File: test_stats.py

package info (click to toggle)
python-scipy 0.7.2%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,500 kB
  • ctags: 36,081
  • sloc: cpp: 216,880; fortran: 76,016; python: 71,576; ansic: 62,118; makefile: 243; sh: 17
file content (1321 lines) | stat: -rw-r--r-- 48,212 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
""" Test functions for stats module

    WRITTEN BY LOUIS LUANGKESORN <lluang@yahoo.com> FOR THE STATS MODULE
    BASED ON WILKINSON'S STATISTICS QUIZ
    http://www.stanford.edu/~clint/bench/wilk.txt

"""

from numpy.testing import *
from numpy import array, arange, zeros, ravel, float32, float64, power
import numpy as np

import scipy.stats as stats


""" Numbers in docstrings begining with 'W' refer to the section numbers
    and headings found in the STATISTICS QUIZ of Leland Wilkinson.  These are
    considered to be essential functionality.  True testing and
    evaluation of a statistics package requires use of the
    NIST Statistical test data.  See McCoullough(1999) Assessing The Reliability
    of Statistical Software for a test methodology and its
    implementation in testing SAS, SPSS, and S-Plus
"""

##  Datasets
##  These data sets are from the nasty.dat sets used by Wilkinson
##  for MISS, need to be able to represent missing values
##  For completeness, I should write the relevant tests and count them as failures
##  Somewhat acceptable, since this is still beta software.  It would count as a
##  good target for 1.0 status
X = array([1,2,3,4,5,6,7,8,9],float)
ZERO= array([0,0,0,0,0,0,0,0,0], float)
#MISS=array([.,.,.,.,.,.,.,.,.], float)
BIG=array([99999991,99999992,99999993,99999994,99999995,99999996,99999997,99999998,99999999],float)
LITTLE=array([0.99999991,0.99999992,0.99999993,0.99999994,0.99999995,0.99999996,0.99999997,0.99999998,0.99999999],float)
HUGE=array([1e+12,2e+12,3e+12,4e+12,5e+12,6e+12,7e+12,8e+12,9e+12],float)
TINY=array([1e-12,2e-12,3e-12,4e-12,5e-12,6e-12,7e-12,8e-12,9e-12],float)
ROUND=array([0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5],float)
X2 = X * X
X3 = X2 * X
X4 = X3 * X
X5 = X4 * X
X6 = X5 * X
X7 = X6 * X
X8 = X7 * X
X9 = X8 * X

class TestRound(TestCase):
    """ W.II. ROUND

        You should get the numbers 1 to 9.  Many language compilers,
        such as Turbo Pascal and Lattice C, fail this test (they round
        numbers inconsistently). Needless to say, statical packages
        written in these languages may fail the test as well.  You can
        also check the following expressions:
            Y = INT(2.6*7 -0.2)                   (Y should be 18)
            Y = 2-INT(EXP(LOG(SQR(2)*SQR(2))))    (Y should be 0)
            Y = INT(3-EXP(LOG(SQR(2)*SQR(2))))    (Y should be 1)
        INT is the integer function.  It converts decimal numbers to
        integers by throwing away numbers after the decimal point.  EXP
        is exponential, LOG is logarithm, and SQR is suqare root.  You may
        have to substitute similar names for these functions for different
        packages.  Since the square of a square root should return the same
        number, and the exponential of a log should return the same number,
        we should get back a 2 from this function of functions.  By taking
        the integer result and subtracting from 2, we are exposing the
        roundoff errors.  These simple functions are at the heart of
        statistical calculations.
    """

    def test_rounding0(self):
        """ W.II.A.0. Print ROUND with only one digit.

            You should get the numbers 1 to 9.  Many language compilers,
            such as Turbo Pascal and Lattice C, fail this test (they round
            numbers inconsistently). Needless to say, statical packages
            written in these languages may fail the test as well.
        """
        for i in range(0,9):
            y = round(ROUND[i])
            assert_equal(y,i+1)

    def test_rounding1(self):
        """ W.II.A.1. Y = INT(2.6*7 -0.2) (Y should be 18)"""
        y = int(2.6*7 -0.2)
        assert_equal(y, 18)

    def test_rounding2(self):
        """ W.II.A.2. Y = 2-INT(EXP(LOG(SQR(2)*SQR(2))))   (Y should be 0)"""
        y=2-int(np.exp(np.log(np.sqrt(2.)*np.sqrt(2.))))
        assert_equal(y,0)

    def test_rounding3(self):
        """ W.II.A.3. Y = INT(3-EXP(LOG(SQR(2)*SQR(2))))    (Y should be 1)"""
        y=(int(round((3-np.exp(np.log(np.sqrt(2.0)*np.sqrt(2.0)))))))
        assert_equal(y,1)

class TestBasicStats(TestCase):
    """ W.II.C. Compute basic statistic on all the variables.

