File: continuous_foldcauchy.rst

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (17 lines) | stat: -rw-r--r-- 738 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

.. _continuous-foldcauchy:

Folded Cauchy Distribution
==========================

This formula can be expressed in terms of the standard formulas for
the Cauchy distribution (call the cdf :math:`C\left(x\right)` and the pdf :math:`d\left(x\right)` ). if :math:`Y` is cauchy then :math:`\left|Y\right|` is folded cauchy. Note that :math:`x\geq0.`

.. math::
   :nowrap:

    \begin{eqnarray*} f\left(x;c\right) & = & \frac{1}{\pi\left(1+\left(x-c\right)^{2}\right)}+\frac{1}{\pi\left(1+\left(x+c\right)^{2}\right)}\\ F\left(x;c\right) & = & \frac{1}{\pi}\tan^{-1}\left(x-c\right)+\frac{1}{\pi}\tan^{-1}\left(x+c\right)\\ G\left(q;c\right) & = & F^{-1}\left(x;c\right)\end{eqnarray*}

No moments

Implementation: `scipy.stats.foldcauchy`