File: test_mstats_basic.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (509 lines) | stat: -rw-r--r-- 20,943 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""
Tests for the stats.mstats module (support for maskd arrays)
"""


import numpy as np
from numpy import nan
import numpy.ma as ma
from numpy.ma import masked, nomask

import scipy.stats.mstats as mstats
from numpy.testing import *
from numpy.ma.testutils import assert_equal, assert_almost_equal, \
    assert_array_almost_equal


class TestGMean(TestCase):
    def test_1D(self):
        a = (1,2,3,4)
        actual= mstats.gmean(a)
        desired = np.power(1*2*3*4,1./4.)
        assert_almost_equal(actual, desired,decimal=14)

        desired1 = mstats.gmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)
        assert not isinstance(desired1, ma.MaskedArray)
        #
        a = ma.array((1,2,3,4),mask=(0,0,0,1))
        actual= mstats.gmean(a)
        desired = np.power(1*2*3,1./3.)
        assert_almost_equal(actual, desired,decimal=14)

        desired1 = mstats.gmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)
    #
    def test_2D(self):
        a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
                     mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
        actual= mstats.gmean(a)
        desired = np.array((1,2,3,4))
        assert_array_almost_equal(actual, desired, decimal=14)
        #
        desired1 = mstats.gmean(a,axis=0)
        assert_array_almost_equal(actual, desired1, decimal=14)
        #
        actual= mstats.gmean(a, -1)
        desired = ma.array((np.power(1*2*3*4,1./4.),
                            np.power(2*3,1./2.),
                            np.power(1*4,1./2.)))
        assert_array_almost_equal(actual, desired, decimal=14)

class TestHMean(TestCase):
    def test_1D(self):
        a = (1,2,3,4)
        actual= mstats.hmean(a)
        desired =  4. / (1./1 + 1./2 + 1./3 + 1./4)
        assert_almost_equal(actual, desired, decimal=14)
        desired1 = mstats.hmean(ma.array(a),axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)
        #
        a = ma.array((1,2,3,4),mask=(0,0,0,1))
        actual= mstats.hmean(a)
        desired = 3. / (1./1 + 1./2 + 1./3)
        assert_almost_equal(actual, desired,decimal=14)
        desired1 = mstats.hmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)

    def test_2D(self):
        a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
                     mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
        actual= mstats.hmean(a)
        desired = ma.array((1,2,3,4))
        assert_array_almost_equal(actual, desired, decimal=14)
        #
        actual1 = mstats.hmean(a,axis=-1)
        desired = (4./(1/1.+1/2.+1/3.+1/4.),
                   2./(1/2.+1/3.),
                   2./(1/1.+1/4.)
                   )
        assert_array_almost_equal(actual1, desired, decimal=14)


class TestRanking(TestCase):
    #
    def __init__(self, *args, **kwargs):
        TestCase.__init__(self, *args, **kwargs)
    #
    def test_ranking(self):
        x = ma.array([0,1,1,1,2,3,4,5,5,6,])
        assert_almost_equal(mstats.rankdata(x),[1,3,3,3,5,6,7,8.5,8.5,10])
        x[[3,4]] = masked
        assert_almost_equal(mstats.rankdata(x),[1,2.5,2.5,0,0,4,5,6.5,6.5,8])
        assert_almost_equal(mstats.rankdata(x,use_missing=True),
                            [1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8])
        x = ma.array([0,1,5,1,2,4,3,5,1,6,])
        assert_almost_equal(mstats.rankdata(x),[1,3,8.5,3,5,7,6,8.5,3,10])
        x = ma.array([[0,1,1,1,2], [3,4,5,5,6,]])
        assert_almost_equal(mstats.rankdata(x),[[1,3,3,3,5],[6,7,8.5,8.5,10]])
        assert_almost_equal(mstats.rankdata(x,axis=1),[[1,3,3,3,5],[1,2,3.5,3.5,5]])
        assert_almost_equal(mstats.rankdata(x,axis=0),[[1,1,1,1,1],[2,2,2,2,2,]])