        The means should be the fifth value of all the variables (case FIVE).
        The standard deviations should be "undefined" or missing for MISS,
        0 for ZERO, and 2.738612788 (times 10 to a power) for all the other variables.
        II. C. Basic Statistics
    """

    def test_meanX(self):
        y = stats.mean(X)
        assert_almost_equal(y, 5.0)

    def test_stdX(self):
        y = stats.std(X)
        assert_almost_equal(y, 2.738612788)

    def test_tmeanX(self):
        y = stats.tmean(X, (2, 8), (True, True))
        assert_almost_equal(y, 5.0)

    def test_tvarX(self):
        y = stats.tvar(X, (2, 8), (True, True))
        assert_almost_equal(y, 4.6666666666666661)

    def test_tstdX(self):
        y = stats.tstd(X, (2, 8), (True, True))
        assert_almost_equal(y, 2.1602468994692865)

    def test_meanZERO(self):
        y = stats.mean(ZERO)
        assert_almost_equal(y, 0.0)

    def test_stdZERO(self):
        y = stats.std(ZERO)
        assert_almost_equal(y, 0.0)

##    Really need to write these tests to handle missing values properly
##    def test_meanMISS(self):
##        y = stats.mean(MISS)
##        assert_almost_equal(y, 0.0)
##
##    def test_stdMISS(self):
##        y = stats.stdev(MISS)
##        assert_almost_equal(y, 0.0)

    def test_meanBIG(self):
        y = stats.mean(BIG)

        assert_almost_equal(y, 99999995.00)

    def test_stdBIG(self):
        y = stats.std(BIG)
        assert_almost_equal(y, 2.738612788)

    def test_meanLITTLE(self):
        y = stats.mean(LITTLE)
        assert_approx_equal(y, 0.999999950)

    def test_stdLITTLE(self):
        y = stats.std(LITTLE)
        assert_approx_equal(y, 2.738612788e-8)

    def test_meanHUGE(self):
        y = stats.mean(HUGE)
        assert_approx_equal(y, 5.00000e+12)

    def test_stdHUGE(self):
        y = stats.std(HUGE)
        assert_approx_equal(y, 2.738612788e12)

    def test_meanTINY(self):
        y = stats.mean(TINY)
        assert_almost_equal(y, 0.0)

    def test_stdTINY(self):
        y = stats.std(TINY)
        assert_almost_equal(y, 0.0)

    def test_meanROUND(self):
        y = stats.mean(ROUND)
        assert_approx_equal(y, 4.500000000)

    def test_stdROUND(self):
        y = stats.std(ROUND)
        assert_approx_equal(y, 2.738612788)

class TestNanFunc(TestCase):
    def __init__(self, *args, **kw):
        TestCase.__init__(self, *args, **kw)
        self.X = X.copy()

        self.Xall = X.copy()
        self.Xall[:] = np.nan

        self.Xsome = X.copy()
        self.Xsomet = X.copy()
        self.Xsome[0] = np.nan
        self.Xsomet = self.Xsomet[1:]

    def test_nanmean_none(self):
        """Check nanmean when no values are nan."""
        m = stats.nanmean(X)
        assert_approx_equal(m, X[4])

    def test_nanmean_some(self):
        """Check nanmean when some values only are nan."""
        m = stats.nanmean(self.Xsome)
        assert_approx_equal(m, 5.5)

    def test_nanmean_all(self):
        """Check nanmean when all values are nan."""
        m = stats.nanmean(self.Xall)
        assert np.isnan(m)

    def test_nanstd_none(self):
        """Check nanstd when no values are nan."""
        s = stats.nanstd(self.X)
        assert_approx_equal(s, stats.std(self.X))

    def test_nanstd_some(self):
        """Check nanstd when some values only are nan."""
        s = stats.nanstd(self.Xsome)
        assert_approx_equal(s, stats.std(self.Xsomet))

    def test_nanstd_all(self):
        """Check nanstd when all values are nan."""
        s = stats.nanstd(self.Xall)
        assert np.isnan(s)

    def test_nanmedian_none(self):
        """Check nanmedian when no values are nan."""
        m = stats.nanmedian(self.X)
        assert_approx_equal(m, stats.median(self.X))

    def test_nanmedian_some(self):
        """Check nanmedian when some values only are nan."""
        m = stats.nanmedian(self.Xsome)
        assert_approx_equal(m, stats.median(self.Xsomet))

    def test_nanmedian_all(self):
        """Check nanmedian when all values are nan."""
        m = stats.nanmedian(self.Xall)
        assert np.isnan(m)

class TestCorr(TestCase):
    """ W.II.D. Compute a correlation matrix on all the variables.

        All the correlations, except for ZERO and MISS, shoud be exactly 1.
        ZERO and MISS should have undefined or missing correlations with the
        other variables.  The same should go for SPEARMAN corelations, if
        your program has them.
    """
    def test_pXX(self):
        y = stats.pearsonr(X,X)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pXBIG(self):
        y = stats.pearsonr(X,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pXLITTLE(self):
        y = stats.pearsonr(X,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pXHUGE(self):
        y = stats.pearsonr(X,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pXTINY(self):
        y = stats.pearsonr(X,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pXROUND(self):
        y = stats.pearsonr(X,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pBIGBIG(self):
        y = stats.pearsonr(BIG,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pBIGLITTLE(self):
        y = stats.pearsonr(BIG,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pBIGHUGE(self):
        y = stats.pearsonr(BIG,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pBIGTINY(self):
        y = stats.pearsonr(BIG,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pBIGROUND(self):
        y = stats.pearsonr(BIG,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pLITTLELITTLE(self):
        y = stats.pearsonr(LITTLE,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pLITTLEHUGE(self):
        y = stats.pearsonr(LITTLE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pLITTLETINY(self):
        y = stats.pearsonr(LITTLE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pLITTLEROUND(self):
        y = stats.pearsonr(LITTLE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pHUGEHUGE(self):
        y = stats.pearsonr(HUGE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pHUGETINY(self):
        y = stats.pearsonr(HUGE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pHUGEROUND(self):
        y = stats.pearsonr(HUGE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pTINYTINY(self):
        y = stats.pearsonr(TINY,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pTINYROUND(self):
        y = stats.pearsonr(TINY,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_pROUNDROUND(self):
        y = stats.pearsonr(ROUND,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sXX(self):
        y = stats.spearmanr(X,X)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sXBIG(self):
        y = stats.spearmanr(X,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sXLITTLE(self):
        y = stats.spearmanr(X,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sXHUGE(self):
        y = stats.spearmanr(X,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sXTINY(self):
        y = stats.spearmanr(X,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sXROUND(self):
        y = stats.spearmanr(X,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sBIGBIG(self):
        y = stats.spearmanr(BIG,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sBIGLITTLE(self):
        y = stats.spearmanr(BIG,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sBIGHUGE(self):
        y = stats.spearmanr(BIG,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sBIGTINY(self):
        y = stats.spearmanr(BIG,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sBIGROUND(self):
        y = stats.spearmanr(BIG,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sLITTLELITTLE(self):
        y = stats.spearmanr(LITTLE,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sLITTLEHUGE(self):
        y = stats.spearmanr(LITTLE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sLITTLETINY(self):
        y = stats.spearmanr(LITTLE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sLITTLEROUND(self):
        y = stats.spearmanr(LITTLE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sHUGEHUGE(self):
        y = stats.spearmanr(HUGE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sHUGETINY(self):
        y = stats.spearmanr(HUGE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sHUGEROUND(self):
        y = stats.spearmanr(HUGE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sTINYTINY(self):
        y = stats.spearmanr(TINY,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sTINYROUND(self):
        y = stats.spearmanr(TINY,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)
    def test_sROUNDROUND(self):
        y = stats.spearmanr(ROUND,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

