1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
|
# cython: boundscheck=False, wraparound=False, cdivision=True
from __future__ import absolute_import
import numpy as np
cimport numpy as np
from libc.math cimport sqrt
from libc.string cimport memset
from cpython.mem cimport PyMem_Malloc, PyMem_Free
cdef extern from "numpy/npy_math.h":
cdef enum:
NPY_INFINITYF
ctypedef unsigned char uchar
# _hierarchy_distance_update.pxi includes the definition of linkage_distance_update
# and the distance update functions for the supported linkage methods.
include "_hierarchy_distance_update.pxi"
cdef linkage_distance_update *linkage_methods = [
_single, _complete, _average, _centroid, _median, _ward, _weighted]
include "_structures.pxi"
cdef inline np.npy_int64 condensed_index(np.npy_int64 n, np.npy_int64 i,
np.npy_int64 j):
"""
Calculate the condensed index of element (i, j) in an n x n condensed
matrix.
"""
if i < j:
return n * i - (i * (i + 1) / 2) + (j - i - 1)
elif i > j:
return n * j - (j * (j + 1) / 2) + (i - j - 1)
cdef inline int is_visited(uchar *bitset, int i):
"""
Check if node i was visited.
"""
return bitset[i >> 3] & (1 << (i & 7))
cdef inline void set_visited(uchar *bitset, int i):
"""
Mark node i as visited.
"""
bitset[i >> 3] |= 1 << (i & 7)
cpdef void calculate_cluster_sizes(double[:, :] Z, double[:] cs, int n):
"""
Calculate the size of each cluster. The result is the fourth column of
the linkage matrix.
Parameters
----------
Z : ndarray
The linkage matrix. The fourth column can be empty.
cs : ndarray
The array to store the sizes.
n : ndarray
The number of observations.
"""
cdef int i, child_l, child_r
for i in range(n - 1):
child_l = <int>Z[i, 0]
child_r = <int>Z[i, 1]
if child_l >= n:
cs[i] += cs[child_l - n]
else:
cs[i] += 1
if child_r >= n:
cs[i] += cs[child_r - n]
else:
cs[i] += 1
def cluster_dist(double[:, :] Z, int[:] T, double cutoff, int n):
"""
Form flat clusters by distance criterion.
Parameters
----------
Z : ndarray
The linkage matrix.
T : ndarray
The array to store the cluster numbers. The i'th observation belongs to
cluster `T[i]`.
cutoff : double
Clusters are formed when distances are less than or equal to `cutoff`.
n : int
The number of observations.
"""
cdef double[:] max_dists = np.ndarray(n, dtype=np.double)
get_max_dist_for_each_cluster(Z, max_dists, n)
cluster_monocrit(Z, max_dists, T, cutoff, n)
def cluster_in(double[:, :] Z, double[:, :] R, int[:] T, double cutoff, int n):
"""
Form flat clusters by inconsistent criterion.
Parameters
----------
Z : ndarray
The linkage matrix.
R : ndarray
The inconsistent matrix.
T : ndarray
The array to store the cluster numbers. The i'th observation belongs to
cluster `T[i]`.
cutoff : double
Clusters are formed when the inconsistent values are less than or
or equal to `cutoff`.
n : int
The number of observations.
"""
cdef double[:] max_inconsists = np.ndarray(n, dtype=np.double)
get_max_Rfield_for_each_cluster(Z, R, max_inconsists, n, 3)
cluster_monocrit(Z, max_inconsists, T, cutoff, n)
def cluster_maxclust_dist(double[:, :] Z, int[:] T, int n, int mc):
"""
Form flat clusters by maxclust criterion.
Parameters
----------
Z : ndarray
The linkage matrix.
T : ndarray
The array to store the cluster numbers. The i'th observation belongs to
cluster `T[i]`.
n : int
The number of observations.
mc : int
The maximum number of clusters.
"""
cdef double[:] max_dists = np.ndarray(n, dtype=np.double)
get_max_dist_for_each_cluster(Z, max_dists, n)
# should use an O(n) algorithm
cluster_maxclust_monocrit(Z, max_dists, T, n, mc)
cpdef void cluster_maxclust_monocrit(double[:, :] Z, double[:] MC, int[:] T,
int n, int max_nc):
"""
Form flat clusters by maxclust_monocrit criterion.
