1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
""" Test functions for stats module
"""
from numpy.testing import *
import numpy
from numpy import typecodes, array
import scipy.stats as stats
def kolmogorov_check(diststr,args=(),N=20,significance=0.01):
qtest = stats.ksoneisf(significance,N)
cdf = eval('stats.'+diststr+'.cdf')
dist = eval('stats.'+diststr)
# Get random numbers
kwds = {'size':N}
vals = numpy.sort(dist.rvs(*args,**kwds))
cdfvals = cdf(vals,*args)
q = max(abs(cdfvals-arange(1.0,N+1)/N))
assert (q < qtest), "Failed q=%f, bound=%f, alpha=%f" % (q, qtest, significance)
return
# generate test cases to test cdf and distribution consistency
dists = ['uniform','norm','lognorm','expon','beta',
'powerlaw','bradford','burr','fisk','cauchy','halfcauchy',
'foldcauchy','gamma','gengamma','loggamma',
'alpha','anglit','arcsine','betaprime','erlang',
'dgamma','exponweib','exponpow','frechet_l','frechet_r',
'gilbrat','f','ncf','chi2','chi','nakagami','genpareto',
'genextreme','genhalflogistic','pareto','lomax','halfnorm',
'halflogistic','fatiguelife','foldnorm','ncx2','t','nct',
'weibull_min','weibull_max','dweibull','maxwell','rayleigh',
'genlogistic', 'logistic','gumbel_l','gumbel_r','gompertz',
'hypsecant', 'laplace', 'reciprocal','triang','tukeylambda',
'vonmises']
# check function for test generator
def check_distribution(dist, args, alpha):
D,pval = stats.kstest(dist,'', args=args, N=1000)
if (pval < alpha):
D,pval = stats.kstest(dist,'',args=args, N=1000)
#if (pval < alpha):
# D,pval = stats.kstest(dist,'',args=args, N=1000)
assert (pval > alpha), "D = " + str(D) + "; pval = " + str(pval) + \
"; alpha = " + str(alpha) + "\nargs = " + str(args)
# nose test generator
def test_all_distributions():
for dist in dists:
distfunc = getattr(stats, dist)
nargs = distfunc.numargs
alpha = 0.01
if dist == 'fatiguelife':
alpha = 0.001
if dist == 'erlang':
args = (4,)+tuple(rand(2))
elif dist == 'frechet':
args = tuple(2*rand(1))+(0,)+tuple(2*rand(2))
elif dist == 'triang':
args = tuple(rand(nargs))
elif dist == 'reciprocal':
vals = rand(nargs)
vals[1] = vals[0] + 1.0
args = tuple(vals)
elif dist == 'vonmises':
yield check_distribution, dist, (100,), alpha
args = tuple(1.0+rand(nargs))
else:
args = tuple(1.0+rand(nargs))
yield check_distribution, dist, args, alpha
class TestRandInt(TestCase):
def test_rvs(self):
vals = stats.randint.rvs(5,30,size=100)
assert(numpy.all(vals < 30) & numpy.all(vals >= 5))
assert(len(vals) == 100)
vals = stats.randint.rvs(5,30,size=(2,50))
assert(numpy.shape(vals) == (2,50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.randint.rvs(15,46)
assert((val >= 15) & (val < 46))
assert isinstance(val, numpy.ScalarType),`type(val)`
val = stats.randint(15,46).rvs(3)
assert(val.dtype.char in typecodes['AllInteger'])
def test_pdf(self):
k = numpy.r_[0:36]
out = numpy.where((k >= 5) & (k < 30), 1.0/(30-5), 0)
vals = stats.randint.pmf(k,5,30)
assert_array_almost_equal(vals,out)
def test_cdf(self):
x = numpy.r_[0:36:100j]
k = numpy.floor(x)
out = numpy.select([k>=30,k>=5],[1.0,(k-5.0+1)/(30-5.0)],0)
vals = stats.randint.cdf(x,5,30)
assert_array_almost_equal(vals, out, decimal=12)
class TestBinom(TestCase):
def test_rvs(self):
vals = stats.binom.rvs(10, 0.75, size=(2, 50))
assert(numpy.all(vals >= 0) & numpy.all(vals <= 10))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.binom.rvs(10, 0.75)
assert(isinstance(val, int))
val = stats.binom(10, 0.75).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestBernoulli(TestCase):
def test_rvs(self):
vals = stats.bernoulli.rvs(0.75, size=(2, 50))
assert(numpy.all(vals >= 0) & numpy.all(vals <= 1))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.bernoulli.rvs(0.75)
assert(isinstance(val, int))
val = stats.bernoulli(0.75).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestNBinom(TestCase):
def test_rvs(self):
vals = stats.nbinom.rvs(10, 0.75, size=(2, 50))
assert(numpy.all(vals >= 0))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.nbinom.rvs(10, 0.75)
assert(isinstance(val, int))
