis can equal None (ravel array first), or an integer (the axis
over which to operate on a and b).
Returns
-------
t : float or array
t-statistic
prob : float or array
two-tailed p-value
Notes
-----
We can use this test, if we observe two independent samples from
the same or different population, e.g. exam scores of boys and
girls or of two ethnic groups. The test measures whether the
average (expected) value differs significantly across samples. If
we observe a large p-value, for example larger than 0.05 or 0.1,
then we cannot reject the null hypothesis of identical average scores.
If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
then we reject the null hypothesis of equal averages.
References
----------
http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(12345678)
test with sample with identical means
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564765)
test with sample with different means
>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs3)
(-5.0434013458585092, 5.4302979468623391e-007)
"""
a, b, axis = _chk2_asarray(a, b, axis)
v1 = np.var(a,axis,ddof = 1)
v2 = np.var(b,axis,ddof = 1)
n1 = a.shape[axis]
n2 = b.shape[axis]
df = n1+n2-2
d = mean(a,axis) - mean(b,axis)
svar = ((n1-1)*v1+(n2-1)*v2) / float(df)
t = d/np.sqrt(svar*(1.0/n1 + 1.0/n2))
t = np.where((d==0)*(svar==0), 1.0, t) #define t=0/0 = 0, identical means
prob = distributions.t.sf(np.abs(t),df)*2#use np.abs to get upper tail
#distributions.t.sf currently does not propagate nans
#this can be dropped, if distributions.t.sf propagates nans
#if this is removed, then prob = prob[()] needs to be removed
prob = np.where(np.isnan(t), np.nan, prob)
if t.ndim == 0:
t = t[()]
prob = prob[()]
return t, prob
def ttest_rel(a,b,axis=0):
"""Calculates the T-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or
repeated samples have identical average (expected) values.
Parameters
----------
a, b : sequence of ndarrays
The arrays must have the same shape.
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis
over which to operate on a and b).
Returns
-------
t : float or array
t-statistic
prob : float or array
two-tailed p-value
Notes
-----
Examples for the use are scores of the same set of student in
different exams, or repeated sampling from the same units. The
test measures whether the average score differs significantly
across samples (e.g. exams). If we observe a large p-value, for
example greater than 0.5 or 0.1 then we cannot reject the null
hypothesis of identical average scores. If the p-value is smaller
than the threshold, e.g. 1%, 5% or 10%, then we reject the null
hypothesis of equal averages. Small p-values are associated with
large t-statistics.
References
----------
http://en.wikipedia.org/wiki/T-test#Dependent_t-test
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> #fix random seed to get the same result
>>> np.random.seed(12345678)
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) + \
stats.norm.rvs(scale=0.2,size=500)
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500) + \
stats.norm.rvs(scale=0.2,size=500)
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
"""
a, b, axis = _chk2_asarray(a, b, axis)
if a.shape[axis] != b.shape[axis]:
raise ValueError, 'unequal length arrays'
n = a.shape[axis]
df = float(n-1)
d = (a-b).astype('d')
v = np.var(d,axis,ddof=1)
dm = np.mean(d, axis)
t = dm / np.sqrt(v/float(n))
t = np.where((dm==0)*(v==0), 1.0, t) #define t=0/0 = 1, zero mean and var
prob = distributions.t.sf(np.abs(t),df)*2 #use np.abs to get upper tail
#distributions.t.sf currently does not propagate nans
#this can be dropped, if distributions.t.sf propagates nans
#if this is removed, then prob = prob[()] needs to be removed
prob = np.where(np.isnan(t), np.nan, prob)
## if not np.isscalar(t):
## probs = np.reshape(probs, t.shape) # this should be redundant
## if not np.isscalar(prob) and len(prob) == 1:
## prob = prob[0]
if t.ndim == 0:
t = t[()]
prob = prob[()]
return t, prob
#import scipy.stats
#import distributions
def kstest(rvs, cdf, args=(), N=20, alternative = 'two_sided', mode='approx',**kwds):
"""
Return the D-value and the p-value for a Kolmogorov-Smirnov test
This performs a test of the distribution G(x) of an observed
random variable against a given distribution F(x). Under the null
hypothesis the two distributions are identical, G(x)=F(x). The
alternative hypothesis can be either 'two_sided' (default), 'less'
or 'greater'. The KS test is only valid for continuous distributions.