Parameters
----------
Z : ndarray
The linkage matrix.
MC : ndarray
The monotonic criterion array.
T : ndarray
The array to store the cluster numbers. The i'th observation belongs to
cluster `T[i]`.
n : int
The number of observations.
max_nc : int
The maximum number of clusters.
"""
cdef int i, k, i_lc, i_rc, root, nc, lower_idx, upper_idx
cdef double thresh
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
lower_idx = 0
upper_idx = n - 1
while upper_idx - lower_idx > 1:
i = (lower_idx + upper_idx) >> 1
thresh = MC[i]
memset(visited, 0, visited_size)
nc = 0
k = 0
curr_node[0] = 2 * n - 2
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
i_rc = <int>Z[root, 1]
if MC[root] <= thresh: # this subtree forms a cluster
nc += 1
if nc > max_nc: # illegal
break
k -= 1
set_visited(visited, i_lc)
set_visited(visited, i_rc)
continue
if not is_visited(visited, i_lc):
set_visited(visited, i_lc)
if i_lc >= n:
k += 1
curr_node[k] = i_lc
continue
else: # singleton cluster
nc += 1
if nc > max_nc:
break
if not is_visited(visited, i_rc):
set_visited(visited, i_rc)
if i_rc >= n:
k += 1
curr_node[k] = i_rc
continue
else: # singleton cluster
nc += 1
if nc > max_nc:
break
k -= 1
if nc > max_nc:
lower_idx = i
else:
upper_idx = i
PyMem_Free(visited)
cluster_monocrit(Z, MC, T, MC[upper_idx], n)
cpdef void cluster_monocrit(double[:, :] Z, double[:] MC, int[:] T,
double cutoff, int n):
"""
Form flat clusters by monocrit criterion.
Parameters
----------
Z : ndarray
The linkage matrix.
MC : ndarray
The monotonic criterion array.
T : ndarray
The array to store the cluster numbers. The i'th observation belongs to
cluster `T[i]`.
cutoff : double
Clusters are formed when the MC values are less than or equal to
`cutoff`.
n : int
The number of observations.
"""
cdef int k, i_lc, i_rc, root, n_cluster = 0, cluster_leader = -1
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
memset(visited, 0, visited_size)
k = 0
curr_node[0] = 2 * n - 2
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
i_rc = <int>Z[root, 1]
if cluster_leader == -1 and MC[root] <= cutoff: # found a cluster
cluster_leader = root
n_cluster += 1
if i_lc >= n and not is_visited(visited, i_lc):
set_visited(visited, i_lc)
k += 1
curr_node[k] = i_lc
continue
if i_rc >= n and not is_visited(visited, i_rc):
set_visited(visited, i_rc)
k += 1
curr_node[k] = i_rc
continue
if i_lc < n:
if cluster_leader == -1: # singleton cluster
n_cluster += 1
T[i_lc] = n_cluster
if i_rc < n:
if cluster_leader == -1: # singleton cluster
n_cluster += 1
T[i_rc] = n_cluster
if cluster_leader == root: # back to the leader
cluster_leader = -1
k -= 1
PyMem_Free(visited)
def cophenetic_distances(double[:, :] Z, double[:] d, int n):
"""
Calculate the cophenetic distances between each observation
Parameters
----------
Z : ndarray
The linkage matrix.
d : ndarray
The condensed matrix to store the cophenetic distances.
n : int
The number of observations.