class TestCorr(TestCase):
    #
    def test_pearsonr(self):
        "Tests some computations of Pearson's r"
        x = ma.arange(10)
        assert_almost_equal(mstats.pearsonr(x,x)[0], 1.0)
        assert_almost_equal(mstats.pearsonr(x,x[::-1])[0], -1.0)
        #
        x = ma.array(x, mask=True)
        pr = mstats.pearsonr(x,x)
        assert(pr[0] is masked)
        assert(pr[1] is masked)
    #
    def test_spearmanr(self):
        "Tests some computations of Spearman's rho"
        (x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
        (x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
        #
        x = [ 2.0, 47.4, 42.0, 10.8, 60.1,  1.7, 64.0, 63.1,
              1.0,  1.4,  7.9,  0.3,  3.9,  0.3,  6.7]
        y = [22.6, 08.3, 44.4, 11.9, 24.6,  0.6,  5.7, 41.6,
              0.0,  0.6,  6.7,  3.8,  1.0,  1.2,  1.4]
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
        x = [ 2.0, 47.4, 42.0, 10.8, 60.1,  1.7, 64.0, 63.1,
              1.0,  1.4,  7.9,  0.3,  3.9,  0.3,  6.7, np.nan]
        y = [22.6, 08.3, 44.4, 11.9, 24.6,  0.6,  5.7, 41.6,
              0.0,  0.6,  6.7,  3.8,  1.0,  1.2,  1.4, np.nan]
        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
    #
    def test_kendalltau(self):
        "Tests some computations of Kendall's tau"
        x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
        y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
        z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
        assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
                            [+0.3333333,0.4969059])
        assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
                            [-0.5477226,0.2785987])
        #
        x = ma.fix_invalid([ 0, 0, 0, 0,20,20, 0,60, 0,20,
                            10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
        y = ma.fix_invalid([ 0,80,80,80,10,33,60, 0,67,27,
                            25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
        result = mstats.kendalltau(x,y)
        assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
    #
    def test_kendalltau_seasonal(self):
        "Tests the seasonal Kendall tau."
        x = [[nan,nan,  4,  2, 16, 26,  5,  1,  5,  1,  2,  3,  1],
             [  4,  3,  5,  3,  2,  7,  3,  1,  1,  2,  3,  5,  3],
             [  3,  2,  5,  6, 18,  4,  9,  1,  1,nan,  1,  1,nan],
             [nan,  6, 11,  4, 17,nan,  6,  1,  1,  2,  5,  1,  1]]
        x = ma.fix_invalid(x).T
        output = mstats.kendalltau_seasonal(x)
        assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
        assert_almost_equal(output['seasonal p-value'].round(2),
                            [0.18,0.53,0.20,0.04])
    #
    def test_pointbiserial(self):
        "Tests point biserial"
        x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
             0,0,0,0,1,-1]
        y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
             2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
             0.8,0.7,0.6,0.5,0.2,0.2,0.1,np.nan]
        assert_almost_equal(mstats.pointbiserialr(x, y)[0], 0.36149, 5)
    #
    def test_cov(self):
        "Tests the cov function."
        x = ma.array([[1,2,3],[4,5,6]], mask=[[1,0,0],[0,0,0]])
        c = mstats.cov(x[0])
        assert_equal(c, x[0].var(ddof=1))
        c = mstats.cov(x[1])
        assert_equal(c, x[1].var(ddof=1))
        c = mstats.cov(x)
        assert_equal(c[1,0], (x[0].anom()*x[1].anom()).sum())
        #
        x = [[nan,nan,  4,  2, 16, 26,  5,  1,  5,  1,  2,  3,  1],
             [  4,  3,  5,  3,  2,  7,  3,  1,  1,  2,  3,  5,  3],
             [  3,  2,  5,  6, 18,  4,  9,  1,  1,nan,  1,  1,nan],
             [nan,  6, 11,  4, 17,nan,  6,  1,  1,  2,  5,  1,  1]]
        x = ma.fix_invalid(x).T
        (winter,spring,summer,fall) = x.T
        #
        assert_almost_equal(mstats.cov(winter,winter,bias=True),
                            winter.var(ddof=0))
        assert_almost_equal(mstats.cov(winter,winter,bias=False),
                            winter.var(ddof=1))
        assert_almost_equal(mstats.cov(winter,spring)[0,1], 7.7)
        assert_almost_equal(mstats.cov(winter,spring)[1,0], 7.7)
        assert_almost_equal(mstats.cov(winter,summer)[0,1], 19.1111111, 7)
        assert_almost_equal(mstats.cov(winter,summer)[1,0], 19.1111111, 7)
        assert_almost_equal(mstats.cov(winter,fall)[0,1], 20)
        assert_almost_equal(mstats.cov(winter,fall)[1,0], 20)