Parameters
----------
rvs : string or array or callable
string: name of a distribution in scipy.stats
array: 1-D observations of random variables
callable: function to generate random variables, requires keyword
argument `size`
cdf : string or callable
string: name of a distribution in scipy.stats, if rvs is a string then
cdf can evaluate to `False` or be the same as rvs
callable: function to evaluate cdf
args : tuple, sequence
distribution parameters, used if rvs or cdf are strings
N : int
sample size if rvs is string or callable
alternative : 'two_sided' (default), 'less' or 'greater'
defines the alternative hypothesis (see explanation)
mode : 'approx' (default) or 'asymp'
defines the distribution used for calculating p-value
'approx' : use approximation to exact distribution of test statistic
'asymp' : use asymptotic distribution of test statistic
Returns
-------
D : float
KS test statistic, either D, D+ or D-
p-value : float
one-tailed or two-tailed p-value
Notes
-----
In the two one-sided test, the alternative is that the empirical
cumulative distribution function of the random variable is "less"
or "greater" then the cumulative distribution function F(x) of the
hypothesis, G(x)<=F(x), resp. G(x)>=F(x).
If the p-value is greater than the significance level (say 5%), then we
cannot reject the hypothesis that the data come from the given
distribution.
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import kstest
>>> x = np.linspace(-15,15,9)
>>> kstest(x,'norm')
(0.44435602715924361, 0.038850142705171065)
>>> np.random.seed(987654321) # set random seed to get the same result
>>> kstest('norm','',N=100)
(0.058352892479417884, 0.88531190944151261)
is equivalent to this
>>> np.random.seed(987654321)
>>> kstest(stats.norm.rvs(size=100),'norm')
(0.058352892479417884, 0.88531190944151261)
Test against one-sided alternative hypothesis:
>>> np.random.seed(987654321)
Shift distribution to larger values, so that cdf_dgp(x)< norm.cdf(x):
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> kstest(x,'norm', alternative = 'less')
(0.12464329735846891, 0.040989164077641749)
Reject equal distribution against alternative hypothesis: less
>>> kstest(x,'norm', alternative = 'greater')
(0.0072115233216311081, 0.98531158590396395)
Don't reject equal distribution against alternative hypothesis: greater
>>> kstest(x,'norm', mode='asymp')
(0.12464329735846891, 0.08944488871182088)
Testing t distributed random variables against normal distribution:
With 100 degrees of freedom the t distribution looks close to the normal
distribution, and the kstest does not reject the hypothesis that the sample
came from the normal distribution
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100,size=100),'norm')
(0.072018929165471257, 0.67630062862479168)
With 3 degrees of freedom the t distribution looks sufficiently different
from the normal distribution, that we can reject the hypothesis that the
sample came from the normal distribution at a alpha=10% level
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3,size=100),'norm')
(0.131016895759829, 0.058826222555312224)
"""
if isinstance(rvs, basestring):
#cdf = getattr(stats, rvs).cdf
if (not cdf) or (cdf == rvs):
cdf = getattr(distributions, rvs).cdf
rvs = getattr(distributions, rvs).rvs
else:
raise AttributeError, 'if rvs is string, cdf has to be the same distribution'
if isinstance(cdf, basestring):
cdf = getattr(distributions, cdf).cdf
if callable(rvs):
kwds = {'size':N}
vals = np.sort(rvs(*args,**kwds))
else:
vals = np.sort(rvs)
N = len(vals)
cdfvals = cdf(vals, *args)
if alternative in ['two_sided', 'greater']:
Dplus = (np.arange(1.0, N+1)/N - cdfvals).max()
if alternative == 'greater':
return Dplus, distributions.ksone.sf(Dplus,N)
if alternative in ['two_sided', 'less']:
Dmin = (cdfvals - np.arange(0.0, N)/N).max()
if alternative == 'less':
return Dmin, distributions.ksone.sf(Dmin,N)
if alternative == 'two_sided':
D = np.max([Dplus,Dmin])
if mode == 'asymp':
return D, distributions.kstwobign.sf(D*np.sqrt(N))
if mode == 'approx':
pval_two = distributions.kstwobign.sf(D*np.sqrt(N))
if N > 2666 or pval_two > 0.80 - N*0.3/1000.0 :
return D, distributions.kstwobign.sf(D*np.sqrt(N))
else:
return D, distributions.ksone.sf(D,N)*2
def chisquare(f_obs, f_exp=None):
""" Calculates a one-way chi square for array of observed frequencies
and returns the result. If no expected frequencies are given, the total
N is assumed to be equally distributed across all groups.
Returns: chisquare-statistic, associated p-value
"""
f_obs = asarray(f_obs)
k = len(f_obs)
if f_exp is None:
f_exp = array([np.sum(f_obs,axis=0)/float(k)] * len(f_obs),float)
f_exp = f_exp.astype(float)
chisq = np.add.reduce((f_obs-f_exp)**2 / f_exp)
return chisq, chisqprob(chisq, k-1)
def ks_2samp(data1, data2):
""" Computes the Kolmogorov-Smirnof statistic on 2 samples.
