File: test_discrete_basic.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (249 lines) | stat: -rw-r--r-- 9,202 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import numpy.testing as npt
import numpy as np
import nose

from scipy import stats

DECIMAL_meanvar = 0#1  # was 0

distdiscrete = [
    ['bernoulli',(0.3,)],
    ['binom',    (5, 0.4)],
    ['boltzmann',(1.4, 19)],
    ['dlaplace', (0.8,)], #0.5
    ['geom',     (0.5,)],
    ['hypergeom',(30, 12, 6)],
    ['logser',   (0.6,)],
    ['nbinom',   (5, 0.5)],
    ['nbinom',   (0.4, 0.4)], #from tickets: 583
    ['planck',   (0.51,)],   #4.1
    ['poisson',  (0.6,)],
    ['randint',  (7, 31)],
    ['zipf',     (4,)] ]   # arg=4 is ok,
                           # Zipf broken for arg = 2, e.g. weird .stats
                           # looking closer, mean, var should be inf for arg=2


#@npt.dec.slow
def test_discrete_basic():
    for distname, arg in distdiscrete:
        distfn = getattr(stats,distname)
        #assert stats.dlaplace.rvs(0.8) is not None
        np.random.seed(9765456)
        rvs = distfn.rvs(size=2000,*arg)
        m,v = distfn.stats(*arg)
        #yield npt.assert_almost_equal(rvs.mean(), m, decimal=4,err_msg='mean')
        #yield npt.assert_almost_equal, rvs.mean(), m, 2, 'mean' # does not work
        yield check_sample_meanvar, rvs.mean(), m, distname + ' sample mean test'
        yield check_sample_meanvar, rvs.var(), v, distname + ' sample var test'
        yield check_cdf_ppf, distfn, arg, distname + ' cdf_ppf'
        yield check_pmf_cdf, distfn, arg, distname + ' pmf_cdf'
        yield check_oth, distfn, arg, distname + ' oth'
        skurt = stats.kurtosis(rvs)
        sskew = stats.skew(rvs)
        yield check_sample_skew_kurt, distfn, arg, skurt, sskew, \
                      distname + ' skew_kurt'
        if not distname in ['logser']:  #known failure
            alpha = 0.01
            yield check_discrete_chisquare, distfn, arg, rvs, alpha, \
                          distname + ' chisquare'

@npt.dec.slow
def test_discrete_extra():
    for distname, arg in distdiscrete:
        distfn = getattr(stats,distname)
        yield check_ppf_limits, distfn, arg, distname + \
              ' ppf limit test'
        yield check_isf_limits, distfn, arg, distname + \
              ' isf limit test'
        yield check_entropy, distfn, arg, distname + \
              ' entropy nan test'

@npt.dec.skipif(True)
def test_discrete_private():
    #testing private methods mostly for debugging
    #   some tests might fail by design,
    #   e.g. incorrect definition of distfn.a and distfn.b
    for distname, arg in distdiscrete:
        distfn = getattr(stats,distname)
        rvs = distfn.rvs(size=10000,*arg)
        m,v = distfn.stats(*arg)

        yield check_ppf_ppf, distfn, arg
        yield check_cdf_ppf_private, distfn, arg, distname
        yield check_generic_moment, distfn, arg, m, 1, 3   # last is decimal
        yield check_generic_moment, distfn, arg, v+m*m, 2, 3 # last is decimal
        yield check_moment_frozen, distfn, arg, m, 1, 3   # last is decimal
        yield check_moment_frozen, distfn, arg, v+m*m, 2, 3 # last is decimal


def check_sample_meanvar(sm,m,msg):
    if not np.isinf(m):
        npt.assert_almost_equal(sm, m, decimal=DECIMAL_meanvar, err_msg=msg + \
                                ' - finite moment')
    else:
        assert sm > 10000, 'infinite moment, sm = ' + str(sm)

def check_sample_var(sm,m,msg):
    npt.assert_almost_equal(sm, m, decimal=DECIMAL_meanvar, err_msg= msg + 'var')

def check_cdf_ppf(distfn,arg,msg):
    ppf05 = distfn.ppf(0.5,*arg)
    cdf05 = distfn.cdf(ppf05,*arg)
    npt.assert_almost_equal(distfn.ppf(cdf05-1e-6,*arg),ppf05,
                            err_msg=msg + 'ppf-cdf-median')
    assert (distfn.ppf(cdf05+1e-4,*arg)>ppf05), msg + 'ppf-cdf-next'

def check_cdf_ppf_private(distfn,arg,msg):
    ppf05 = distfn._ppf(0.5,*arg)
    cdf05 = distfn.cdf(ppf05,*arg)
    npt.assert_almost_equal(distfn._ppf(cdf05-1e-6,*arg),ppf05,
                            err_msg=msg + '_ppf-cdf-median ')
    assert (distfn._ppf(cdf05+1e-4,*arg)>ppf05), msg + '_ppf-cdf-next'

def check_ppf_ppf(distfn, arg):
    assert distfn.ppf(0.5,*arg) < np.inf
    ppfs = distfn.ppf([0.5,0.9],*arg)
    ppf_s = [distfn._ppf(0.5,*arg), distfn._ppf(0.9,*arg)]
    assert np.all(ppfs < np.inf)
    assert ppf_s[0] == distfn.ppf(0.5,*arg)
    assert ppf_s[1] == distfn.ppf(0.9,*arg)
    assert ppf_s[0] == ppfs[0]
    assert ppf_s[1] == ppfs[1]