class TestTrimming(TestCase):
    #
    def test_trim(self):
        "Tests trimming"
        a = ma.arange(10)
        assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
        a = ma.arange(10)
        assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
        a = ma.arange(10)
        assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
                     [None,None,None,3,4,5,6,7,None,None])
        a = ma.arange(10)
        assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
                     [None,1,2,3,4,5,6,7,None,None])
        #
        a = ma.arange(12)
        a[[0,-1]] = a[5] = masked
        assert_equal(mstats.trim(a,(2,8)),
                     [None,None,2,3,4,None,6,7,8,None,None,None])
        #
        x = ma.arange(100).reshape(10,10)
        trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
        assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
        trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
        assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
        trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=-1)
        assert_equal(trimx._mask.T.ravel(),[1]*10+[0]*70+[1]*20)
        #
        x = ma.arange(110).reshape(11,10)
        x[1] = masked
        trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
        assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
        trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
        assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
        trimx = mstats.trim(x.T,(0.1,0.2),relative=True,axis=-1)
        assert_equal(trimx.T._mask.ravel(),[1]*20+[0]*70+[1]*20)
    #
    def test_trim_old(self):
        "Tests trimming."
        x = ma.arange(100)
        assert_equal(mstats.trimboth(x).count(), 60)
        assert_equal(mstats.trimtail(x,tail='r').count(), 80)
        x[50:70] = masked
        trimx = mstats.trimboth(x)
        assert_equal(trimx.count(), 48)
        assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
        x._mask = nomask
        x.shape = (10,10)
        assert_equal(mstats.trimboth(x).count(), 60)
        assert_equal(mstats.trimtail(x).count(), 80)
    #
    def test_trimmedmean(self):
        "Tests the trimmed mean."
        data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
                         296,299,306,376,428,515,666,1310,2611])
        assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0)
        assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0)
        assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0)
    #
    def test_trimmed_stde(self):
        "Tests the trimmed mean standard error."
        data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
                         296,299,306,376,428,515,666,1310,2611])
        assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5)
        assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5)
    #
    def test_winsorization(self):
        "Tests the Winsorization of the data."
        data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
                         296,299,306,376,428,515,666,1310,2611])
        assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1),
                            21551.4, 1)
        data[5] = masked
        winsorized = mstats.winsorize(data)
        assert_equal(winsorized.mask, data.mask)


class TestMoments(TestCase):
    """
        Comparison numbers are found using R v.1.5.1
        note that length(testcase) = 4
        testmathworks comes from documentation for the
        Statistics Toolbox for Matlab and can be found at both
        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
        Note that both test cases came from here.
    """
    testcase = [1,2,3,4]
    testmathworks = ma.fix_invalid([1.165 , 0.6268, 0.0751, 0.3516, -0.6965,
                                    np.nan])
    def test_moment(self):
        """
        mean((testcase-mean(testcase))**power,axis=0),axis=0))**power))"""
        y = mstats.moment(self.testcase,1)
        assert_almost_equal(y,0.0,10)
        y = mstats.moment(self.testcase,2)
        assert_almost_equal(y,1.25)
        y = mstats.moment(self.testcase,3)
        assert_almost_equal(y,0.0)
        y = mstats.moment(self.testcase,4)
        assert_almost_equal(y,2.5625)
    def test_variation(self):
        """variation = samplestd/mean """
##        y = stats.variation(self.shoes[0])
##        assert_almost_equal(y,21.8770668)
        y = mstats.variation(self.testcase)
        assert_almost_equal(y,0.44721359549996, 10)