This is a two-sided test for the null hypothesis that 2 independent samples
are drawn from the same continuous distribution.
Parameters
----------
a, b : sequence of 1-D ndarrays
two arrays of sample observations assumed to be drawn from a continuous
distribution, sample sizes can be different
Returns
-------
D : float
KS statistic
p-value : float
two-tailed p-value
Notes
-----
This tests whether 2 samples are drawn from the same distribution. Note
that, like in the case of the one-sample K-S test, the distribution is
assumed to be continuous.
This is the two-sided test, one-sided tests are not implemented.
The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution.
If the K-S statistic is small or the p-value is high, then we cannot
reject the hypothesis that the distributions of the two samples
are the same.
Examples:
---------
>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import ks_2samp
>>> #fix random seed to get the same result
>>> np.random.seed(12345678);
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample
different distribution
we can reject the null hypothesis since the pvalue is below 1%
>>> rvs1 = stats.norm.rvs(size=n1,loc=0.,scale=1);
>>> rvs2 = stats.norm.rvs(size=n2,loc=0.5,scale=1.5)
>>> ks_2samp(rvs1,rvs2)
(0.20833333333333337, 4.6674975515806989e-005)
slightly different distribution
we cannot reject the null hypothesis at a 10% or lower alpha since
the pvalue at 0.144 is higher than 10%
>>> rvs3 = stats.norm.rvs(size=n2,loc=0.01,scale=1.0)
>>> ks_2samp(rvs1,rvs3)
(0.10333333333333333, 0.14498781825751686)
identical distribution
we cannot reject the null hypothesis since the pvalue is high, 41%
>>> rvs4 = stats.norm.rvs(size=n2,loc=0.0,scale=1.0)
>>> ks_2samp(rvs1,rvs4)
(0.07999999999999996, 0.41126949729859719)
"""
data1, data2 = map(asarray, (data1, data2))
n1 = data1.shape[0]
n2 = data2.shape[0]
n1 = len(data1)
n2 = len(data2)
data1 = np.sort(data1)
data2 = np.sort(data2)
data_all = np.concatenate([data1,data2])
cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1)
cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2)
d = np.max(np.absolute(cdf1-cdf2))
#Note: d absolute not signed distance
en = np.sqrt(n1*n2/float(n1+n2))
try:
prob = ksprob((en+0.12+0.11/en)*d)
except:
prob = 1.0
return d, prob
def mannwhitneyu(x, y, use_continuity=True):
"""Computes the Mann-Whitney rank test on samples x and y.
Parameters
----------
x : array_like 1d
y : array_like 1d
use_continuity : {True, False} optional, default True
Whether a continuity correction (1/2.) should be taken into account.
Returns
-------
u : float
The Mann-Whitney statistics
prob : float
one-sided p-value assuming a asymptotic normal distribution.
Notes
-----
Use only when the number of observation in each sample is > 20 and
you have 2 independent samples of ranks. Mann-Whitney U is
significant if the u-obtained is LESS THAN or equal to the critical
value of U.
This test corrects for ties and by default uses a continuity correction.
The reported p-value is for a one-sided hypothesis, to get the two-sided
p-value multiply the returned p-value by 2.
"""
x = asarray(x)
y = asarray(y)
n1 = len(x)
n2 = len(y)
ranked = rankdata(np.concatenate((x,y)))
rankx = ranked[0:n1] # get the x-ranks
#ranky = ranked[n1:] # the rest are y-ranks
u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx,axis=0) # calc U for x
u2 = n1*n2 - u1 # remainder is U for y
bigu = max(u1,u2)
smallu = min(u1,u2)
#T = np.sqrt(tiecorrect(ranked)) # correction factor for tied scores
T = tiecorrect(ranked)
if T == 0:
raise ValueError, 'All numbers are identical in amannwhitneyu'
sd = np.sqrt(T*n1*n2*(n1+n2+1)/12.0)
if use_continuity:
# normal approximation for prob calc with continuity correction
z = abs((bigu-0.5-n1*n2/2.0) / sd)
else:
z = abs((bigu-n1*n2/2.0) / sd) # normal approximation for prob calc
return smallu, distributions.norm.sf(z) #(1.0 - zprob(z))
def tiecorrect(rankvals):
"""Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
See Siegel, S. (1956) Nonparametric Statistics for the Behavioral
Sciences. New York: McGraw-Hill. Code adapted from |Stat rankind.c
code.