val = stats.nbinom(10, 0.75).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestGeom(TestCase):
def test_rvs(self):
vals = stats.geom.rvs(0.75, size=(2, 50))
assert(numpy.all(vals >= 0))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.geom.rvs(0.75)
assert(isinstance(val, int))
val = stats.geom(0.75).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
def test_pmf(self):
vals = stats.geom.pmf([1,2,3],0.5)
assert_array_almost_equal(vals,[0.5,0.25,0.125])
def test_cdf_sf(self):
vals = stats.geom.cdf([1,2,3],0.5)
vals_sf = stats.geom.sf([1,2,3],0.5)
expected = array([0.5,0.75,0.875])
assert_array_almost_equal(vals,expected)
assert_array_almost_equal(vals_sf,1-expected)
class TestHypergeom(TestCase):
def test_rvs(self):
vals = stats.hypergeom.rvs(20, 10, 3, size=(2, 50))
assert(numpy.all(vals >= 0) &
numpy.all(vals <= 3))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.hypergeom.rvs(20, 3, 10)
assert(isinstance(val, int))
val = stats.hypergeom(20, 3, 10).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestLogser(TestCase):
def test_rvs(self):
vals = stats.logser.rvs(0.75, size=(2, 50))
assert(numpy.all(vals >= 1))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.logser.rvs(0.75)
assert(isinstance(val, int))
val = stats.logser(0.75).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestPoisson(TestCase):
def test_rvs(self):
vals = stats.poisson.rvs(0.5, size=(2, 50))
assert(numpy.all(vals >= 0))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.poisson.rvs(0.5)
assert(isinstance(val, int))
val = stats.poisson(0.5).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestZipf(TestCase):
def test_rvs(self):
vals = stats.zipf.rvs(1.5, size=(2, 50))
assert(numpy.all(vals >= 1))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.zipf.rvs(1.5)
assert(isinstance(val, int))
val = stats.zipf(1.5).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestDLaplace(TestCase):
def test_rvs(self):
vals = stats.dlaplace.rvs(1.5 , size=(2, 50))
assert(numpy.shape(vals) == (2, 50))
assert(vals.dtype.char in typecodes['AllInteger'])
val = stats.dlaplace.rvs(1.5)
assert(isinstance(val, int))
val = stats.dlaplace(1.5).rvs(3)
assert(isinstance(val, numpy.ndarray))
assert(val.dtype.char in typecodes['AllInteger'])
class TestRvDiscrete(TestCase):
def test_rvs(self):
states = [-1,0,1,2,3,4]
probability = [0.0,0.3,0.4,0.0,0.3,0.0]
samples = 1000
r = stats.rv_discrete(name='sample',values=(states,probability))
x = r.rvs(size=samples)
assert(isinstance(x, numpy.ndarray))
for s,p in zip(states,probability):
assert abs(sum(x == s)/float(samples) - p) < 0.05
x = r.rvs()
assert(isinstance(x, int))
class TestExpon(TestCase):
def test_zero(self):
assert_equal(stats.expon.pdf(0),1)
def test_tail(self): # Regression test for ticket 807
assert_equal(stats.expon.cdf(1e-18), 1e-18)
assert_equal(stats.expon.isf(stats.expon.sf(40)), 40)
class TestGenExpon(TestCase):
def test_pdf_unity_area(self):
from scipy.integrate import simps
# PDF should integrate to one
assert_almost_equal(simps(stats.genexpon.pdf(numpy.arange(0,10,0.01),
0.5, 0.5, 2.0),
dx=0.01), 1, 1)
def test_cdf_bounds(self):
# CDF should always be positive
cdf = stats.genexpon.cdf(numpy.arange(0, 10, 0.01), 0.5, 0.5, 2.0)
assert(numpy.all((0 <= cdf) & (cdf <= 1)))
class TestExponpow(TestCase):
def test_tail(self):
assert_almost_equal(stats.exponpow.cdf(1e-10, 2.), 1e-20)
assert_almost_equal(stats.exponpow.isf(stats.exponpow.sf(5, .8), .8), 5)
class TestDocstring(TestCase):
def test_docstrings(self):
"""See ticket #761"""
if stats.rayleigh.__doc__ is not None:
self.failUnless("rayleigh" in stats.rayleigh.__doc__.lower())
if stats.bernoulli.__doc__ is not None:
self.failUnless("bernoulli" in stats.bernoulli.__doc__.lower())
class TestEntropy(TestCase):
def test_entropy_positive(self):
"""See ticket #497"""
pk = [0.5,0.2,0.3]
qk = [0.1,0.25,0.65]
eself = stats.entropy(pk,pk)
edouble = stats.entropy(pk,qk)
assert(0.0 == eself)
assert(edouble >= 0.0)
if __name__ == "__main__":
run_module_suite()
|