"""
cdef int i, j, k, root, i_lc, i_rc, n_lc, n_rc, right_start
cdef double dist
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int[:] members = np.ndarray(n, dtype=np.intc)
cdef int[:] left_start = np.ndarray(n, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
memset(visited, 0, visited_size)
k = 0
curr_node[0] = 2 * n - 2
left_start[0] = 0
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
i_rc = <int>Z[root, 1]
if i_lc >= n: # left child is not a leaf
n_lc = <int>Z[i_lc - n, 3]
if not is_visited(visited, i_lc):
set_visited(visited, i_lc)
k += 1
curr_node[k] = i_lc
left_start[k] = left_start[k - 1]
continue # visit the left subtree
else:
n_lc = 1
members[left_start[k]] = i_lc
if i_rc >= n: # right child is not a leaf
n_rc = <int>Z[i_rc - n, 3]
if not is_visited(visited, i_rc):
set_visited(visited, i_rc)
k += 1
curr_node[k] = i_rc
left_start[k] = left_start[k - 1] + n_lc
continue # visit the right subtree
else:
n_rc = 1
members[left_start[k] + n_lc] = i_rc
# back to the root of current subtree
dist = Z[root, 2]
right_start = left_start[k] + n_lc
for i in range(left_start[k], right_start):
for j in range(right_start, right_start + n_rc):
d[condensed_index(n, members[i], members[j])] = dist
k -= 1 # back to parent node
PyMem_Free(visited)
cpdef void get_max_Rfield_for_each_cluster(double[:, :] Z, double[:, :] R,
double[:] max_rfs, int n, int rf):
"""
Get the maximum statistic for each non-singleton cluster. For the i'th
non-singleton cluster, max_rfs[i] = max{R[j, rf] j is a descendent of i}.
Parameters
----------
Z : ndarray
The linkage matrix.
R : ndarray
The R matrix.
max_rfs : ndarray
The array to store the result.
n : int
The number of observations.
rf : int
Indicate which column of `R` is used.
"""
cdef int k, i_lc, i_rc, root
cdef double max_rf, max_l, max_r
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
memset(visited, 0, visited_size)
k = 0
curr_node[0] = 2 * n - 2
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
i_rc = <int>Z[root, 1]
if i_lc >= n and not is_visited(visited, i_lc):
set_visited(visited, i_lc)
k += 1
curr_node[k] = i_lc
continue
if i_rc >= n and not is_visited(visited, i_rc):
set_visited(visited, i_rc)
k += 1
curr_node[k] = i_rc
continue
max_rf = R[root, rf]
if i_lc >= n:
max_l = max_rfs[i_lc - n]
if max_l > max_rf:
max_rf = max_l
if i_rc >= n:
max_r = max_rfs[i_rc - n]
if max_r > max_rf:
max_rf = max_r
max_rfs[root] = max_rf
k -= 1
PyMem_Free(visited)
cpdef get_max_dist_for_each_cluster(double[:, :] Z, double[:] MD, int n):
"""
Get the maximum inconsistency coefficient for each non-singleton cluster.
Parameters
----------
Z : ndarray
The linkage matrix.
MD : ndarray
The array to store the result.
n : int
The number of observations.
"""
cdef int k, i_lc, i_rc, root
cdef double max_dist, max_l, max_r
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
memset(visited, 0, visited_size)
k = 0
curr_node[0] = 2 * n - 2
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
i_rc = <int>Z[root, 1]
if i_lc >= n and not is_visited(visited, i_lc):
set_visited(visited, i_lc)
k += 1
curr_node[k] = i_lc
continue
if i_rc >= n and not is_visited(visited, i_rc):
set_visited(visited, i_rc)
k += 1
curr_node[k] = i_rc
continue
max_dist = Z[root, 2]
if i_lc >= n:
max_l = MD[i_lc - n]
if max_l > max_dist:
max_dist = max_l
if i_rc >= n:
max_r = MD[i_rc - n]
if max_r > max_dist:
max_dist = max_r
MD[root] = max_dist
k -= 1
PyMem_Free(visited)
def inconsistent(double[:, :] Z, double[:, :] R, int n, int d):
"""
Calculate the inconsistency statistics.
Parameters
----------
Z : ndarray
The linkage matrix.
R : ndarray
A (n - 1) x 5 matrix to store the result. The inconsistency statistics
`R[i]` are calculated over `d` levels below cluster i. `R[i, 0]` is the
mean of distances. `R[i, 1]` is the standard deviation of distances.
`R[i, 2]` is the number of clusters included. `R[i, 3]` is the
inconsistency coefficient.
.. math:: \\frac{\\mathtt{Z[i,2]}-\\mathtt{R[i,0]}} {R[i,1]}
n : int
The number of observations.
d : int
The number of levels included in calculation below a node.
