1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
import numpy.testing as npt
import numpy as np
import nose
from scipy import stats
DECIMAL_meanvar = 0#1 # was 0
distdiscrete = [
['bernoulli',(0.3,)],
['binom', (5, 0.4)],
['boltzmann',(1.4, 19)],
['dlaplace', (0.8,)], #0.5
['geom', (0.5,)],
['hypergeom',(30, 12, 6)],
['logser', (0.6,)],
['nbinom', (5, 0.5)],
['nbinom', (0.4, 0.4)], #from tickets: 583
['planck', (0.51,)], #4.1
['poisson', (0.6,)],
['randint', (7, 31)],
['zipf', (4,)] ] # arg=4 is ok,
# Zipf broken for arg = 2, e.g. weird .stats
# looking closer, mean, var should be inf for arg=2
#@npt.dec.slow
def test_discrete_basic():
for distname, arg in distdiscrete:
distfn = getattr(stats,distname)
#assert stats.dlaplace.rvs(0.8) is not None
np.random.seed(9765456)
rvs = distfn.rvs(size=2000,*arg)
m,v = distfn.stats(*arg)
#yield npt.assert_almost_equal(rvs.mean(), m, decimal=4,err_msg='mean')
#yield npt.assert_almost_equal, rvs.mean(), m, 2, 'mean' # does not work
yield check_sample_meanvar, rvs.mean(), m, distname + ' sample mean test'
yield check_sample_meanvar, rvs.var(), v, distname + ' sample var test'
yield check_cdf_ppf, distfn, arg, distname + ' cdf_ppf'
yield check_pmf_cdf, distfn, arg, distname + ' pmf_cdf'
yield check_oth, distfn, arg, distname + ' oth'
skurt = stats.kurtosis(rvs)
sskew = stats.skew(rvs)
yield check_sample_skew_kurt, distfn, arg, skurt, sskew, \
distname + ' skew_kurt'
if not distname in ['logser']: #known failure
alpha = 0.01
yield check_discrete_chisquare, distfn, arg, rvs, alpha, \
distname + ' chisquare'
@npt.dec.slow
def test_discrete_extra():
for distname, arg in distdiscrete:
distfn = getattr(stats,distname)
yield check_ppf_limits, distfn, arg, distname + \
' ppf limit test'
yield check_isf_limits, distfn, arg, distname + \
' isf limit test'
yield check_entropy, distfn, arg, distname + \
' entropy nan test'
@npt.dec.skipif(True)
def test_discrete_private():
#testing private methods mostly for debugging
# some tests might fail by design,
# e.g. incorrect definition of distfn.a and distfn.b
for distname, arg in distdiscrete:
distfn = getattr(stats,distname)
rvs = distfn.rvs(size=10000,*arg)
m,v = distfn.stats(*arg)
yield check_ppf_ppf, distfn, arg
yield check_cdf_ppf_private, distfn, arg, distname
yield check_generic_moment, distfn, arg, m, 1, 3 # last is decimal
yield check_generic_moment, distfn, arg, v+m*m, 2, 3 # last is decimal
yield check_moment_frozen, distfn, arg, m, 1, 3 # last is decimal
yield check_moment_frozen, distfn, arg, v+m*m, 2, 3 # last is decimal
def check_sample_meanvar(sm,m,msg):
if not np.isinf(m):
npt.assert_almost_equal(sm, m, decimal=DECIMAL_meanvar, err_msg=msg + \
' - finite moment')
else:
assert sm > 10000, 'infinite moment, sm = ' + str(sm)
def check_sample_var(sm,m,msg):
npt.assert_almost_equal(sm, m, decimal=DECIMAL_meanvar, err_msg= msg + 'var')
def check_cdf_ppf(distfn,arg,msg):
ppf05 = distfn.ppf(0.5,*arg)
cdf05 = distfn.cdf(ppf05,*arg)
npt.assert_almost_equal(distfn.ppf(cdf05-1e-6,*arg),ppf05,
err_msg=msg + 'ppf-cdf-median')
assert (distfn.ppf(cdf05+1e-4,*arg)>ppf05), msg + 'ppf-cdf-next'
def check_cdf_ppf_private(distfn,arg,msg):
ppf05 = distfn._ppf(0.5,*arg)
cdf05 = distfn.cdf(ppf05,*arg)
npt.assert_almost_equal(distfn._ppf(cdf05-1e-6,*arg),ppf05,
err_msg=msg + '_ppf-cdf-median ')
assert (distfn._ppf(cdf05+1e-4,*arg)>ppf05), msg + '_ppf-cdf-next'
def check_ppf_ppf(distfn, arg):
assert distfn.ppf(0.5,*arg) < np.inf
ppfs = distfn.ppf([0.5,0.9],*arg)
ppf_s = [distfn._ppf(0.5,*arg), distfn._ppf(0.9,*arg)]
assert np.all(ppfs < np.inf)
assert ppf_s[0] == distfn.ppf(0.5,*arg)
assert ppf_s[1] == distfn.ppf(0.9,*arg)
assert ppf_s[0] == ppfs[0]
assert ppf_s[1] == ppfs[1]
def check_pmf_cdf(distfn, arg, msg):
startind = np.int(distfn._ppf(0.01,*arg)-1)
index = range(startind,startind+10)
cdfs = distfn.cdf(index,*arg)
npt.assert_almost_equal(cdfs, distfn.pmf(index, *arg).cumsum() + \