def check_pmf_cdf(distfn, arg, msg):
    startind = np.int(distfn._ppf(0.01,*arg)-1)
    index = range(startind,startind+10)
    cdfs = distfn.cdf(index,*arg)
    npt.assert_almost_equal(cdfs, distfn.pmf(index, *arg).cumsum() + \
                            cdfs[0] - distfn.pmf(index[0],*arg),
                            decimal=4, err_msg= msg + 'pmf-cdf')

def check_generic_moment(distfn, arg, m, k, decim):
    npt.assert_almost_equal(distfn.generic_moment(k,*arg), m, decimal=decim,
                            err_msg= str(distfn) + ' generic moment test')

def check_moment_frozen(distfn, arg, m, k, decim):
    npt.assert_almost_equal(distfn(*arg).moment(k), m, decimal=decim,
                            err_msg= str(distfn) + ' frozen moment test')

def check_oth(distfn, arg, msg):
    #checking other methods of distfn
    meanint = round(distfn.stats(*arg)[0]) # closest integer to mean
    npt.assert_almost_equal(distfn.sf(meanint, *arg), 1 - \
                            distfn.cdf(meanint, *arg), decimal=8)
    median_sf = distfn.isf(0.5, *arg)

    assert distfn.sf(median_sf - 1, *arg) > 0.5
    assert distfn.cdf(median_sf + 1, *arg) > 0.5
    npt.assert_equal(distfn.isf(0.5, *arg), distfn.ppf(0.5, *arg))

#next 3 functions copied from test_continous_extra
#    adjusted

def check_ppf_limits(distfn,arg,msg):
    below,low,upp,above = distfn.ppf([-1,0,1,2], *arg)
    #print distfn.name, distfn.a, low, distfn.b, upp
    #print distfn.name,below,low,upp,above
    assert_equal_inf_nan(distfn.a-1,low, msg + 'ppf lower bound')
    assert_equal_inf_nan(distfn.b,upp, msg + 'ppf upper bound')
    assert np.isnan(below), msg + 'ppf out of bounds - below'
    assert np.isnan(above), msg + 'ppf out of bounds - above'

def check_isf_limits(distfn,arg,msg):
    below,low,upp,above = distfn.isf([-1,0,1,2], *arg)
    #print distfn.name, distfn.a, low, distfn.b, upp
    #print distfn.name,below,low,upp,above
    assert_equal_inf_nan(distfn.a-1,upp, msg + 'isf lower bound')
    assert_equal_inf_nan(distfn.b,low, msg + 'isf upper bound')
    assert np.isnan(below), msg + 'isf out of bounds - below'
    assert np.isnan(above), msg + 'isf out of bounds - above'

def assert_equal_inf_nan(v1,v2,msg):
    assert not np.isnan(v1)
    if not np.isinf(v1):
        npt.assert_almost_equal(v1, v2, decimal=10, err_msg = msg + \
                                   ' - finite')
    else:
        assert np.isinf(v2) or np.isnan(v2), \
               msg + ' - infinite, v2=%s' % str(v2)

def check_sample_skew_kurt(distfn, arg, sk, ss, msg):
    k,s = distfn.stats(moment='ks',*arg)
    check_sample_meanvar, sk, k, msg + 'sample skew test'
    check_sample_meanvar, ss, s, msg + 'sample kurtosis test'


def check_entropy(distfn,arg,msg):
    ent = distfn.entropy(*arg)
    #print 'Entropy =', ent
    assert not np.isnan(ent), msg + 'test Entropy is nan'\



def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
    '''perform chisquare test for random sample of a discrete distribution

    Parameters
    ----------
    distname : string
        name of distribution function
    arg : sequence
        parameters of distribution
    alpha : float
        significance level, threshold for p-value

    Returns
    -------
    result : bool
        0 if test passes, 1 if test fails

    uses global variable debug for printing results
    '''

    # define parameters for test
##    n=2000
    n = len(rvs)
    nsupp = 20
    wsupp = 1.0/nsupp

##    distfn = getattr(stats, distname)
##    np.random.seed(9765456)
##    rvs = distfn.rvs(size=n,*arg)

    # construct intervals with minimum mass 1/nsupp
    # intervalls are left-half-open as in a cdf difference
    distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
    last = 0
    distsupp = [max(distfn.a, -1000)]
    distmass = []
    for ii in distsupport:
        current = distfn.cdf(ii,*arg)
        if  current - last >= wsupp-1e-14:
            distsupp.append(ii)
            distmass.append(current - last)
            last = current
            if current > (1-wsupp):
                break
    if distsupp[-1]  < distfn.b:
        distsupp.append(distfn.b)
        distmass.append(1-last)
    distsupp = np.array(distsupp)
    distmass = np.array(distmass)

    # convert intervals to right-half-open as required by histogram
    histsupp = distsupp+1e-8
    histsupp[0] = distfn.a

    # find sample frequencies and perform chisquare test
    freq,hsupp = np.histogram(rvs,histsupp,new=True)
    cdfs = distfn.cdf(distsupp,*arg)
    (chis,pval) = stats.chisquare(np.array(freq),n*distmass)

    assert (pval > alpha), 'chisquare - test for %s' \
           'at arg = %s with pval = %s' % (msg,str(arg),str(pval))


if __name__ == "__main__":
    #nose.run(argv=['', __file__])
    nose.runmodule(argv=[__file__,'-s'], exit=False)