##    W.II.E.  Tabulate X against X, using BIG as a case weight.  The values
##    should appear on the diagonal and the total should be 899999955.
##    If the table cannot hold these values, forget about working with
##    census data.  You can also tabulate HUGE against TINY.  There is no
##    reason a tabulation program should not be able to digtinguish
##    different values regardless of their magnitude.

### I need to figure out how to do this one.


class TestRegression(TestCase):
    def test_linregressBIGX(self):
        """ W.II.F.  Regress BIG on X.

            The constant should be 99999990 and the regression coefficient should be 1.
        """
        y = stats.linregress(X,BIG)
        intercept = y[1]
        r=y[2]
        assert_almost_equal(intercept,99999990)
        assert_almost_equal(r,1.0)

##     W.IV.A. Take the NASTY dataset above.  Use the variable X as a
##     basis for computing polynomials.  Namely, compute X1=X, X2=X*X,
##     X3=X*X*X, and so on up to 9 products.  Use the algebraic
##     transformation language within the statistical package itself.  You
##     will end up with 9 variables.  Now regress X1 on X2-X9 (a perfect
##     fit).  If the package balks (singular or roundoff error messages),
##     try X1 on X2-X8, and so on.  Most packages cannot handle more than
##     a few polynomials.
##     Scipy's stats.py does not seem to handle multiple linear regression
##     The datasets X1 . . X9 are at the top of the file.


    def test_regressXX(self):
        """ W.IV.B.  Regress X on X.

            The constant should be exactly 0 and the regression coefficient should be 1.
            This is a perfectly valid regression.  The program should not complain.
        """
        y = stats.linregress(X,X)
        intercept = y[1]
        r=y[2]
        assert_almost_equal(intercept,0.0)
        assert_almost_equal(r,1.0)
##     W.IV.C. Regress X on BIG and LITTLE (two predictors).  The program
##     should tell you that this model is "singular" because BIG and
##     LITTLE are linear combinations of each other.  Cryptic error
##     messages are unacceptable here.  Singularity is the most
##     fundamental regression error.
### Need to figure out how to handle multiple linear regression.  Not obvious

    def test_regressZEROX(self):
        """ W.IV.D. Regress ZERO on X.

            The program should inform you that ZERO has no variance or it should
            go ahead and compute the regression and report a correlation and
            total sum of squares of exactly 0.
        """
        y = stats.linregress(X,ZERO)
        intercept = y[1]
        r=y[2]
        assert_almost_equal(intercept,0.0)
        assert_almost_equal(r,0.0)

    def test_regress_simple(self):
        """Regress a line with sinusoidal noise."""
        x = np.linspace(0, 100, 100)
        y = 0.2 * np.linspace(0, 100, 100) + 10
        y += np.sin(np.linspace(0, 20, 100))

        res = stats.linregress(x, y)
        assert_almost_equal(res[4], 2.3957814497838803e-3) #4.3609875083149268e-3)

    def test_linregress(self):
        '''compared with multivariate ols with pinv'''
        x = np.arange(11)
        y = np.arange(5,16)
        y[[(1),(-2)]] -= 1
        y[[(0),(-1)]] += 1

        res = (1.0, 5.0, 0.98229948625750, 7.45259691e-008, 0.063564172616372733)
        assert_array_almost_equal(stats.linregress(x,y),res,decimal=14)


# Utility

def compare_results(res,desired):
    for i in range(len(desired)):
        assert_array_equal(res[i],desired[i])