    def test_skewness(self):
        """
            sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0)/((sqrt(var(testmathworks)*4/5))**3)/5
        """
        y = mstats.skew(self.testmathworks)
        assert_almost_equal(y,-0.29322304336607,10)
        y = mstats.skew(self.testmathworks,bias=0)
        assert_almost_equal(y,-0.437111105023940,10)
        y = mstats.skew(self.testcase)
        assert_almost_equal(y,0.0,10)

    def test_kurtosis(self):
        """
            sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
            sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
            Set flags for axis = 0 and
            fisher=0 (Pearson's definition of kurtosis for compatibility with Matlab)
        """
        y = mstats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
        assert_almost_equal(y, 2.1658856802973,10)
        # Note that MATLAB has confusing docs for the following case
        #  kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
        #  kurtosis(x)  gives a biased estimate of Fisher's skewness (Pearson-3)
        #  The MATLAB docs imply that both should give Fisher's
        y = mstats.kurtosis(self.testmathworks,fisher=0,bias=0)
        assert_almost_equal(y, 3.663542721189047,10)
        y = mstats.kurtosis(self.testcase,0,0)
        assert_almost_equal(y,1.64)
    #
    def test_mode(self):
        "Tests the mode"
        #
        a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7]
        a2 = np.reshape(a1, (3,5))
        ma1 = ma.masked_where(ma.array(a1)>2,a1)
        ma2 = ma.masked_where(a2>2, a2)
        assert_equal(mstats.mode(a1, axis=None), (3,4))
        assert_equal(mstats.mode(ma1, axis=None), (0,3))
        assert_equal(mstats.mode(a2, axis=None), (3,4))
        assert_equal(mstats.mode(ma2, axis=None), (0,3))
        assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]],[[1,1,1,1,1]]))
        assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]],[[1,1,1,1,1]]))
        assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]]))
        assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]]))


class TestPercentile(TestCase):
    def setUp(self):
        self.a1 = [3,4,5,10,-3,-5,6]
        self.a2 = [3,-6,-2,8,7,4,2,1]
        self.a3 = [3.,4,5,10,-3,-5,-6,7.0]

    def test_percentile(self):
        x = np.arange(8) * 0.5
        assert_equal(mstats.scoreatpercentile(x, 0), 0.)
        assert_equal(mstats.scoreatpercentile(x, 100), 3.5)
        assert_equal(mstats.scoreatpercentile(x, 50), 1.75)

    def test_2D(self):
        x = ma.array([[1, 1, 1],
                      [1, 1, 1],
                      [4, 4, 3],
                      [1, 1, 1],
                      [1, 1, 1]])
        assert_equal(mstats.scoreatpercentile(x,50), [1,1,1])


class TestVariability(TestCase):
    """  Comparison numbers are found using R v.1.5.1
         note that length(testcase) = 4
    """
    testcase = ma.fix_invalid([1,2,3,4,np.nan])
    #
    def test_std(self):
        y = mstats.std(self.testcase)
        assert_almost_equal(y,1.290994449)

    def test_var(self):
        """
        var(testcase) = 1.666666667 """
        #y = stats.var(self.shoes[0])
        #assert_approx_equal(y,6.009)
        y = mstats.var(self.testcase)
        assert_almost_equal(y,1.666666667)

    def test_samplevar(self):
        """
        R does not have 'samplevar' so the following was used
        var(testcase)*(4-1)/4  where 4 = length(testcase)
        """
        #y = stats.samplevar(self.shoes[0])
        #assert_approx_equal(y,5.4081)
        y = mstats.samplevar(self.testcase)
        assert_almost_equal(y,1.25)

