File: continuous_weibull_min.rst

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (55 lines) | stat: -rw-r--r-- 1,949 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

.. _continuous-weibull_min:

Weibull Minimum Extreme Value Distribution
==========================================

A type of extreme-value distribution with a lower bound. Defined for :math:`x>0` and :math:`c>0`

.. math::
   :nowrap:

    \begin{eqnarray*}
        f\left(x;c\right) & = & cx^{c-1}\exp\left(-x^{c}\right) \\
        F\left(x;c\right) & = & 1 - \exp\left(-x^{c}\right) \\
        G\left(q;c\right) & = & \left[-\log\left(1-q\right)\right]^{1/c}
    \end{eqnarray*}

.. math::

     \mu_{n}^{\prime}=\Gamma\left(1+\frac{n}{c}\right)

.. math::
   :nowrap:

    \begin{eqnarray*}
        \mu & = & \Gamma\left(1+\frac{1}{c}\right) \\
        \mu_{2} & = & \Gamma\left(1+\frac{2}{c}\right) -
                      \Gamma^{2}\left(1+\frac{1}{c}\right) \\
        \gamma_{1} & = & \frac{\Gamma\left(1+\frac{3}{c}\right) -
                               3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right) +
                               2\Gamma^{3}\left(1+\frac{1}{c}\right)}
                              {\mu_{2}^{3/2}} \\
        \gamma_{2} & = & \frac{\Gamma\left(1+\frac{4}{c}\right) -
                               4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right) +
                               6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right) -
                               3\Gamma^{4}\left(1+\frac{1}{c}\right)}
                              {\mu_{2}^{2}} - 3 \\
        m_{d} & = & \begin{cases}
                        \left(\frac{c-1}{c}\right)^{\frac{1}{c}} & \text{if}\; c > 1 \\
                        0 & \text{if}\; c <= 1
                    \end{cases} \\
        m_{n} & = & \ln\left(2\right)^{\frac{1}{c}}
    \end{eqnarray*}

.. math::

     h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1

where :math:`\gamma` is Euler's constant and equal to

.. math::

     \gamma\approx0.57721566490153286061.

Implementation: `scipy.stats.weibull_min`