##################################################
### Test for sum

class TestGMean(TestCase):

    def test_1D_list(self):
        a = (1,2,3,4)
        actual= stats.gmean(a)
        desired = power(1*2*3*4,1./4.)
        assert_almost_equal(actual, desired,decimal=14)

        desired1 = stats.gmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)

    def test_1D_array(self):
        a = array((1,2,3,4), float32)
        actual= stats.gmean(a)
        desired = power(1*2*3*4,1./4.)
        assert_almost_equal(actual, desired, decimal=7)

        desired1 = stats.gmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=7)

    def test_2D_array_default(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))
        actual= stats.gmean(a)
        desired = array((1,2,3,4))
        assert_array_almost_equal(actual, desired, decimal=14)

        desired1 = stats.gmean(a,axis=0)
        assert_array_almost_equal(actual, desired1, decimal=14)

    def test_2D_array_dim1(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))
        actual= stats.gmean(a, axis=1)
        v = power(1*2*3*4,1./4.)
        desired = array((v,v,v))
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_large_values(self):
        a = array([1e100, 1e200, 1e300])
        actual = stats.gmean(a)
        assert_approx_equal(actual, 1e200, significant=14)

class TestHMean(TestCase):
    def test_1D_list(self):
        a = (1,2,3,4)
        actual= stats.hmean(a)
        desired =  4. / (1./1 + 1./2 + 1./3 + 1./4)
        assert_almost_equal(actual, desired, decimal=14)

        desired1 = stats.hmean(array(a),axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)
    def test_1D_array(self):
        a = array((1,2,3,4), float64)
        actual= stats.hmean(a)
        desired =  4. / (1./1 + 1./2 + 1./3 + 1./4)
        assert_almost_equal(actual, desired, decimal=14)

        desired1 = stats.hmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)

    def test_2D_array_default(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))
        actual = stats.hmean(a)
        desired = array((1.,2.,3.,4.))
        assert_array_almost_equal(actual, desired, decimal=14)

        actual1 = stats.hmean(a,axis=0)
        assert_array_almost_equal(actual1, desired, decimal=14)

    def test_2D_array_dim1(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))

        v = 4. / (1./1 + 1./2 + 1./3 + 1./4)
        desired1 = array((v,v,v))
        actual1 = stats.hmean(a, axis=1)
        assert_array_almost_equal(actual1, desired1, decimal=14)


class TestMean(TestCase):
    def test_basic(self):
        a = [3,4,5,10,-3,-5,6]
        af = [3.,4,5,10,-3,-5,-6]
        Na = len(a)
        Naf = len(af)
        mn1 = 0.0
        for el in a:
            mn1 += el / float(Na)
        assert_almost_equal(stats.mean(a),mn1,11)
        mn2 = 0.0
        for el in af:
            mn2 += el / float(Naf)
        assert_almost_equal(stats.mean(af),mn2,11)

    def test_2d(self):
        a = [[1.0, 2.0, 3.0],
             [2.0, 4.0, 6.0],
             [8.0, 12.0, 7.0]]
        A = array(a)
        N1, N2 = (3, 3)
        mn1 = zeros(N2, dtype=float)
        for k in range(N1):
            mn1 += A[k,:] / N1
        assert_almost_equal(stats.mean(a, axis=0), mn1, decimal=13)
        assert_almost_equal(stats.mean(a), mn1, decimal=13)
        mn2 = zeros(N1, dtype=float)
        for k in range(N2):
            mn2 += A[:,k]
        mn2 /= N2
        assert_almost_equal(stats.mean(a, axis=1), mn2, decimal=13)

    def test_ravel(self):
        a = rand(5,3,5)
        A = 0
        for val in ravel(a):
            A += val
        assert_almost_equal(stats.mean(a,axis=None),A/(5*3.0*5))

class TestPercentile(TestCase):
    def setUp(self):
        self.a1 = [3,4,5,10,-3,-5,6]
        self.a2 = [3,-6,-2,8,7,4,2,1]
        self.a3 = [3.,4,5,10,-3,-5,-6,7.0]

    def test_median(self):
        assert_equal(stats.median(self.a1), 4)
        assert_equal(stats.median(self.a2), 2.5)
        assert_equal(stats.median(self.a3), 3.5)

    def test_percentile(self):
        x = arange(8) * 0.5
        assert_equal(stats.scoreatpercentile(x, 0), 0.)
        assert_equal(stats.scoreatpercentile(x, 100), 3.5)
        assert_equal(stats.scoreatpercentile(x, 50), 1.75)

    def test_2D(self):
        x = array([[1, 1, 1],
                   [1, 1, 1],
                   [4, 4, 3],
                   [1, 1, 1],
                   [1, 1, 1]])
        assert_array_equal(stats.scoreatpercentile(x,50),
                           [1,1,1])


class TestStd(TestCase):
    def test_basic(self):
        a = [3,4,5,10,-3,-5,6]
        b = [3,4,5,10,-3,-5,-6]
        assert_almost_equal(stats.std(a),5.2098807225172772,11)
        assert_almost_equal(stats.std(b),5.9281411203561225,11)

    def test_2d(self):
        a = [[1.0, 2.0, 3.0],
             [2.0, 4.0, 6.0],
             [8.0, 12.0, 7.0]]
        b1 = array((3.7859388972001824, 5.2915026221291814,
                    2.0816659994661335))
        b2 = array((1.0,2.0,2.64575131106))
        assert_array_almost_equal(stats.std(a),b1,11)
        assert_array_almost_equal(stats.std(a,axis=0),b1,11)
        assert_array_almost_equal(stats.std(a,axis=1),b2,11)


class TestCMedian(TestCase):
    def test_basic(self):
        data = [1,2,3,1,5,3,6,4,3,2,4,3,5,2.0]
        assert_almost_equal(stats.cmedian(data,5),3.2916666666666665)
        assert_almost_equal(stats.cmedian(data,3),3.083333333333333)
        assert_almost_equal(stats.cmedian(data),3.0020020020020022)

class TestMedian(TestCase):
    def test_basic(self):
        data1 = [1,3,5,2,3,1,19,-10,2,4.0]
        data2 = [3,5,1,10,23,-10,3,-2,6,8,15]
        assert_almost_equal(stats.median(data1),2.5)
        assert_almost_equal(stats.median(data2),5)