"""
cdef int i, k, i_lc, i_rc, root, level_count
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef double level_sum, level_std_sum, level_std, dist
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
for i in range(n - 1):
k = 0
level_count = 0
level_sum = 0
level_std_sum = 0
memset(visited, 0, visited_size)
curr_node[0] = i
while k >= 0:
root = curr_node[k]
if k < d - 1:
i_lc = <int>Z[root, 0]
if i_lc >= n and not is_visited(visited, i_lc):
set_visited(visited, i_lc)
k += 1
curr_node[k] = i_lc - n
continue
i_rc = <int>Z[root, 1]
if i_rc >= n and not is_visited(visited, i_rc):
set_visited(visited, i_rc)
k += 1
curr_node[k] = i_rc - n
continue
dist = Z[root, 2]
level_count += 1
level_sum += dist
level_std_sum += dist * dist
k -= 1
R[i, 0] = level_sum / level_count
R[i, 2] = level_count
if level_count < 2:
level_std = (level_std_sum - (level_sum * level_sum)) / level_count
else:
level_std = ((level_std_sum -
((level_sum * level_sum) / level_count)) /
(level_count - 1))
if level_std > 0:
level_std = sqrt(level_std)
R[i, 1] = level_std
R[i, 3] = (Z[i, 2] - R[i, 0]) / level_std
else:
R[i, 1] = 0
PyMem_Free(visited)
def leaders(double[:, :] Z, int[:] T, int[:] L, int[:] M, int nc, int n):
"""
Find the leader (root) of each flat cluster.
Parameters
----------
Z : ndarray
The linkage matrix.
T : ndarray
The flat clusters assignment returned by `fcluster` or `fclusterdata`.
L : ndarray
`L` and `M` store the result. The leader of flat cluster `L[i]` is
node `M[i]`.
M : ndarray
`L` and `M` store the result. The leader of flat cluster `L[i]` is
node `M[i]`.
nc : int
The number of flat clusters.
n : int
The number of observations.
Returns
-------
err_node : int
Found that `T` is invalid when examining node `err_node`.
`-1` indicates success.
"""
cdef int k, i_lc, i_rc, root, cid_lc, cid_rc, leader_idx, result = -1
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int[:] cluster_ids = np.ndarray(n * 2 - 1, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
memset(visited, 0, visited_size)
cluster_ids[:n] = T[:]
cluster_ids[n:] = -1
k = 0
curr_node[0] = 2 * n - 2
leader_idx = 0
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
i_rc = <int>Z[root, 1]
if i_lc >= n and not is_visited(visited, i_lc):
set_visited(visited, i_lc)
k += 1
curr_node[k] = i_lc
continue
if i_rc >= n and not is_visited(visited, i_rc):
set_visited(visited, i_rc)
k += 1
curr_node[k] = i_rc
continue
cid_lc = cluster_ids[i_lc]
cid_rc = cluster_ids[i_rc]
if cid_lc == cid_rc: # left and right children in the same cluster
cluster_ids[root + n] = cid_lc
else: # left and right children are both leaders
if cid_lc != -1:
if leader_idx >= nc:
result = root + n
break
L[leader_idx] = i_lc
M[leader_idx] = cid_lc
leader_idx += 1
if cid_rc != -1:
if leader_idx >= nc:
result = root + n
break
L[leader_idx] = i_rc
M[leader_idx] = cid_rc
leader_idx += 1
cluster_ids[root + n] = -1
k -= 1
if result == -1:
i_lc = <int>Z[n - 2, 0]
i_rc = <int>Z[n - 2, 1]
cid_lc = cluster_ids[i_lc]
cid_rc = cluster_ids[i_rc]
if cid_lc == cid_rc and cid_lc != -1:
if leader_idx >= nc:
result = 2 * n - 2
else:
L[leader_idx] = 2 * n - 2
M[leader_idx] = cid_lc
PyMem_Free(visited)
return result # -1 means success here
def linkage(double[:] dists, np.npy_int64 n, int method):
"""
Perform hierarchy clustering.
Parameters
----------
dists : ndarray
A condensed matrix stores the pairwise distances of the observations.
n : int
The number of observations.
method : int
The linkage method. 0: single 1: complete 2: average 3: centroid
4: median 5: ward 6: weighted
Returns
-------
Z : ndarray, shape (n - 1, 4)
Computed linkage matrix.