cdfs[0] - distfn.pmf(index[0],*arg),
decimal=4, err_msg= msg + 'pmf-cdf')
def check_generic_moment(distfn, arg, m, k, decim):
npt.assert_almost_equal(distfn.generic_moment(k,*arg), m, decimal=decim,
err_msg= str(distfn) + ' generic moment test')
def check_moment_frozen(distfn, arg, m, k, decim):
npt.assert_almost_equal(distfn(*arg).moment(k), m, decimal=decim,
err_msg= str(distfn) + ' frozen moment test')
def check_oth(distfn, arg, msg):
#checking other methods of distfn
meanint = round(distfn.stats(*arg)[0]) # closest integer to mean
npt.assert_almost_equal(distfn.sf(meanint, *arg), 1 - \
distfn.cdf(meanint, *arg), decimal=8)
median_sf = distfn.isf(0.5, *arg)
assert distfn.sf(median_sf - 1, *arg) > 0.5
assert distfn.cdf(median_sf + 1, *arg) > 0.5
npt.assert_equal(distfn.isf(0.5, *arg), distfn.ppf(0.5, *arg))
#next 3 functions copied from test_continous_extra
# adjusted
def check_ppf_limits(distfn,arg,msg):
below,low,upp,above = distfn.ppf([-1,0,1,2], *arg)
#print distfn.name, distfn.a, low, distfn.b, upp
#print distfn.name,below,low,upp,above
assert_equal_inf_nan(distfn.a-1,low, msg + 'ppf lower bound')
assert_equal_inf_nan(distfn.b,upp, msg + 'ppf upper bound')
assert np.isnan(below), msg + 'ppf out of bounds - below'
assert np.isnan(above), msg + 'ppf out of bounds - above'
def check_isf_limits(distfn,arg,msg):
below,low,upp,above = distfn.isf([-1,0,1,2], *arg)
#print distfn.name, distfn.a, low, distfn.b, upp
#print distfn.name,below,low,upp,above
assert_equal_inf_nan(distfn.a-1,upp, msg + 'isf lower bound')
assert_equal_inf_nan(distfn.b,low, msg + 'isf upper bound')
assert np.isnan(below), msg + 'isf out of bounds - below'
assert np.isnan(above), msg + 'isf out of bounds - above'
def assert_equal_inf_nan(v1,v2,msg):
assert not np.isnan(v1)
if not np.isinf(v1):
npt.assert_almost_equal(v1, v2, decimal=10, err_msg = msg + \
' - finite')
else:
assert np.isinf(v2) or np.isnan(v2), \
msg + ' - infinite, v2=%s' % str(v2)
def check_sample_skew_kurt(distfn, arg, sk, ss, msg):
k,s = distfn.stats(moment='ks',*arg)
check_sample_meanvar, sk, k, msg + 'sample skew test'
check_sample_meanvar, ss, s, msg + 'sample kurtosis test'
def check_entropy(distfn,arg,msg):
ent = distfn.entropy(*arg)
#print 'Entropy =', ent
assert not np.isnan(ent), msg + 'test Entropy is nan'\
def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
'''perform chisquare test for random sample of a discrete distribution
Parameters
----------
distname : string
name of distribution function
arg : sequence
parameters of distribution
alpha : float
significance level, threshold for p-value
Returns
-------
result : bool
0 if test passes, 1 if test fails
uses global variable debug for printing results
'''
# define parameters for test
## n=2000
n = len(rvs)
nsupp = 20
wsupp = 1.0/nsupp
## distfn = getattr(stats, distname)
## np.random.seed(9765456)
## rvs = distfn.rvs(size=n,*arg)
# construct intervals with minimum mass 1/nsupp
# intervalls are left-half-open as in a cdf difference
distsupport = xrange(max(distfn.a, -1000), min(distfn.b, 1000) + 1)
last = 0
distsupp = [max(distfn.a, -1000)]
distmass = []
for ii in distsupport:
current = distfn.cdf(ii,*arg)
if current - last >= wsupp-1e-14:
distsupp.append(ii)
distmass.append(current - last)
last = current
if current > (1-wsupp):
break
if distsupp[-1] < distfn.b:
distsupp.append(distfn.b)
distmass.append(1-last)
distsupp = np.array(distsupp)
distmass = np.array(distmass)
# convert intervals to right-half-open as required by histogram
histsupp = distsupp+1e-8
histsupp[0] = distfn.a
# find sample frequencies and perform chisquare test
freq,hsupp = np.histogram(rvs,histsupp,new=True)
cdfs = distfn.cdf(distsupp,*arg)
(chis,pval) = stats.chisquare(np.array(freq),n*distmass)
assert (pval > alpha), 'chisquare - test for %s' \
'at arg = %s with pval = %s' % (msg,str(arg),str(pval))
if __name__ == "__main__":
#nose.run(argv=['', __file__])
nose.runmodule(argv=[__file__,'-s'], exit=False)
|