Returns: T correction factor for U or H
"""
sorted,posn = fastsort(asarray(rankvals))
n = len(sorted)
T = 0.0
i = 0
while (i<n-1):
if sorted[i] == sorted[i+1]:
nties = 1
while (i<n-1) and (sorted[i] == sorted[i+1]):
nties = nties +1
i = i +1
T = T + nties**3 - nties
i = i+1
T = T / float(n**3-n)
return 1.0 - T
def ranksums(x, y):
"""Calculates the rank sums statistic on the provided scores and
returns the result.
Returns: z-statistic, two-tailed p-value
"""
x,y = map(np.asarray, (x, y))
n1 = len(x)
n2 = len(y)
alldata = np.concatenate((x,y))
ranked = rankdata(alldata)
x = ranked[:n1]
y = ranked[n1:]
s = np.sum(x,axis=0)
expected = n1*(n1+n2+1) / 2.0
z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
prob = 2*(1.0 -zprob(abs(z)))
return z, prob
def kruskal(*args):
"""The Kruskal-Wallis H-test is a non-parametric ANOVA for 2 or more
groups, requiring at least 5 subjects in each group. This function
calculates the Kruskal-Wallis H and associated p-value for 2 or more
independent samples.
Returns: H-statistic (corrected for ties), associated p-value
"""
assert len(args) >= 2, "Need at least 2 groups in stats.kruskal()"
n = map(len,args)
all = []
for i in range(len(args)):
all.extend(args[i].tolist())
ranked = list(rankdata(all))
T = tiecorrect(ranked)
args = list(args)
for i in range(len(args)):
args[i] = ranked[0:n[i]]
del ranked[0:n[i]]
rsums = []
for i in range(len(args)):
rsums.append(np.sum(args[i],axis=0)**2)
rsums[i] = rsums[i] / float(n[i])
ssbn = np.sum(rsums,axis=0)
totaln = np.sum(n,axis=0)
h = 12.0 / (totaln*(totaln+1)) * ssbn - 3*(totaln+1)
df = len(args) - 1
if T == 0:
raise ValueError, 'All numbers are identical in kruskal'
h = h / float(T)
return h, chisqprob(h,df)
def friedmanchisquare(*args):
"""Friedman Chi-Square is a non-parametric, one-way within-subjects
ANOVA. This function calculates the Friedman Chi-square test for
repeated measures and returns the result, along with the associated
probability value.
This function uses Chisquared aproximation of Friedman Chisquared
distribution. This is exact only if n > 10 and factor levels > 6.
Returns: friedman chi-square statistic, associated p-valueIt assumes 3 or more repeated measures. Only 3
"""
k = len(args)
if k < 3:
raise ValueError, '\nLess than 3 levels. Friedman test not appropriate.\n'
n = len(args[0])
for i in range(1,k):
if len(args[i]) <> n:
raise ValueError, 'Unequal N in friedmanchisquare. Aborting.'
if n < 10 and k < 6:
print 'Warning: friedmanchisquare test using Chisquared aproximation'
# Rank data
data = apply(_support.abut,args)
data = data.astype(float)
for i in range(len(data)):
data[i] = rankdata(data[i])
# Handle ties
ties = 0
for i in range(len(data)):
replist, repnum = find_repeats(array(data[i]))
for t in repnum:
ties += t*(t*t-1)
c = 1 - ties / float(k*(k*k-1)*n)
ssbn = pysum(pysum(data)**2)
chisq = ( 12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1) ) / c
return chisq, chisqprob(chisq,k-1)
#####################################
#### PROBABILITY CALCULATIONS ####
#####################################
zprob = special.ndtr
erfc = special.erfc
def chisqprob(chisq, df):
"""Returns the (1-tail) probability value associated with the provided
chi-square value and degrees of freedom.
Broadcasting rules apply.
Parameters
----------
chisq : array or float > 0
df : array or float, probably int >= 1
Returns
-------
The area from chisq to infinity under the Chi^2 probability distribution
with degrees of freedom df.
"""
return special.chdtrc(df,chisq)
ksprob = special.kolmogorov
fprob = special.fdtrc
def betai(a, b, x):
"""Returns the incomplete beta function.
I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
function of a.
The standard broadcasting rules apply to a, b, and x.
Parameters
----------
a : array or float > 0
b : array or float > 0
x : array or float
x will be clipped to be no greater than 1.0 .
Returns
-------
"""
x = np.asarray(x)
x = np.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0
return special.betainc(a, b, x)
#####################################
####### ANOVA CALCULATIONS #######
#####################################
def glm(data, para):
"""Calculates a linear model fit ...
anova/ancova/lin-regress/t-test/etc. Taken from:
Peterson et al. Statistical limitations in functional neuroimaging
I. Non-inferential methods and statistical models. Phil Trans Royal Soc
Lond B 354: 1239-1260.