"""
Z_arr = np.empty((n - 1, 4))
cdef double[:, :] Z = Z_arr
cdef int i, j, k, x, y, nx, ny, ni, id_x, id_y, id_i
cdef np.npy_int64 i_start
cdef double current_min
# inter-cluster dists
cdef double[:] D = np.ndarray(n * (n - 1) / 2, dtype=np.double)
# map the indices to node ids
cdef int[:] id_map = np.ndarray(n, dtype=np.intc)
cdef linkage_distance_update new_dist
new_dist = linkage_methods[method]
D[:] = dists
for i in range(n):
id_map[i] = i
for k in range(n - 1):
# find two closest clusters x, y (x < y)
current_min = NPY_INFINITYF
for i in range(n - 1):
if id_map[i] == -1:
continue
i_start = condensed_index(n, i, i + 1)
for j in range(n - i - 1):
if D[i_start + j] < current_min:
current_min = D[i_start + j]
x = i
y = i + j + 1
id_x = id_map[x]
id_y = id_map[y]
# get the original numbers of points in clusters x and y
nx = 1 if id_x < n else <int>Z[id_x - n, 3]
ny = 1 if id_y < n else <int>Z[id_y - n, 3]
# record the new node
Z[k, 0] = min(id_x, id_y)
Z[k, 1] = max(id_y, id_x)
Z[k, 2] = current_min
Z[k, 3] = nx + ny
id_map[x] = -1 # cluster x will be dropped
id_map[y] = n + k # cluster y will be replaced with the new cluster
# update the distance matrix
for i in range(n):
id_i = id_map[i]
if id_i == -1 or id_i == n + k:
continue
ni = 1 if id_i < n else <int>Z[id_i - n, 3]
D[condensed_index(n, i, y)] = new_dist(
D[condensed_index(n, i, x)],
D[condensed_index(n, i, y)],
current_min, nx, ny, ni)
if i < x:
D[condensed_index(n, i, x)] = NPY_INFINITYF
return Z_arr
cdef Pair find_min_dist(int n, double[:] D, int[:] size, int x):
cdef double current_min = NPY_INFINITYF
cdef int y = -1
cdef int i
cdef double dist
for i in range(x + 1, n):
if size[i] == 0:
continue
dist = D[condensed_index(n, x, i)]
if dist < current_min:
current_min = dist
y = i
return Pair(y, current_min)
def fast_linkage(double[:] dists, int n, int method):
"""Perform hierarchy clustering.
It implements "Generic Clustering Algorithm" from [1]. The worst case
time complexity is O(N^3), but the best case time complexity is O(N^2) and
it usually works quite close to the best case.
Parameters
----------
dists : ndarray
A condensed matrix stores the pairwise distances of the observations.
n : int
The number of observations.
method : int
The linkage method. 0: single 1: complete 2: average 3: centroid
4: median 5: ward 6: weighted
Returns
-------
Z : ndarray, shape (n - 1, 4)
Computed linkage matrix.
References
----------
.. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering
algorithms", :arXiv:`1109.2378v1`.
"""
cdef double[:, :] Z = np.empty((n - 1, 4))
cdef double[:] D = dists.copy() # Distances between clusters.
cdef int[:] size = np.ones(n, dtype=np.intc) # Sizes of clusters.
# ID of a cluster to put into linkage matrix.
cdef int[:] cluster_id = np.arange(n, dtype=np.intc)
# Nearest neighbor candidate and lower bound of the distance to the
# true nearest neighbor for each cluster among clusters with higher
# indices (thus size is n - 1).
cdef int[:] neighbor = np.empty(n - 1, dtype=np.intc)
cdef double[:] min_dist = np.empty(n - 1)
cdef linkage_distance_update new_dist = linkage_methods[method]
cdef int i, k
cdef int x, y, z
cdef int nx, ny, nz
cdef int id_x, id_y
cdef double dist
cdef Pair pair
for x in range(n - 1):
pair = find_min_dist(n, D, size, x)
neighbor[x] = pair.key
min_dist[x] = pair.value
cdef Heap min_dist_heap = Heap(min_dist)
for k in range(n - 1):
# Theoretically speaking, this can be implemented as "while True", but
# having a fixed size loop when floating point computations involved
# looks more reliable. The idea that we should find the two closest
# clusters in no more that n - k (1 for the last iteration) distance
# updates.
for i in range(n - k):
pair = min_dist_heap.get_min()
x, dist = pair.key, pair.value
y = neighbor[x]
if dist == D[condensed_index(n, x, y)]:
break
pair = find_min_dist(n, D, size, x)
y, dist = pair.key, pair.value
neighbor[x] = y
min_dist[x] = dist
min_dist_heap.change_value(x, dist)
min_dist_heap.remove_min()
id_x = cluster_id[x]
id_y = cluster_id[y]
nx = size[x]
ny = size[y]
if id_x > id_y:
id_x, id_y = id_y, id_x
Z[k, 0] = id_x
Z[k, 1] = id_y
Z[k, 2] = dist
Z[k, 3] = nx + ny
size[x] = 0 # Cluster x will be dropped.