    def test_basic2(self):
        a1 = [3,4,5,10,-3,-5,6]
        a2 = [3,-6,-2,8,7,4,2,1]
        a3 = [3.,4,5,10,-3,-5,-6,7.0]
        assert_equal(stats.median(a1),4)
        assert_equal(stats.median(a2),2.5)
        assert_equal(stats.median(a3),3.5)

    def test_axis(self):
        """Regression test for #760."""
        a1 = np.array([[3,4,5], [10,-3,-5]])
        assert_equal(stats.median(a1), np.array([6.5, 0.5, 0.]))
        assert_equal(stats.median(a1, axis=-1), np.array([4., -3]))

class TestMode(TestCase):
    def test_basic(self):
        data1 = [3,5,1,10,23,3,2,6,8,6,10,6]
        vals = stats.mode(data1)
        assert_almost_equal(vals[0][0],6)
        assert_almost_equal(vals[1][0],3)


class TestVariability(TestCase):
    """  Comparison numbers are found using R v.1.5.1
         note that length(testcase) = 4
    """
    testcase = [1,2,3,4]
    def test_std(self):
        y = stats.std(self.testcase)
        assert_approx_equal(y,1.290994449)

    def test_var(self):
        """
        var(testcase) = 1.666666667 """
        #y = stats.var(self.shoes[0])
        #assert_approx_equal(y,6.009)
        y = stats.var(self.testcase)
        assert_approx_equal(y,1.666666667)

    def test_samplevar(self):
        """
        R does not have 'samplevar' so the following was used
        var(testcase)*(4-1)/4  where 4 = length(testcase)
        """
        #y = stats.samplevar(self.shoes[0])
        #assert_approx_equal(y,5.4081)
        y = stats.samplevar(self.testcase)
        assert_approx_equal(y,1.25)

    def test_samplestd(self):
        #y = stats.samplestd(self.shoes[0])
        #assert_approx_equal(y,2.325532197)
        y = stats.samplestd(self.testcase)
        assert_approx_equal(y,1.118033989)

    def test_signaltonoise(self):
        """
        this is not in R, so used
        mean(testcase,axis=0)/(sqrt(var(testcase)*3/4)) """
        #y = stats.signaltonoise(self.shoes[0])
        #assert_approx_equal(y,4.5709967)
        y = stats.signaltonoise(self.testcase)
        assert_approx_equal(y,2.236067977)

    def test_stderr(self):
        """
        this is not in R, so used
        sqrt(var(testcase))/sqrt(4)
        """
##        y = stats.stderr(self.shoes[0])
##        assert_approx_equal(y,0.775177399)
        y = stats.stderr(self.testcase)
        assert_approx_equal(y,0.6454972244)
    def test_sem(self):
        """
        this is not in R, so used
        sqrt(var(testcase)*3/4)/sqrt(3)
        """
        #y = stats.sem(self.shoes[0])
        #assert_approx_equal(y,0.775177399)
        y = stats.sem(self.testcase)
        assert_approx_equal(y,0.6454972244)

    def test_z(self):
        """
        not in R, so used
        (10-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
        """
        y = stats.z(self.testcase,stats.mean(self.testcase))
        assert_almost_equal(y,0.0)

    def test_zs(self):
        """
        not in R, so tested by using
        (testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
        """
        y = stats.zs(self.testcase)
        desired = ([-1.3416407864999, -0.44721359549996 , 0.44721359549996 , 1.3416407864999])
        assert_array_almost_equal(desired,y,decimal=12)



class TestMoments(TestCase):
    """
        Comparison numbers are found using R v.1.5.1
        note that length(testcase) = 4
        testmathworks comes from documentation for the
        Statistics Toolbox for Matlab and can be found at both
        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
        Note that both test cases came from here.
    """
    testcase = [1,2,3,4]
    testmathworks = [1.165 , 0.6268, 0.0751, 0.3516, -0.6965]
    def test_moment(self):
        """
        mean((testcase-mean(testcase))**power,axis=0),axis=0))**power))"""
        y = stats.moment(self.testcase,1)
        assert_approx_equal(y,0.0,10)
        y = stats.moment(self.testcase,2)
        assert_approx_equal(y,1.25)
        y = stats.moment(self.testcase,3)
        assert_approx_equal(y,0.0)
        y = stats.moment(self.testcase,4)
        assert_approx_equal(y,2.5625)
    def test_variation(self):
        """
        variation = samplestd/mean """
##        y = stats.variation(self.shoes[0])
##        assert_approx_equal(y,21.8770668)
        y = stats.variation(self.testcase)
        assert_approx_equal(y,0.44721359549996, 10)

    def test_skewness(self):
        """
        sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0)/
            ((sqrt(var(testmathworks)*4/5))**3)/5
        """
        y = stats.skew(self.testmathworks)
        assert_approx_equal(y,-0.29322304336607,10)
        y = stats.skew(self.testmathworks,bias=0)
        assert_approx_equal(y,-0.437111105023940,10)
        y = stats.skew(self.testcase)
        assert_approx_equal(y,0.0,10)

    def test_skewness_scalar(self):
        """
        `skew` must return a scalar for 1-dim input
        """
        assert_equal(stats.skew(arange(10)), 0.0)

    def test_kurtosis(self):
        """
            sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
            sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
            Set flags for axis = 0 and
            fisher=0 (Pearson's defn of kurtosis for compatiability with Matlab)
        """
        y = stats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
        assert_approx_equal(y, 2.1658856802973,10)