    def test_samplestd(self):
        #y = stats.samplestd(self.shoes[0])
        #assert_approx_equal(y,2.325532197)
        y = mstats.samplestd(self.testcase)
        assert_almost_equal(y,1.118033989)

    def test_signaltonoise(self):
        """
        this is not in R, so used
        mean(testcase,axis=0)/(sqrt(var(testcase)*3/4)) """
        #y = stats.signaltonoise(self.shoes[0])
        #assert_approx_equal(y,4.5709967)
        y = mstats.signaltonoise(self.testcase)
        assert_almost_equal(y,2.236067977)

    def test_stderr(self):
        """
        this is not in R, so used
        sqrt(var(testcase))/sqrt(4)
        """
##        y = stats.stderr(self.shoes[0])
##        assert_approx_equal(y,0.775177399)
        y = mstats.stderr(self.testcase)
        assert_almost_equal(y,0.6454972244)

    def test_sem(self):
        """
        this is not in R, so used
        sqrt(var(testcase)*3/4)/sqrt(3)
        """
        #y = stats.sem(self.shoes[0])
        #assert_approx_equal(y,0.775177399)
        y = mstats.sem(self.testcase)
        assert_almost_equal(y,0.6454972244)

    def test_z(self):
        """
        not in R, so used
        (10-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
        """
        y = mstats.z(self.testcase, ma.array(self.testcase).mean())
        assert_almost_equal(y,0.0)

    def test_zs(self):
        """
        not in R, so tested by using
        (testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
        """
        y = mstats.zs(self.testcase)
        desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996 ,
                                  0.44721359549996 , 1.3416407864999, np.nan])
        assert_almost_equal(desired,y,decimal=12)



class TestMisc(TestCase):
    #
    def test_obrientransform(self):
        "Tests Obrien transform"
        args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2,
                [6]+[7]*2+[8]*4+[9]*9+[10]*16]
        result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538],
                  [10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]]
        assert_almost_equal(np.round(mstats.obrientransform(*args).T,4),
                            result,4)
    #
    def test_kstwosamp(self):
        "Tests the Kolmogorov-Smirnov 2 samples test"
        x = [[nan,nan,  4,  2, 16, 26,  5,  1,  5,  1,  2,  3,  1],
             [  4,  3,  5,  3,  2,  7,  3,  1,  1,  2,  3,  5,  3],
             [  3,  2,  5,  6, 18,  4,  9,  1,  1,nan,  1,  1,nan],
             [nan,  6, 11,  4, 17,nan,  6,  1,  1,  2,  5,  1,  1]]
        x = ma.fix_invalid(x).T
        (winter,spring,summer,fall) = x.T
        #
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
                            (0.1818,0.9892))
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
                            (0.1469,0.7734))
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
                            (0.1818,0.6744))
    #
    def test_friedmanchisq(self):
        "Tests the Friedman Chi-square test"
        # No missing values
        args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
                [7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
                [6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
        result = mstats.friedmanchisquare(*args)
        assert_almost_equal(result[0], 10.4737, 4)
        assert_almost_equal(result[1], 0.005317, 6)
        # Missing values
        x = [[nan,nan,  4,  2, 16, 26,  5,  1,  5,  1,  2,  3,  1],
             [  4,  3,  5,  3,  2,  7,  3,  1,  1,  2,  3,  5,  3],
             [  3,  2,  5,  6, 18,  4,  9,  1,  1,nan,  1,  1,nan],
             [nan,  6, 11,  4, 17,nan,  6,  1,  1,  2,  5,  1,  1]]
        x = ma.fix_invalid(x)
        result = mstats.friedmanchisquare(*x)
        assert_almost_equal(result[0], 2.0156, 4)
        assert_almost_equal(result[1], 0.5692, 4)


if __name__ == "__main__":
    run_module_suite()