size[y] = nx + ny # Cluster y will be replaced with the new cluster.
cluster_id[y] = n + k # Update ID of y.
# Update the distance matrix.
for z in range(n):
nz = size[z]
if nz == 0 or z == y:
continue
D[condensed_index(n, z, y)] = new_dist(
D[condensed_index(n, z, x)], D[condensed_index(n, z, y)],
dist, nx, ny, nz)
# Reassign neighbor candidates from x to y.
# This reassignment is just a (logical) guess.
for z in range(x):
if size[z] > 0 and neighbor[z] == x:
neighbor[z] = y
# Update lower bounds of distance.
for z in range(y):
if size[z] == 0:
continue
dist = D[condensed_index(n, z, y)]
if dist < min_dist[z]:
neighbor[z] = y
min_dist[z] = dist
min_dist_heap.change_value(z, dist)
# Find nearest neighbor for y.
if y < n - 1:
pair = find_min_dist(n, D, size, y)
z, dist = pair.key, pair.value
if z != -1:
neighbor[y] = z
min_dist[y] = dist
min_dist_heap.change_value(y, dist)
return Z.base
def nn_chain(double[:] dists, int n, int method):
"""Perform hierarchy clustering using nearest-neighbor chain algorithm.
Parameters
----------
dists : ndarray
A condensed matrix stores the pairwise distances of the observations.
n : int
The number of observations.
method : int
The linkage method. 0: single 1: complete 2: average 3: centroid
4: median 5: ward 6: weighted
Returns
-------
Z : ndarray, shape (n - 1, 4)
Computed linkage matrix.
"""
Z_arr = np.empty((n - 1, 4))
cdef double[:, :] Z = Z_arr
cdef double[:] D = dists.copy() # Distances between clusters.
cdef int[:] size = np.ones(n, dtype=np.intc) # Sizes of clusters.
cdef linkage_distance_update new_dist = linkage_methods[method]
# Variables to store neighbors chain.
cdef int[:] cluster_chain = np.ndarray(n, dtype=np.intc)
cdef int chain_length = 0
cdef int i, j, k, x, y, nx, ny, ni
cdef double dist, current_min
for k in range(n - 1):
if chain_length == 0:
chain_length = 1
for i in range(n):
if size[i] > 0:
cluster_chain[0] = i
break
# Go through chain of neighbors until two mutual neighbors are found.
while True:
x = cluster_chain[chain_length - 1]
# We want to prefer the previous element in the chain as the
# minimum, to avoid potentially going in cycles.
if chain_length > 1:
y = cluster_chain[chain_length - 2]
current_min = D[condensed_index(n, x, y)]
else:
current_min = NPY_INFINITYF
for i in range(n):
if size[i] == 0 or x == i:
continue
dist = D[condensed_index(n, x, i)]
if dist < current_min:
current_min = dist
y = i
if chain_length > 1 and y == cluster_chain[chain_length - 2]:
break
cluster_chain[chain_length] = y
chain_length += 1
# Merge clusters x and y and pop them from stack.
chain_length -= 2
# This is a convention used in fastcluster.
if x > y:
x, y = y, x
# get the original numbers of points in clusters x and y
nx = size[x]
ny = size[y]
# Record the new node.
Z[k, 0] = x
Z[k, 1] = y
Z[k, 2] = current_min
Z[k, 3] = nx + ny
size[x] = 0 # Cluster x will be dropped.
size[y] = nx + ny # Cluster y will be replaced with the new cluster
# Update the distance matrix.
for i in range(n):
ni = size[i]
if ni == 0 or i == y:
continue
D[condensed_index(n, i, y)] = new_dist(
D[condensed_index(n, i, x)],
D[condensed_index(n, i, y)],
current_min, nx, ny, ni)
# Sort Z by cluster distances.
order = np.argsort(Z_arr[:, 2], kind='mergesort')
Z_arr = Z_arr[order]
# Find correct cluster labels inplace.
label(Z_arr, n)
return Z_arr
def mst_single_linkage(double[:] dists, int n):
"""Perform hierarchy clustering using MST algorithm for single linkage.