        # Note that MATLAB has confusing docs for the following case
        #  kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
        #  kurtosis(x)  gives a biased estimate of Fisher's skewness (Pearson-3)
        #  The MATLAB docs imply that both should give Fisher's
        y = stats.kurtosis(self.testmathworks,fisher=0,bias=0)
        assert_approx_equal(y, 3.663542721189047,10)
        y = stats.kurtosis(self.testcase,0,0)
        assert_approx_equal(y,1.64)

    def test_kurtosis_array_scalar(self):
        assert_equal(type(stats.kurtosis([1,2,3])), float)

class TestThreshold(TestCase):
    def test_basic(self):
        a = [-1,2,3,4,5,-1,-2]
        assert_array_equal(stats.threshold(a),a)
        assert_array_equal(stats.threshold(a,3,None,0),
                           [0,0,3,4,5,0,0])
        assert_array_equal(stats.threshold(a,None,3,0),
                           [-1,2,3,0,0,-1,-2])
        assert_array_equal(stats.threshold(a,2,4,0),
                           [0,2,3,4,0,0,0])

# Hypothesis test tests
class TestStudentTest(TestCase):
    X1 = np.array([-1, 0, 1])
    X2 = np.array([0, 1, 2])
    T1_0 = 0
    P1_0 = 1
    T1_1 = -1.732051
    P1_1 = 0.2254033
    T1_2 = -3.464102
    P1_2 =  0.0741799
    T2_0 = 1.732051
    P2_0 = 0.2254033
    def test_onesample(self):
        t, p = stats.ttest_1samp(self.X1, 0)

        assert_array_almost_equal(t, self.T1_0)
        assert_array_almost_equal(p, self.P1_0)

        t, p = stats.ttest_1samp(self.X2, 0)

        assert_array_almost_equal(t, self.T2_0)
        assert_array_almost_equal(p, self.P2_0)

        t, p = stats.ttest_1samp(self.X1, 1)

        assert_array_almost_equal(t, self.T1_1)
        assert_array_almost_equal(p, self.P1_1)

        t, p = stats.ttest_1samp(self.X1, 2)

        assert_array_almost_equal(t, self.T1_2)
        assert_array_almost_equal(p, self.P1_2)

def test_scoreatpercentile():
    assert_equal(stats.scoreatpercentile(range(10), 50), 4.5)
    assert_equal(stats.scoreatpercentile(range(10), 50, (2,7)), 4.5)
    assert_equal(stats.scoreatpercentile(range(100), 50, (1,8)), 4.5)

    assert_equal(stats.scoreatpercentile(np.array([1, 10 ,100]),
                                         50, (10,100)),
                 55)
    assert_equal(stats.scoreatpercentile(np.array([1, 10 ,100]),
                                         50, (1,10)),
                 5.5)

def test_percentileofscore():
    pcos = stats.percentileofscore

    assert_equal(pcos([1,2,3,4,5,6,7,8,9,10],4), 40.0)

    for (kind, result) in [('mean', 35.0),
                           ('strict', 30.0),
                           ('weak', 40.0)]:
        yield assert_equal, pcos(np.arange(10) + 1,
                                                    4, kind=kind), \
                                                    result

    # multiple - 2
    for (kind, result) in [('rank', 45.0),
                           ('strict', 30.0),
                           ('weak', 50.0),
                           ('mean', 40.0)]:
        yield assert_equal, pcos([1,2,3,4,4,5,6,7,8,9],
                                                    4, kind=kind), \
                                                    result

    # multiple - 3
    assert_equal(pcos([1,2,3,4,4,4,5,6,7,8], 4), 50.0)
    for (kind, result) in [('rank', 50.0),
                           ('mean', 45.0),
                           ('strict', 30.0),
                           ('weak', 60.0)]:

        yield assert_equal, pcos([1,2,3,4,4,4,5,6,7,8],
                                                    4, kind=kind), \
                                                    result

    # missing
    for kind in ('rank', 'mean', 'strict', 'weak'):
        yield assert_equal, pcos([1,2,3,5,6,7,8,9,10,11],
                                                    4, kind=kind), \
                                                    30

    #larger numbers
    for (kind, result) in [('mean', 35.0),
                           ('strict', 30.0),
                           ('weak', 40.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 40,
                   kind=kind), result

    for (kind, result) in [('mean', 45.0),
                           ('strict', 30.0),
                           ('weak', 60.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 40, 40, 40, 50, 60, 70, 80],
                   40, kind=kind), result


    for kind in ('rank', 'mean', 'strict', 'weak'):
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   40, kind=kind), 30.0

    #boundaries
    for (kind, result) in [('rank', 10.0),
                           ('mean', 5.0),
                           ('strict', 0.0),
                           ('weak', 10.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   10, kind=kind), result

    for (kind, result) in [('rank', 100.0),
                           ('mean', 95.0),
                           ('strict', 90.0),
                           ('weak', 100.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   110, kind=kind), result

    #out of bounds
    for (kind, score, result) in [('rank', 200, 100.0),
                                  ('mean', 200, 100.0),
                                  ('mean', 0, 0.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   score, kind=kind), result


def test_friedmanchisquare():
    # see ticket:113
    # verified with matlab and R
    #From Demsar "Statistical Comparisons of Classifiers over Multiple Data Sets"
    #2006, Xf=9.28 (no tie handling, tie corrected Xf >=9.28)
    x1 = [array([0.763, 0.599, 0.954, 0.628, 0.882, 0.936, 0.661, 0.583,
                 0.775, 1.0, 0.94, 0.619, 0.972, 0.957]),
          array([0.768, 0.591, 0.971, 0.661, 0.888, 0.931, 0.668, 0.583,
                 0.838, 1.0, 0.962, 0.666, 0.981, 0.978]),
          array([0.771, 0.590, 0.968, 0.654, 0.886, 0.916, 0.609, 0.563,
                 0.866, 1.0, 0.965, 0.614, 0.9751, 0.946]),
          array([0.798, 0.569, 0.967, 0.657, 0.898, 0.931, 0.685, 0.625,
                 0.875, 1.0, 0.962, 0.669, 0.975, 0.970])]