Returns: statistic, p-value ???
"""
if len(para) != len(data):
raise ValueError("data and para must be same length in aglm")
n = len(para)
p = _support.unique(para)
x = zeros((n,len(p))) # design matrix
for l in range(len(p)):
x[:,l] = para == p[l]
# fixme: normal equations are bad. Use linalg.lstsq instead.
b = dot(dot(linalg.inv(dot(np.transpose(x),x)), # i.e., b=inv(X'X)X'Y
np.transpose(x)),data)
diffs = (data - dot(x,b))
s_sq = 1./(n-len(p)) * dot(np.transpose(diffs), diffs)
if len(p) == 2: # ttest_ind
c = array([1,-1])
df = n-2
fact = np.sum(1.0/np.sum(x,0),axis=0) # i.e., 1/n1 + 1/n2 + 1/n3 ...
t = dot(c,b) / np.sqrt(s_sq*fact)
probs = betai(0.5*df,0.5,float(df)/(df+t*t))
return t, probs
else:
raise ValueError("only ttest_ind implemented")
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
"""Calculation of Wilks lambda F-statistic for multivarite data, per
Maxwell & Delaney p.657.
"""
if isinstance(ER, (int, float)):
ER = array([[ER]])
if isinstance(EF, (int, float)):
EF = array([[EF]])
lmbda = linalg.det(EF) / linalg.det(ER)
if (a-1)**2 + (b-1)**2 == 5:
q = 1
else:
q = np.sqrt( ((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 -5) )
n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
return n_um / d_en
def f_value(ER, EF, dfR, dfF):
"""Returns an F-statistic given the following:
ER = error associated with the null hypothesis (the Restricted model)
EF = error associated with the alternate hypothesis (the Full model)
dfR = degrees of freedom the Restricted model
dfF = degrees of freedom associated with the Restricted model
"""
return ((ER-EF)/float(dfR-dfF) / (EF/float(dfF)))
def f_value_multivariate(ER, EF, dfnum, dfden):
"""Returns an F-statistic given the following:
ER = error associated with the null hypothesis (the Restricted model)
EF = error associated with the alternate hypothesis (the Full model)
dfR = degrees of freedom the Restricted model
dfF = degrees of freedom associated with the Restricted model
where ER and EF are matrices from a multivariate F calculation.
"""
if isinstance(ER, (int, float)):
ER = array([[ER]])
if isinstance(EF, (int, float)):
EF = array([[EF]])
n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum)
d_en = linalg.det(EF) / float(dfden)
return n_um / d_en
#####################################
####### SUPPORT FUNCTIONS ########
#####################################
def ss(a, axis=0):
"""Squares each value in the passed array, adds these squares, and
returns the result.
Parameters
----------
a : array
axis : int or None
Returns
-------
The sum along the given axis for (a*a).
"""
a, axis = _chk_asarray(a, axis)
return np.sum(a*a, axis)
def square_of_sums(a, axis=0):
"""Adds the values in the passed array, squares that sum, and returns the
result.
Returns: the square of the sum over axis.
"""
a, axis = _chk_asarray(a, axis)
s = np.sum(a,axis)
if not np.isscalar(s):
return s.astype(float)*s
else:
return float(s)*s
def fastsort(a):
# fixme: the wording in the docstring is nonsense.
"""Sort an array and provide the argsort.
Parameters
----------
a : array
Returns
-------
(sorted array,
indices into the original array,
)
"""
it = np.argsort(a)
as_ = a[it]
return as_, it
def rankdata(a):
"""Ranks the data in a, dealing with ties appropriately.
Equal values are assigned a rank that is the average of the ranks that
would have been otherwise assigned to all of the values within that set.
Ranks begin at 1, not 0.
Example
-------
In [15]: stats.rankdata([0, 2, 2, 3])
Out[15]: array([ 1. , 2.5, 2.5, 4. ])
Parameters
----------
a : array
This array is first flattened.
Returns
-------
An array of length equal to the size of a, containing rank scores.
"""
a = np.ravel(a)
n = len(a)
svec, ivec = fastsort(a)
sumranks = 0
dupcount = 0
newarray = np.zeros(n, float)
for i in xrange(n):
sumranks += i
dupcount += 1
if i==n-1 or svec[i] != svec[i+1]:
averank = sumranks / float(dupcount) + 1
for j in xrange(i-dupcount+1,i+1):
newarray[ivec[j]] = averank
sumranks = 0
dupcount = 0
return newarray
|