Parameters
----------
dists : ndarray
A condensed matrix stores the pairwise distances of the observations.
n : int
The number of observations.
Returns
-------
Z : ndarray, shape (n - 1, 4)
Computed linkage matrix.
"""
Z_arr = np.empty((n - 1, 4))
cdef double[:, :] Z = Z_arr
# Which nodes were already merged.
cdef int[:] merged = np.zeros(n, dtype=np.intc)
cdef double[:] D = np.empty(n)
D[:] = NPY_INFINITYF
cdef int i, k, x, y
cdef double dist, current_min
x = 0
for k in range(n - 1):
current_min = NPY_INFINITYF
merged[x] = 1
for i in range(n):
if merged[i] == 1:
continue
dist = dists[condensed_index(n, x, i)]
if D[i] > dist:
D[i] = dist
if D[i] < current_min:
y = i
current_min = D[i]
Z[k, 0] = x
Z[k, 1] = y
Z[k, 2] = current_min
x = y
# Sort Z by cluster distances.
order = np.argsort(Z_arr[:, 2], kind='mergesort')
Z_arr = Z_arr[order]
# Find correct cluster labels and compute cluster sizes inplace.
label(Z_arr, n)
return Z_arr
cdef class LinkageUnionFind:
"""Structure for fast cluster labeling in unsorted dendrogram."""
cdef int[:] parent
cdef int[:] size
cdef int next_label
def __init__(self, int n):
self.parent = np.arange(2 * n - 1, dtype=np.intc)
self.next_label = n
self.size = np.ones(2 * n - 1, dtype=np.intc)
cdef int merge(self, int x, int y):
self.parent[x] = self.next_label
self.parent[y] = self.next_label
cdef int size = self.size[x] + self.size[y]
self.size[self.next_label] = size
self.next_label += 1
return size
cdef find(self, int x):
cdef int p = x
while self.parent[x] != x:
x = self.parent[x]
while self.parent[p] != x:
p, self.parent[p] = self.parent[p], x
return x
cdef label(double[:, :] Z, int n):
"""Correctly label clusters in unsorted dendrogram."""
cdef LinkageUnionFind uf = LinkageUnionFind(n)
cdef int i, x, y, x_root, y_root
for i in range(n - 1):
x, y = int(Z[i, 0]), int(Z[i, 1])
x_root, y_root = uf.find(x), uf.find(y)
if x_root < y_root:
Z[i, 0], Z[i, 1] = x_root, y_root
else:
Z[i, 0], Z[i, 1] = y_root, x_root
Z[i, 3] = uf.merge(x_root, y_root)
def prelist(double[:, :] Z, int[:] members, int n):
"""
Perform a pre-order traversal on the linkage tree and get a list of ids
of the leaves.
Parameters
----------
Z : ndarray
The linkage matrix.
members : ndarray
The array to store the result.
n : int
The number of observations.
"""
cdef int k, i_lc, i_rc, root, mem_idx
cdef int[:] curr_node = np.ndarray(n, dtype=np.intc)
cdef int visited_size = (((n * 2) - 1) >> 3) + 1
cdef uchar *visited = <uchar *>PyMem_Malloc(visited_size)
if not visited:
raise MemoryError
memset(visited, 0, visited_size)
mem_idx = 0
k = 0
curr_node[0] = 2 * n - 2
while k >= 0:
root = curr_node[k] - n
i_lc = <int>Z[root, 0]
if not is_visited(visited, i_lc):
set_visited(visited, i_lc)
if i_lc >= n:
k += 1
curr_node[k] = i_lc
continue
else:
members[mem_idx] = i_lc
mem_idx += 1
i_rc = <int>Z[root, 1]
if not is_visited(visited, i_rc):
set_visited(visited, i_rc)
if i_rc >= n:
k += 1
curr_node[k] = i_rc
continue
else:
members[mem_idx] = i_rc
mem_idx += 1
k -= 1
PyMem_Free(visited)
|