    #From "Bioestadistica para las ciencias de la salud" Xf=18.95 p<0.001:
    x2 = [array([4,3,5,3,5,3,2,5,4,4,4,3]),
          array([2,2,1,2,3,1,2,3,2,1,1,3]),
          array([2,4,3,3,4,3,3,4,4,1,2,1]),
          array([3,5,4,3,4,4,3,3,3,4,4,4])]

    #From Jerrorl H. Zar, "Biostatistical Analysis"(example 12.6), Xf=10.68, 0.005 < p < 0.01:
    #Probability from this example is inexact using Chisquare aproximation of Friedman Chisquare.
    x3 = [array([7.0,9.9,8.5,5.1,10.3]),
          array([5.3,5.7,4.7,3.5,7.7]),
          array([4.9,7.6,5.5,2.8,8.4]),
          array([8.8,8.9,8.1,3.3,9.1])]


    assert_array_almost_equal(stats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]),(10.2283464566929, 0.0167215803284414))
    assert_array_almost_equal(stats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]),(18.9428571428571, 0.000280938375189499))
    assert_array_almost_equal(stats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]),(10.68, 0.0135882729582176))
    np.testing.assert_raises(ValueError, stats.friedmanchisquare,x3[0],x3[1])

    # test using mstats
    assert_array_almost_equal(stats.mstats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]),(10.2283464566929, 0.0167215803284414))
    # the following fails
    #assert_array_almost_equal(stats.mstats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]),(18.9428571428571, 0.000280938375189499))
    assert_array_almost_equal(stats.mstats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]),(10.68, 0.0135882729582176))
    np.testing.assert_raises(ValueError,stats.mstats.friedmanchisquare,x3[0],x3[1])

def test_kstest():
    #from numpy.testing import assert_almost_equal

    # comparing with values from R
    x = np.linspace(-1,1,9)
    D,p = stats.kstest(x,'norm')
    assert_almost_equal( D, 0.15865525393145705, 12)
    assert_almost_equal( p, 0.95164069201518386, 1)

    x = np.linspace(-15,15,9)
    D,p = stats.kstest(x,'norm')
    assert_almost_equal( D, 0.44435602715924361, 15)
    assert_almost_equal( p, 0.038850140086788665, 8)

    # the following tests rely on deterministicaly replicated rvs
    np.random.seed(987654321)
    x = stats.norm.rvs(loc=0.2, size=100)
    D,p = stats.kstest(x, 'norm', mode='asymp')
    assert_almost_equal( D, 0.12464329735846891, 15)
    assert_almost_equal( p, 0.089444888711820769, 15)
    assert_almost_equal( np.array(stats.kstest(x, 'norm', mode='asymp')),
                np.array((0.12464329735846891, 0.089444888711820769)), 15)
    assert_almost_equal( np.array(stats.kstest(x,'norm', alternative = 'less')),
                np.array((0.12464329735846891, 0.040989164077641749)), 15)
    assert_almost_equal( np.array(stats.kstest(x,'norm', alternative = 'greater')),
                np.array((0.0072115233216310994, 0.98531158590396228)), 14)

    #missing: no test that uses *args


def test_ks_2samp():
    #exact small sample solution
    data1 = np.array([1.0,2.0])
    data2 = np.array([1.0,2.0,3.0])
    assert_almost_equal(np.array(stats.ks_2samp(data1+0.01,data2)),
                np.array((0.33333333333333337, 0.99062316386915694)))
    assert_almost_equal(np.array(stats.ks_2samp(data1-0.01,data2)),
                np.array((0.66666666666666674, 0.42490954988801982)))
    #these can also be verified graphically
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,100)+2+0.1)),
        np.array((0.030000000000000027, 0.99999999996005062)))
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,100)+2-0.1)),
        np.array((0.020000000000000018, 0.99999999999999933)))
    #these are just regression tests
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,110)+20.1)),
        np.array((0.21090909090909091, 0.015880386730710221)))
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,110)+20-0.1)),
        np.array((0.20818181818181825, 0.017981441789762638)))

def test_ttest_rel():
    #regression test
    tr,pr = 0.81248591389165692, 0.41846234511362157
    tpr = ([tr,-tr],[pr,pr])

    rvs1 = np.linspace(1,100,100)
    rvs2 = np.linspace(1.01,99.989,100)
    rvs1_2D = np.array([np.linspace(1,100,100), np.linspace(1.01,99.989,100)])
    rvs2_2D = np.array([np.linspace(1.01,99.989,100), np.linspace(1,100,100)])

    t,p = stats.ttest_rel(rvs1, rvs2, axis=0)
    assert_array_almost_equal([t,p],(tr,pr))
    t,p = stats.ttest_rel(rvs1_2D.T, rvs2_2D.T, axis=0)
    assert_array_almost_equal([t,p],tpr)
    t,p = stats.ttest_rel(rvs1_2D, rvs2_2D, axis=1)
    assert_array_almost_equal([t,p],tpr)

    #test on 3 dimensions
    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
    t,p = stats.ttest_rel(rvs1_3D, rvs2_3D, axis=1)
    assert_array_almost_equal(np.abs(t), tr)
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (2, 3))

    t,p = stats.ttest_rel(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
    assert_array_almost_equal(np.abs(t), tr)
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (3, 2))

    #test zero division problem
    t,p = stats.ttest_rel([0,0,0],[1,1,1])
    assert_equal((np.abs(t),p), (np.inf, 0))
    assert_equal(stats.ttest_rel([0,0,0], [0,0,0]), (1.0, 0.42264973081037427))

    #check that nan in input array result in nan output
    anan = np.array([[1,np.nan],[-1,1]])
    assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))


def test_ttest_ind():
    #regression test
    tr = 1.0912746897927283
    pr = 0.27647818616351882
    tpr = ([tr,-tr],[pr,pr])

    rvs2 = np.linspace(1,100,100)
    rvs1 = np.linspace(5,105,100)
    rvs1_2D = np.array([rvs1, rvs2])
    rvs2_2D = np.array([rvs2, rvs1])

    t,p = stats.ttest_ind(rvs1, rvs2, axis=0)
    assert_array_almost_equal([t,p],(tr,pr))
    t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0)
    assert_array_almost_equal([t,p],tpr)
    t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1)
    assert_array_almost_equal([t,p],tpr)

    #test on 3 dimensions
    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
    t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1)
    assert_almost_equal(np.abs(t), np.abs(tr))
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (2, 3))

    t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
    assert_array_almost_equal(np.abs(t), np.abs(tr))
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (3, 2))

    #test zero division problem
    t,p = stats.ttest_ind([0,0,0],[1,1,1])
    assert_equal((np.abs(t),p), (np.inf, 0))
    assert_equal(stats.ttest_ind([0,0,0], [0,0,0]), (1.0, 0.37390096630005898))

    #check that nan in input array result in nan output
    anan = np.array([[1,np.nan],[-1,1]])
    assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))




def test_ttest_1samp_new():
    n1, n2, n3 = (10,15,20)
    rvn1 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3))
    rvn2 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3))

    #check multidimensional array and correct axis handling
    #deterministic rvn1 and rvn2 would be better as in test_ttest_rel
    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n2,n3)),axis=0)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=0)
    t3,p3 = stats.ttest_1samp(rvn1[:,0,0], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n2,n3))

    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n3)),axis=1)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=1)
    t3,p3 = stats.ttest_1samp(rvn1[0,:,0], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n1,n3))

    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n2)),axis=2)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=2)
    t3,p3 = stats.ttest_1samp(rvn1[0,0,:], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n1,n2))

    #test zero division problem
    t,p = stats.ttest_1samp([0,0,0], 1)
    assert_equal((np.abs(t),p), (np.inf, 0))
    assert_equal(stats.ttest_1samp([0,0,0], 0), (1.0, 0.42264973081037427))

    #check that nan in input array result in nan output
    anan = np.array([[1,np.nan],[-1,1]])
    assert_equal(stats.ttest_1samp(anan, 0),([0, np.nan], [1,np.nan]))

def test_describe():
    x = np.vstack((np.ones((3,4)),2*np.ones((2,4))))
    nc, mmc = (5, ([ 1.,  1.,  1.,  1.], [ 2.,  2.,  2.,  2.]))
    mc = np.array([ 1.4,  1.4,  1.4,  1.4])
    vc = np.array([ 0.3,  0.3,  0.3,  0.3])
    skc = [0.40824829046386357]*4
    kurtc = [-1.833333333333333]*4
    n, mm, m, v, sk, kurt = stats.describe(x)
    assert_equal(n, nc)
    assert_equal(mm, mmc)
    assert_equal(m, mc)
    assert_equal(v, vc)
    assert_array_almost_equal(sk, skc, decimal=13) #not sure about precision
    assert_array_almost_equal(kurt, kurtc, decimal=13)
    n, mm, m, v, sk, kurt = stats.describe(x.T, axis=1)
    assert_equal(n, nc)
    assert_equal(mm, mmc)
    assert_equal(m, mc)
    assert_equal(v, vc)
    assert_array_almost_equal(sk, skc, decimal=13) #not sure about precision
    assert_array_almost_equal(kurt, kurtc, decimal=13)

def test_normalitytests():
    # numbers verified with R: dagoTest in package fBasics
    st_normal, st_skew, st_kurt = (3.92371918, 1.98078826, -0.01403734)
    pv_normal, pv_skew, pv_kurt = (0.14059673, 0.04761502,  0.98880019)
    x = np.array((-2,-1,0,1,2,3)*4)**2
    yield assert_array_almost_equal, stats.normaltest(x), (st_normal, pv_normal)
    yield assert_array_almost_equal, stats.skewtest(x), (st_skew, pv_skew)
    yield assert_array_almost_equal, stats.kurtosistest(x), (st_kurt, pv_kurt)


def mannwhitneyu():
    x = np.array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1.,
        2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1.])

    y = np.array([ 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1.,
        1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1.,
        1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 1., 1., 2., 1., 1., 2.,
        1., 2., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
        1.])
    #p-value verified with matlab and R to 5 significant digits
    assert_array_almost_equal(stats.stats.mannwhitneyu(x,y),
                    (16980.5, 2.8214327656317373e-005), decimal=12)



def test_pointbiserial():
    # copied from mstats tests removing nans
    x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
         0,0,0,0,1]
    y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
         2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
         0.8,0.7,0.6,0.5,0.2,0.2,0.1]
    assert_almost_equal(stats.pointbiserialr(x, y)[0], 0.36149, 5)


def test_obrientransform():
    #this is a regression test to check np.var replacement
    #I didn't separately verigy the numbers
    x1 = np.arange(5)
    result = np.array(
      [[  5.41666667,   1.04166667,  -0.41666667,   1.04166667,  5.41666667],
       [ 21.66666667,   4.16666667,  -1.66666667,   4.16666667, 21.66666667]])
    assert_array_almost_equal(stats.obrientransform(x1, 2*x1), result, decimal=8)





if __name__ == "__main__":
    run_module_suite()